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Baryon Number Asymmetry in SM

• Within SM: 
CP violation in quark sector not sufficient to explain the 
observed matter-antimatter asymmetry of the Universe

• CP phase in CKM matrix:

• effects of CP violation suppressed by small quark mixing

• various Baryogenesis mechanisms

• neutrino oscillation opens up a new possibility: 
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Thus the charged current interaction in the mass eigenstates reads,

LW =
g√
2
U

′
LUCKMγµD′

LWµ + h.c. , (1.62)

where U ′
L ≡ V u

L UL and D′
L ≡ V d

L DL are the mass eigenstates, and UCKM ≡
V u

L (V d
L )† is the CKM matrix. For three families of fermions, the unitary

matrix K can be parameterized by three angles and six phases. Out of
these six phases, five of them can be reabsorbed by redefining the wave
functions of the quarks. There is hence only one physical phase in the CKM
matrix. This is the only source of CP violation in the SM. It turns out that
this particular source is not strong enough to accommodate the observed
matter-antimatter asymmetry. The relevant effects can be parameterized
by [21],

B #
α4

wT 3

s
δCP # 10−8δCP , (1.63)

where δCP is the suppression factor due to CP violation in the SM. Since
CP violation vanishes when any two of the quarks with equal charge have
degenerate masses, a naive estimate gives the effects of CP violation of the
size

ACP = (m2
t − m2

c)(m
2
c − m2

u)(m2
u − m2

t ) (1.64)

·(m2
b − m2

s)(m
2
s − m2

d)(m
2
d − m2

b) · J .

Here the proportionality constant J is the usual Jarlskog invariant, which
is a parameterization independent measure of CP violation in the quark
sector. Together with the fact that ACP is of mass (thus temperature)
dimension 12, this leads to the following value for δCP , which is a dimen-
sionless quantity,

δCP #
ACP

T 12
C

# 10−20 , (1.65)

and TC is the temperature of the electroweak phase transition. The baryon
number asymmetry due to the phase in the CKM matrix is therefore of
the order of B ∼ 10−28, which is too small to account for the observed
B ∼ 10−10.

In MSSM, there are new sources of CP violation due to the presence of
the soft SUSY breaking sector. The superpotential of the MSSM is given
by,

W = µĤ1Ĥ2 + huĤ2Q̂ûc + hdĤ1Q̂d̂c + heĤ1L̂êc . (1.66)

The soft SUSY breaking sector has the following parameters:
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Fukugita, Yanagida, 1986Leptogenesis

Shaposhnikov, 1986; Farrar, Shaposhnikov, 1993



Compelling Neutrino Oscillation Evidences
Atmospheric Neutrinos:  
SuperKamiokande (up-down asymmetry, L/E, θz dependence of μ-like events)

 dominant channel:
next: K2K, MINOS, CNGS (OPERA)

Solar Neutrinos:  
Homestake, Kamiomande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, 
KamLAND

dominant channel:
next: BOREXINO, KamLAND, ...

LSND:  
dominant channel: 

MiniBOONE -- negative result (2007)

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 " sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL # = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





δ = [0, 2π]

α21, α31

1

νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB % 10−2εκ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
√

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η ' 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11

M1
∝
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mt
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vL < O(10−7) eV
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Parameters for 3 Light Neutrinos
• three neutrino mixing

• mismatch between weak and mass eigenstates

• PMNS matrix

• Dirac CP-violating phase: 
• Majorana CP-violating phases:
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1

Parameters for 3 Light Neutrinos
Leptonic Mixing Matrix

• Weak interaction eigenstates:                            Mass eigenstates:

• Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

• Three families mixing:
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Discovery phase into precision phase for some oscillation parameters

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=
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0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25 − 0.34), sin2 θ23 = 0.5 (0.38 − 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =


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which predicts sin2 θatm,TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Neutrino Mass Spectrum
• search for absolute mass scale:

• end point kinematic of tritium beta decays: 

• WMAP + 2dFRGS + Lyα:   ∑(mνi) < (0.7-1.2) eV

• neutrinoless double beta decay

Mainz:  mν < 2.2 eV
KATRIN: increase sensitivity ~ 0.2 eV

Tritium→ He3 + e− + νe

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1
∗ 1 1





MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





current bound: | < m > | < (0.19− 0.68) eV (CUORICINO, Feb 2008)
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Neutrino Mass Spectrum

normal hierarchy:

!
e

!µ

!"

m
as

s

!3

!1

!2

"m2

atm

"m2

sun
!3

!1

!2

"m2

atm

"m2

sun

m
as

s

inverted hierarchy:

!Ue3!2 ??

!Ue3!2 ??

The known unknowns: 

• How small is θ13? (νe component of ν3)

• θ23 > π/4, θ23 < π/4, θ23 = π/4? (ν3 composition)

•  Neutrino mass hierarchy (Δm13
2) ?

•  CP violation in neutrino oscillations?



Seesaw Mechanism

• a natural way to generate small neutrino masses 

• possibility to link origin of BAU to neutrino oscillation through 
leptogenesis

• Introduce right-handed neutrinos, which are SM gauge singlets
[predicted in many GUTs, e.g. SO(10)]

• The Lagrangian:
• integrating out NR: effective mass matrix
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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is spontaneously broken, as it is a gauged subgroup of SO(10). Heavy
particles X with MX < MB−L can then generate a (B − L) asymmetry
through their decays. Nevertheless, for MX ∼ MGUT ∼ 1015 GeV, the
CP asymmetry is highly suppressed. Furthermore, one also has to worry
about the large reheating temperature TRH ∼ MGUT after the inflation,
the realization of thermal equilibrium, and in supersymmetric case, the
gravitino problem. These difficulties in GUT baryogenesis had led to a lot
of interests in EW baryogenesis, which also has its own disadvantages as
discussed in Sec. 1.1.4.

The recent advent of the evidence of neutrino masses from various neu-
trino oscillation experiments opens up a new possibility of generating the
asymmetry through the decay of the heavy neutrinos [25]. A particular
attractive framework in which small neutrino masses can naturally arise is
GUT based on SO(10) (for a review, see, i.e. Ref. [22]). SO(10) GUT
models accommodate the existence of RH neutrinos,

ψ(16) = (qL, uc
R, ec

R, dc
R, "L, νc

R) , (1.79)

which is unified along with the fifteen known fermions of each family into
a single 16-dimensional spinor representation. For hierarchical fermion
masses, one easily has

MN # MB−L ∼ MGUT , (1.80)

where N = νR +νc
R is a Majorana fermion. The decays of the right-handed

neutrino,

N → "H, N → "H , (1.81)

where H is the SU(2) Higgs doublet, can lead to a lepton number asymme-
try. After the sphaleron processes, the lepton number asymmetry is then
converted into a baryon number asymmetry.

The most general Lagrangian involving charged leptons and neutrinos
is given by,

LY = fijeRi"Lj H
† + hijνRi"LjH −

1

2
(MR)ijν

c
Ri

νRj + h.c. . (1.82)

As the RH neutrinos are singlets under the SM gauge group, Majorana
masses for the RH neutrinos are allowed by the gauge invariance. Upon
the electroweak symmetry breaking, the SM Higgs doublet gets a VEV,
〈H〉 = v, and the charged leptons and the neutrino Dirac masses, which
are much smaller than the RH neutrino Majorana masses, are generated,

m! = fv, mD = hv # MR . (1.83)

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases
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Minkowski, 1977; Gell-mann, Ramond, Slansky,1981; Yanagida, 1979; Mohapatra, Senjanovic, 1981

seesaw ⇒ Neutrinos are Majorana fermions
⇒ Lepton Number violation



Leptogenesis

• implemented in the context of seesaw mechanism
• out-of-equilibrium decays of RH neutrinos produce primordial 

lepton number asymmetry

• sphaleron processes: ∆L → ∆B

• the asymmetry
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,

ε1 =

∑
α

[
Γ(N1 → "αH) − Γ(N1 → "α H)

]
∑

α

[
Γ(N1 → "αH) + Γ(N1 → "α H)

] (1.89)

#
1

8π

1

(hνhν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
·
[
f

(
M2

i

M2
1

)
+ g

(
M2

i

M2
1

)]
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =
√

x

[
1 − (1 + x) ln

(
1 + x

x

)]
. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| % |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 & M2, M3, the
asymmetry is then given by,

ε1 # −
3

8π

1

(hνh†
ν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
M1

Mi
. (1.92)

Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Fukugita, Yanagida, 1986
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Luty, 1992; Covi, Roulet, Vissani, 1996; Flanz 
et al, 1996; Plumacher, 1997; Pilaftsis, 1997;

Buchmuller, Plumacher, 1998; 
Buchmuller, Di Bari, Plumacher, 2004
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Leptogenesis
YB = nB−nB̄

S
∼ 8.6 × 10−11 (nγ: ∼ 6.3 × 10−10)

YB
∼= −10−2 ε κ

W. Buchmüller, M. Plümacher, 1998;

W. Buchmüller, P. Di Bari, M. Plümacher, 2004

κ– efficiency factor; κ∼ 10−1 − 10−3: ε ∼> 10−7.

ε: CP−, L− violating asymmetry generated in out of equilibrium NRj−decays in
the early Universe,

ε1 =
Γ(N1 → Φ− "+) − Γ(N1 → Φ+ "−)

Γ(N1 → Φ− "+) + Γ(N1 → Φ+ "−)

M.A. Luty, 1992;

L. Covi, E. Roulet and F. Vissani, 1996;

M. Flanz et al., 1996;

M. Plümacher, 1997;

A. Pilaftsis, 1997.

κ = κ(m̃), m̃ - determines the rate of wash-out processes:

Φ+ + "− → N1, "− + Φ+ → Φ− + "+, etc.

W. Buchmuller, P. Di Bari and M. Plumacher, 2002;

G. F. Giudice et al., 2004



Realizations of Leptogenesis
• Standard Leptogenesis with Type-I seesaw + hierarchycal RH 

neutrino mass spectrum

• Leptogenesis with Type-II seesaw

• Resonant leptogenesis: near degenerate RH neutrino mass 
spectrum 

• soft leptogenesis

• Dirac leptogenesis
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ν̃†
R1

into final states of the slepton doublet L̃ and the Higgs doublet H , or

the lepton doublet L and the Higgsino H̃ or their conjugates,

ε =

∑
f

∫ ∞
0 [Γ(ν̃R1 , ν̃

†
R1

→ f) − Γ(ν̃R1 , ν̃
†
R1

→ f)]
∑

f

∫ ∞
0 [Γ(ν̃R1 , ν̃

†
R1

→ f) + Γ(ν̃R1 , ν̃
†
R1

→ f)]
. (1.145)

Here the final states f = (L̃ H), (L H̃) have lepton number +1, and f

denotes their conjugate, (L̃† H†), (L H̃), which have lepton number −1.
After carrying out the time integration, the total CP asymmetry is [42, 43],

ε =

(
4Γ1B

Γ2
1 + 4B2

)
Im(A)

M1
δB−F (1.146)

where the additional factor δB−F takes into account the thermal effects
due to the difference between the occupation numbers of bosons and
fermions [44].

The final result for the baryon asymmetry is [42, 43],

nB

s
# −cs deνR ε κ ,

# −1.48 × 10−3ε κ ,

# −(1.48 × 10−3)

(
Im(A)

M1

)
R δB−F κ , (1.147)

where deνR in the first line is the density of the lightest sneutrino in equi-
librium in units of entropy density, and is given by, deνR = 45ζ(3)/(π4g∗);
the factor cs, which characterizes the amount of B − L asymmetry being
converted into the baryon asymmetry YB, is defined in Eq. 1.57. The pa-
rameter κ is the efficiency factor given in Sec. 1.2.1.2. The resonance factor
R is defined as the following ratio,

R ≡
4Γ1B

Γ2
1 + 4B2

, (1.148)

which gives a value equal to one when the resonance condition, Γ1 = 2|B|,
is satisfied, leading to maximal CP asymmetry. As Γ1 is of the order of
O(0.1 − 1) GeV, to satisfy the resonance condition, a small value for B &
m̃ is thus needed. Such a small value of B can be generated by some
dynamical relaxation mechanisms [45] in which B vanishes in the leading
order. A small value of B ∼ m̃2/M1 is then generated by an operator∫

d4θZZ†N2
1 /M2

pl in the Kähler potential, where Z is the SUSY breaking
spurion field, Z = θ2 m̃Mpl [43]. In a specific SO(10) model constructed
in Ref. [46, 47], it has been shown that with the parameter B′ ≡

√
BM1

A, B:  SUSY CP-violating phases
lose connection to neutrino oscillation

Fukugita, Yanagida, 1986

Joshipura, Paschos, Rodejohann, 2001; Hambye, 
Senjanovic, 2004; Antusch, King, 2004, ...

Pilaftsis, 1997; ...

Grossman, Kashti, Nir, Roulet, 2003; D’Ambrosio, Giudice, Raidal, 
2003; Boubekeur, 2002; Boubekeur, Hambye, Senjanovic, 2004, ...

Dick, Lindner, Ratz, Wright, 2000; Murayama, Pierce, 2002; ...



Sakharov conditions:

• out-of-equilibrium (expanding Universe)

• Lepton number violation (neutrinoless double beta decay)

• CP violation 

Testing Leptogenesis?



Connection to Low Energy Observables

• Lagrangian at high energy (in the presence of RH neutrinos)

in fij and Mij diagonal basis →
      hij general complex matrix:  

• Low energy effective Lagrangian (after integrating out RH neutrinos)

in fij diagonal basis →

      hij symmetric complex matrix:  

• high energy → low energy:
numbers of mixing angles and CP phases reduced by half
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as a CKM-like matrix and a diagonal phase matrix,

UMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





·




1

eiα21/2

eiα31/2



 . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = $Liiγ
µ∂µ$Li + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRi$LjH
† + hijNRi$Lj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined
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in terms of six mixing angles. After integrating out the heavy Majorana
neutrinos, the effective Lagrangian that describes the neutrino sector below
the seesaw scale is,

Leff = !Liiγ
µ∂µ!Li + eRiiγ

µ∂µeRi + fiieRi!LiH
† (1.74)

+
1

2

∑

k

hT
ikhkj!Li!Lj

H2

Mk
+ h.c. .

This leads to an effective neutrino Majorana mass matrix whose parameters
can be measured at the oscillation experiments. As Majorana mass matrix
is symmetric, for three families, it has six independent complex elements
and thus six complex phases. Out of these six phases, three of them can
be absorbed into the wave functions of the charged leptons. Hence at low
energy, there are only three physical phases and three mixing angles in
the lepton sector. Going from high energy to low energy, the numbers of
mixing angles and phases are thus reduced by half. Due to the presence
of the additional mixing angles and complex phases in the heavy neutrino
sector, it is generally not possible to connect leptogenesis with low energy
CP violation. However, in some specific models, such connection can be
established. This will be discussed in more details in Sec. 1.4.

1.2. Standard Leptogenesis

1.2.1. Standard Leptogenesis (Majorana Neutrinos)

As mentioned in the previous section, baryon number violation arises nat-
urally in many grand unified theories. In the GUT baryogenesis, the asym-
metry is generated through the decays of heavy gauge bosons (denoted by
“V” in the following) or leptoquarks (denoted by “S” in the following),
which are particles that carry both B and L numbers. In GUTs based on
SU(5), the heavy gauge bosons or heavy leptoquarks have the following
B-non-conserving decays,

V → !Luc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → !LqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0. In SO(10), (B − L)

April 6, 2007 19:27 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 21

in terms of six mixing angles. After integrating out the heavy Majorana
neutrinos, the effective Lagrangian that describes the neutrino sector below
the seesaw scale is,

Leff = !Liiγ
µ∂µ!Li + eRiiγ

µ∂µeRi + fiieRi!LiH
† (1.74)

+
1

2

∑

k

hT
ikhkj!Li!Lj

H2

Mk
+ h.c. .

This leads to an effective neutrino Majorana mass matrix whose parameters
can be measured at the oscillation experiments. As Majorana mass matrix
is symmetric, for three families, it has six independent complex elements
and thus six complex phases. Out of these six phases, three of them can
be absorbed into the wave functions of the charged leptons. Hence at low
energy, there are only three physical phases and three mixing angles in
the lepton sector. Going from high energy to low energy, the numbers of
mixing angles and phases are thus reduced by half. Due to the presence
of the additional mixing angles and complex phases in the heavy neutrino
sector, it is generally not possible to connect leptogenesis with low energy
CP violation. However, in some specific models, such connection can be
established. This will be discussed in more details in Sec. 1.4.

1.2. Standard Leptogenesis

1.2.1. Standard Leptogenesis (Majorana Neutrinos)

As mentioned in the previous section, baryon number violation arises nat-
urally in many grand unified theories. In the GUT baryogenesis, the asym-
metry is generated through the decays of heavy gauge bosons (denoted by
“V” in the following) or leptoquarks (denoted by “S” in the following),
which are particles that carry both B and L numbers. In GUTs based on
SU(5), the heavy gauge bosons or heavy leptoquarks have the following
B-non-conserving decays,

V → !Luc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → !LqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0. In SO(10), (B − L)

9-3 = 6 mixing angles
9-3 = 6 physical phases

6-3 = 3 mixing angles
6-3 = 3 physical phases

{

{



Connection to Low Energy Observables

• diagonal basis for charged lepton and RH neutrino mass matrices

• neutrino Dirac Yukawa interactions: 
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where m = diag(m1, m2, m3) is the diagonal matrix of the light neutrino
masses, M is the diagonal matrix of the right-handed neutrino masses and U
is the MNS matrix. The orthogonal matrix R is defined by this equation as
R = vM−1/2hUm−1/2. In the basis where the right-handed neutrino mass
matrix and the charged lepton mass matrix are diagonal, the neutrino Dirac
Yukawa matrix can be written as h = V ν †

R diag(h1, h2, h3)V ν
L . Therefore,

the low energy CP violation in the lepton sector can arise from either the
left-handed sector through V ν

L , the right-handed sector through V ν
R , or from

both. From hh†v2 = V ν †
R diag(h2

1, h
2
2, h

2
3)V

ν
Rv2 = M1/2RmR†M1/2, it can

be seen that the phases of R are related to those in the right-handed sector
through V ν

R . The asymmetry ε1 given in Eq. 1.89, which is derived with
one-flavor approximation, can be rewritten as follows [65],

ε1 = −
3M1

16πv2

Im
(∑

ρ m2
ρR

2
1ρ

)
∑

β mβ |R1β |2
. (1.187)

Assuming the right-handed sector is CP invariant, low energy CP phases
can then arise entirely from the left-handed sector and thus are irrelevant for
ε1, which vanishes because the orthogonal matrix R is real. If leptogenesis
takes place at T < 1012 GeV, the flavor effects must be taken into account.
In this case the asymmetry in each flavor is given by [65],

εα = −
3M1

16πv2

Im
(∑

βρ m1/2
β m3/2

ρ U∗
αβUαρR1βR1ρ

)
∑

β mβ |R1β |2
. (1.188)

The contribution of each of these individual asymmetries to the total asym-
metry is then weighted by the corresponding washout factor. Therefore,
barring accidental cancellations, the presence of the MNS matrix elements
in Eq. 1.188 signifies the need for low energy CP violation in order to
have leptogenesis. Hence if leptonic CP violation in neutrino oscillations is
observed at future very long baseline experiments [66] and if lepton num-
ber violation is established by observing neutrinoless double beta decay, it
would even more strongly suggest than it has been that leptogenesis be the
source for the origin of the cosmological baryon asymmetry.

Finally, a fundamental problem in the current treatment of leptogen-
esis is the fact that the Boltzmann equations utilized in the present cal-
culations are purely classical treatment. However, the collision terms are
zero-temperature S-matrix elements which involve quantum interference.
In addition, the time evolution of the system should be treated quantum
mechanically. These lead to the need of quantum Boltzmann equations
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(Casas & Ibarra, 2001)

R:  phases in RH sector

M = diag(M1,M2,M3)

1

(light neutrino masses)

(RH neutrino masses)

R: high energy parameters
U: low energy information

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 49

the decay rates for the processes specified in the subscripts. It has recently
been pointed out that flavor effects matter if heavy neutrino masses are
hierarchical [62]. The Yukawa interactions of all three flavors, e, µ and
τ , reach equilibrium at different temperatures. These temperatures are
determined by the size of the Yukawa couplings, λ, as

λ2MPl = Teq . (1.184)

Due to the relative large coupling constant, the τ Yukawa interactions reach
equilibrium at T ∼ 1012 GeV, while the muon Yukawa interactions reach
equilibrium at T ∼ 109 GeV. If leptogenesis takes place at T ∼ M1 > 1012

GeV, the Yukawa interactions of all three lepton flavors are out of equilib-
rium, and hence the three flavors are indistinguishable. In particular, the
washout factor is universal for all three flavors. However, if leptogenesis
takes place at temperature below 1012 GeV, which is generally the case for
hierarchical right-handed neutrino masses, the three flavors are distinguish-
able and thus their effects should be included in the Boltzmann equations
properly. Instead of a single evolution function for YL as given in Eq. 1.183,
one should consider the evolution of the lepton number asymmetry, Y αα,
which is due to the decay of the lightest right-handed neutrino into charged
lepton of flavor α with the corresponding asymmetry given by εαα and
decay rate given by γαα

D [62],

dY αα

dz
=

z

sH(M1)

[(
YN1

Y eq
N1

− 1

)
εαα

(
γαα

D + γ∆L=1

)
(1.185)

−
Y αα

Y eq
L

(
γαα

D + γ∆L=1

)]
,

Note that in the above equation, there is no summation over the flavor in-
dex, α. By properly including the flavor effects, the amount of leptogenesis
may be enhanced by a factor of 2 to 3 [62].

Except for the specific types of models [52, 54] discussed in Sec. 1.4, the
general lack of connection between leptogenesis and low energy CP viola-
tion translates into the fact that the observation of the leptonic Dirac or
Majorana phases at low energy does not imply non-vanishing leptogenesis.
This statement is weakened in a framework when the right-handed neutrino
sector is CP invariant and when the flavor effects are important [63]. This
is elucidate by introducing the “orthogonal parametrization” for neutrino
Dirac Yukawa matrix [64],

h =
1

v
M1/2Rm1/2U † , (1.186)

combination relevant for 
leptogenesis in 1-flavor 

approximation
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One Flavor Approximation:   T > 1012 GeV  
• individual lepton number asymmetry

where the effective masses
• out-of-equilibrium temperature

  Ye,μ,τ  all small
➡  Le,μ,τ  not distinguishable

• Boltzmann equations for
• resulting lepton number asymmetry
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Connection to Low Energy Observables

• one-flavor approximation

              

• no model independent connection can exist

leptogenesis ≠ 0
presence of low energy leptonic 

CPV
(neutrino oscillation, neutrinoless 

double beta decay)

Flavor matters?

leptogenesis at T ~ M1 < 1012 GeV: 

                 three flavors distinguishable (different Teq = Y2 Mpl)

non-universal wash-out factors

Abada, Davidson, Josse-Michaux, Losada, Riotto, 2006;
Nardi, Nir, Roulet, Racker, 2006

real R, complex U: 
     non-vanishing low energy CPV (h)
     vanishing leptogenesis



Connection to Low Energy Observables

• At M1 ~ T ~ 1012 GeV: 

• At M1 ~ T ~ 109 GeV:

• two flavor regime:

• three flavor regime

• asymmetry associated with each flavor
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where m = diag(m1, m2, m3) is the diagonal matrix of the light neutrino
masses, M is the diagonal matrix of the right-handed neutrino masses and U
is the MNS matrix. The orthogonal matrix R is defined by this equation as
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R diag(h2

1, h
2
2, h

2
3)V

ν
Rv2 = M1/2RmR†M1/2, it can

be seen that the phases of R are related to those in the right-handed sector
through V ν

R . The asymmetry ε1 given in Eq. 1.89, which is derived with
one-flavor approximation, can be rewritten as follows [65],

ε1 = −
3M1

16πv2

Im
(∑

ρ m2
ρR

2
1ρ

)
∑

β mβ |R1β |2
. (1.187)

Assuming the right-handed sector is CP invariant, low energy CP phases
can then arise entirely from the left-handed sector and thus are irrelevant for
ε1, which vanishes because the orthogonal matrix R is real. If leptogenesis
takes place at T < 1012 GeV, the flavor effects must be taken into account.
In this case the asymmetry in each flavor is given by [65],

εα = −
3M1

16πv2

Im
(∑

βρ m1/2
β m3/2

ρ U∗
αβUαρR1βR1ρ

)
∑

β mβ |R1β |2
. (1.188)

The contribution of each of these individual asymmetries to the total asym-
metry is then weighted by the corresponding washout factor. Therefore,
barring accidental cancellations, the presence of the MNS matrix elements
in Eq. 1.188 signifies the need for low energy CP violation in order to
have leptogenesis. Hence if leptonic CP violation in neutrino oscillations is
observed at future very long baseline experiments [66] and if lepton num-
ber violation is established by observing neutrinoless double beta decay, it
would even more strongly suggest than it has been that leptogenesis be the
source for the origin of the cosmological baryon asymmetry.

Finally, a fundamental problem in the current treatment of leptogen-
esis is the fact that the Boltzmann equations utilized in the present cal-
culations are purely classical treatment. However, the collision terms are
zero-temperature S-matrix elements which involve quantum interference.
In addition, the time evolution of the system should be treated quantum
mechanically. These lead to the need of quantum Boltzmann equations

leptogenesis ≠ 0 low energy CPV ≠ 0
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Two-Flavour Regime

At M1 ∼ T ∼ 1012 GeV: Yτ - in equilibrium, Ye,µ - not; dynamics changes: τ−
R , τ+
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R + τ+

L , etc.

ε1τ and (ε1e + ε1µ) ≡ ε2 evolve independently.

Three-Flavour Regime

At M1 ∼ T ∼ 109 GeV: Yτ , Yµ - in equilibrium, Ye - not.

ε1τ , ε1e and ε1µ evolve independently.

Thus, at M1 ∼ 109 − 1012 GeV: Lτ , ∆Lτ - distinguishable;

Le, Lµ, ∆Le, ∆Lµ - individually not distinguishable;

Le + Lµ, ∆(Le + Lµ)
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YB $ 10−2εκ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
√

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η & 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31
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Connection to Low Energy CPV

• including flavor effects: for inverted mass spectrum, low energy 
CP phases can be important under certain conditions

0

1

2

3

4

5

6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 
1
0

1
0

|R
13

|

m1 < m2 < m3 (NO(NH)), R11 = 0, CPV due to R and U ,
α32 = π/2 , s13 = 0, sin2 θ23 = 0.64, M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line)

E. Molinaro, S.T.P., 2008

0

1

2

3

4

5

6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 
1
0

1
0

|R
13

|

m1 < m2 < m3 (NO(NH)), R11 = 0, CPV due to R and U ,
α32 = π/2 , s13 = 0, sin2 θ23 = 0.64, M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line)

E. Molinaro, S.T.P., 2008

0

1

2

3

4

5

6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 
1
0

1
0

|R
13

|

m1 < m2 < m3 (NO(NH)), R11 = 0, CPV due to R and U ,
α32 = π/2 , s13 = 0, sin2 θ23 = 0.64, M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line)

E. Molinaro, S.T.P., 2008

0

1

2

3

4

5

6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 
1
0

1
0

|R
13

|

m1 < m2 < m3 (NO(NH)), R11 = 0, CPV due to R and U ,
α32 = π/2 , s13 = 0, sin2 θ23 = 0.64, M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line)

E. Molinaro, S.T.P., 2008

0

1

2

3

4

5

6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 
1
0

1
0

|R
13

|

m1 < m2 < m3 (NO(NH)), R11 = 0, CPV due to R and U ,
α32 = π/2 , s13 = 0, sin2 θ23 = 0.64, M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line)

E. Molinaro, S.T.P., 2008

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 0.8  0.9  1  1.1  1.2

|Y
B

| 
! 
1
0

1
0

|R
12

|

-s
13

 cos" = 0.15

-s
13

 cos" = 0.16

-s
13

 cos" = 0.17

-s
13

 cos" = 0.2 

m3 ! m1 < m2 (IH)), R13 = 0, Majorana and R-matrix CPV ,
α21 = π/2 , (−s13 cos δ) = 0.15, |R11| = 1.2 , M1 = 1011 GeV;
|Y 0

BAHE| (R CPV, blue), |Y 0
BAMIX| (U CPV, green), total |YB| (red line) .

E. Molinaro, S.T.P., 2008

Molinaro, Petcov, 2008

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 10: The dependence of the “high energy” term |Y 0
BAIH

HE| (blue line), the “mixed”
term |Y 0

BAIH
MIX| (green line) and of the total baryon asymmetry |YB| (red line) on |R12| in

the case of IH spectrum, CP-violation due to the Majorana phase α21 in U and R-phases,
for α21 = π/2, |R11| ∼= 1.0, s13 = 0 and M1 = 1011 GeV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
|Y

B
| 
! 

1
0

1
0

|R
12

|

Figure 11: The same as in Fig. 10, but for s13 = 0.2 and δ = π. The “high energy” term
|Y 0

BAIH
HE| (blue line) is strongly suppressed.

31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 10: The dependence of the “high energy” term |Y 0
BAIH

HE| (blue line), the “mixed”
term |Y 0

BAIH
MIX| (green line) and of the total baryon asymmetry |YB| (red line) on |R12| in

the case of IH spectrum, CP-violation due to the Majorana phase α21 in U and R-phases,
for α21 = π/2, |R11| ∼= 1.0, s13 = 0 and M1 = 1011 GeV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 11: The same as in Fig. 10, but for s13 = 0.2 and δ = π. The “high energy” term
|Y 0

BAIH
HE| (blue line) is strongly suppressed.

31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 10: The dependence of the “high energy” term |Y 0
BAIH

HE| (blue line), the “mixed”
term |Y 0

BAIH
MIX| (green line) and of the total baryon asymmetry |YB| (red line) on |R12| in

the case of IH spectrum, CP-violation due to the Majorana phase α21 in U and R-phases,
for α21 = π/2, |R11| ∼= 1.0, s13 = 0 and M1 = 1011 GeV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 11: The same as in Fig. 10, but for s13 = 0.2 and δ = π. The “high energy” term
|Y 0

BAIH
HE| (blue line) is strongly suppressed.

31

CPV:  α21 in U and R phases 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 10: The dependence of the “high energy” term |Y 0
BAIH

HE| (blue line), the “mixed”
term |Y 0

BAIH
MIX| (green line) and of the total baryon asymmetry |YB| (red line) on |R12| in

the case of IH spectrum, CP-violation due to the Majorana phase α21 in U and R-phases,
for α21 = π/2, |R11| ∼= 1.0, s13 = 0 and M1 = 1011 GeV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|Y
B

| 
! 

1
0

1
0

|R
12

|

Figure 11: The same as in Fig. 10, but for s13 = 0.2 and δ = π. The “high energy” term
|Y 0

BAIH
HE| (blue line) is strongly suppressed.

31



Connection in Specific Models

• models for neutrino masses:
additional symmetries or textures
➡ reduce the number of parameters
➡ connection can be established

• texture assumption
2x3 seesaw model

• all CP violation can come from a single source
minimal left-right model with spontaneous CP violation

• implications of tri-bimaximal neutrino mixing
A4 model



Seesaw with 2 RH Neutrinos

• cancellation of Witten anomaly
➡ leptonic SU(2) horizontal symmetry
➡ two RH neutrinos
➡ 2x3 seesaw mechanism

• Lagrangian

• effective neutrino mass matrix
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of probing the neutrino sector at the colliders through their couplings to the
Z ′ gauge boson [51].) Along this line, Frampton, Glashow and Yanagida
proposed a model, which has the following Lagrangian [52],

L =
1

2
(N1N2)

(
M1 0
0 M2

) (
N1

N2

)
+ (N1N2)

(
a a′ 0
0 b b′

) 


!1

!2

!3



 H + h.c. ,

(1.153)
with the Yukawa matrix having two zeros in the N1 − !3 and N2 − !1

couplings. The effective neutrino mass matrix due to this Lagrangian is
obtained, using the see-saw formula,





a2

M1

aa′

M1
0

aa′

M1

a′2

M1
+ b2

M2

bb′

M2

0 bb′

M2

b′2

M2



 , (1.154)

where a, b, b′ are real and a′ = |a′|eiδ. By takinging all of them to be real,
with the choice a′ =

√
2a and b = b′, and assuming a2/M1 # b2/M2, the

effective neutrino masses and mixing matrix are obtained

mν1 = 0, mν2 =
2a2

M1
, mν3 =

2b2

M2
(1.155)

U =




1/

√
2 1/

√
2 0

−1/2 1/2 1/
√

2
1/2 −1/2 1/

√
2



 ×




1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 , (1.156)

where θ % mν2/
√

2mν3 , and the observed bi-large mixing angles and ∆m2
atm

and ∆m2
" can be accommodated. An interesting feature of this model is

that the sign of the baryon number asymmetry (B ∝ ξB = Y 2a2b2 sin 2δ)
is related to the sign of the CP violation in neutrino oscillation (ξosc) in
the following way

ξosc = −
a4b4

M3
1 M3

2

(2 + Y 2)ξB ∝ −B (1.157)

assuming the baryon number asymmetry is resulting from leptogenesis due
to the decay of the lighter one of the two heavy neutrinos, N1. This idea
can be realized in a SO(10) with additional singlets [53].
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Frampton, Glashow, Yanagida, 2002

Kuchimanchi & Mohapatra,  2002



Seesaw with 2 RH Neutrinos

• bi-large mixing angle

• relation between sign of baryonic asymmetry and sign of CP 
violation in neutrino oscillation

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

42 M.-C. Chen

of probing the neutrino sector at the colliders through their couplings to the
Z ′ gauge boson [51].) Along this line, Frampton, Glashow and Yanagida
proposed a model, which has the following Lagrangian [52],

L =
1

2
(N1N2)

(
M1 0
0 M2

) (
N1

N2

)
+ (N1N2)

(
a a′ 0
0 b b′

) 


!1

!2

!3



 H + h.c. ,

(1.153)
with the Yukawa matrix having two zeros in the N1 − !3 and N2 − !1

couplings. The effective neutrino mass matrix due to this Lagrangian is
obtained, using the see-saw formula,





a2

M1

aa′

M1
0

aa′

M1

a′2

M1
+ b2

M2

bb′

M2

0 bb′

M2

b′2

M2



 , (1.154)

where a, b, b′ are real and a′ = |a′|eiδ. By takinging all of them to be real,
with the choice a′ =

√
2a and b = b′, and assuming a2/M1 # b2/M2, the

effective neutrino masses and mixing matrix are obtained

mν1 = 0, mν2 =
2a2

M1
, mν3 =

2b2

M2
(1.155)

U =




1/

√
2 1/

√
2 0

−1/2 1/2 1/
√

2
1/2 −1/2 1/

√
2



 ×




1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 , (1.156)

where θ % mν2/
√

2mν3 , and the observed bi-large mixing angles and ∆m2
atm

and ∆m2
" can be accommodated. An interesting feature of this model is

that the sign of the baryon number asymmetry (B ∝ ξB = Y 2a2b2 sin 2δ)
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the following way

ξosc = −
a4b4

M3
1 M3

2

(2 + Y 2)ξB ∝ −B (1.157)
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to the decay of the lighter one of the two heavy neutrinos, N1. This idea
can be realized in a SO(10) with additional singlets [53].
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Sources of CP Violation

• Manifestations of CP violation

‣ weak scale CPV (kaon, B-meson, neutrino oscillation, ...)

‣ cosmological BAU

‣ strong CP problem

⇒   can they come from a common origin??

• Explicit CP violation

‣ complex Yukawa couplings

• Spontaneous CP violation

‣ complex VEV



Models with Spontaneous CP Violation

• minimal left-right model:

• gauge symmetry

• particle content

• minimal higgs sector

• in general, 4 complex VEV’s

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 43

1.4.2. Models with Spontaneous CP Violation (& Triplet
Leptogenesis)

The second type of models in which relation between leptogenesis and low
energy CP violation exists is the minimal left-right symmetric model with
spontaneous CP violation (SCPV) [54]. The left-right (LR) model [55] is
based on the gauge group, SU(3)c×SU(2)L×SU(2)R×U(1)B−L×P , where
the parity P acts on the two SU(2)’s. (See also Kaladi Babu’s lectures.)
In this model, the electric charge Q can be understood as the sum of the
two T 3 quantum numbers of the SU(2) gauge groups,

Q = T3,L + T3,R +
1

2
(B − L) . (1.158)

The minimal LR model has the following particle content: In the fermion
sector, the iso-singlet quarks form a doublet under SU(2)R, and similarly
for eR and νR,

Qi,L =

(
u
d

)

i,L

∼ (1/2, 0, 1/3), Qi,R =

(
u
d

)

i,R

∼ (0, 1/2, 1/3)

Li,L =

(
e
ν

)

i,L

∼ (1/2, 0,−1), Li,R =

(
e
ν

)

i,R

∼ (0, 1/2,−1) .

In the scalar sector, there is a bi-doublet and one triplet for each of the
SU(2)’s,

Φ =

(
φ0

1 φ+
2

φ−
1 φ0

2

)
∼ (1/2, 1/2, 0)

∆L =

(
∆+

L/
√

2 ∆++
L

∆0
L −∆+

L/
√

2

)
∼ (1, 0, 2)

∆R =

(
∆+

R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

)
∼ (0, 1, 2) .

Under the parity P , these fields transform as,

ΨL ↔ ΨR, ∆L ↔ ∆R, Φ ↔ Φ† . (1.159)

The VEV of the SU(2)R breaks the left-right symmetry down to the SM
gauge group,

SU(3)c × SU(2)L × SU(2)R × U(1)B−L × P

→ SU(3)c × SU(2)L × U(1)Y , (1.160)
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1.4.2. Models with Spontaneous CP Violation (& Triplet
Leptogenesis)
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and the subsequent breaking of the electroweak symmetry is achieved by
the bi-doublet VEV. In general,

〈Φ〉 =

(
κeiακ 0

0 κ′eiακ′

)
, (1.161)

〈∆L〉 =

(
0 0

vLeiαL 0

)
, 〈∆R〉 =

(
0 0

vReiαR 0

)
.

To get realistic SM gauge boson masses, the VEV’s of the bi-doublet Higgs
must satisfy v2 ≡ |κ|2 + |κ′ |2 $ 2M2

w/g2 $ (174GeV)2. Generally, a non-
vanishing VEV for the SU(2)L triplet Higgs is induced, and it is suppressed
by the heavy SU(2)R breaking scale similar to the see-saw mechanism for
the neutrinos,

< ∆L >=

(
0 0

vLeiαL 0

)
, vLvR = β|κ|2 , (1.162)

where the parameter β is a function of the order O(1) coupling constants
in the scalar potential and vR, vL, κ and κ′ are positive real numbers in
the above equations. (The presence of a triplet Higgs in warped extra
dimensions can provide a natural way to generate small Majorana masses
for the neutrinos [56].) Due to this see-saw suppression, for a SU(2)R

breaking scale as high as 1015 GeV, which is required by the smallness of
the neutrino masses, the induced SU(2)L triplet VEV is well below the
upper bound set by the electroweak precision constraints [57]. The scalar
potential that gives rise to the vacuum alignment described can be found
in Ref. [58].

The Yukawa sector of the model is given by LY uk = Lq + L", where
Lq and L" are the Yukawa interactions in the quark and lepton sectors,
respectively. The Lagrangian for quark Yukawa interactions is given by,

− Lq = Qi,R(FijΦ + GijΦ̃)Qj,L + h.c. (1.163)

where Φ̃ ≡ τ2Φ∗τ2. In general, Fij and Gij are Hermitian to preseve left-
right symmetry. Because of our assumption of SCPV with complex vacuum
expectation values, the matrices Fij and Gij are real. The Yukawa inter-
actions responsible for generating the lepton masses are summarized in the
following Lagrangian, L",

− L" = Li,R(PijΦ + RijΦ̃)Lj,L (1.164)

+ifij(L
T
i,LCτ2∆LLj,L + LT

i,RCτ2∆RLj,R) + h.c. ,
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Models with Spontaneous CP Violation

• Lagrangian invariant under unitary transformations

• VEVs transform accordingly

• only two physical phases:
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where C is the Dirac charge conjugation operator, and the matrices Pij , Rij

and fij are real due to the assumption of SCPV. Note that the Majorana
mass terms LT

i,L∆LLj,L and LT
i,R∆RLj,R have identical coupling because

the Lagrangian must be invariant under interchanging L ↔ R. The com-
plete Lagrangian of the model is invariant under the unitary transformation,
under which the matter fields transform as

ψL → ULψL, ψR → URψR (1.165)

where ψL,R are left-handed (right-handed) fermions, and the scalar fields
transform according to

Φ → URΦU †
L, ∆L → U∗

L∆LU †
L, ∆R → U∗

R∆RU †
R (1.166)

with the unitary transformations UL and UR being

UL =

(
eiγL 0
0 e−iγL

)
, UR =

(
eiγR 0
0 e−iγR

)
. (1.167)

Under these unitary transformations, the VEV’s transform as

κ → κe−i(γL−γR), κ′ → κ′ei(γL−γR), (1.168)

vL → vLe−2iγL , vR → vRe−2iγR .

Thus by re-defining the phases of matter fields with the choice of γR = αR/2
and γL = ακ + αR/2 in the unitary matrices UL and UR, we can rotate
away two of the complex phases in the VEV’s of the scalar fields and are
left with only two genuine CP violating phases, ακ′ and αL,

< Φ > =

(
κ 0
0 κ′eiακ′

)
, (1.169)

< ∆L > =

(
0 0

vLeiαL 0

)
, < ∆R >=

(
0 0
vR 0

)
.

The quark Yukawa interaction Lq gives rise to quark masses after the
bi-doublet acquires VEV’s

Mu = κFij + κ′e−iακ′ Gij , Md = κ′eiακ′ Fij + κGij . (1.170)

Thus the relative phase in the two VEV’s in the SU(2) bi-doublet, ακ′ ,
gives rise to the CP violating phase in the CKM matrix. To obtain realistic
quark masses and CKM matrix elements, it has been shown that the VEV’s
of the bi-doublet have to satisfy κ/κ′ # mt/mb $ 1 [59]. When the triplets
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Models with Spontaneous CP Violation

• all leptonic CP violation from a single phase

• the three CP-violating phases in MNS matrix are functions 
of the intrinsic phase αL

• the phase αL enters

• neutrino oscillation

• neutrino-less double beta decay

• leptogenesis
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
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eiα31/2


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The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = $Liiγ
µ∂µ$Li + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRi$LjH
† + hijNRi$Lj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

20 M.-C. Chen

as a CKM-like matrix and a diagonal phase matrix,

UMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





·




1

eiα21/2

eiα31/2



 . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = $Liiγ
µ∂µ$Li + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRi$LjH
† + hijNRi$Lj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined

J lep
CP ∼ sinαL

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 # sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ

ν"L =
3∑

j=1

U"jνjL $ = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





δ = [0, 2π]

α21, α31

ακ′ ⇒ all CPV in quark sector

(contributions to lepton sector negligible for high seesaw scale)

αL ⇒ all CPV in lepton sector

1

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

20 M.-C. Chen

as a CKM-like matrix and a diagonal phase matrix,

UMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





·




1

eiα21/2

eiα31/2



 . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,
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+fijeRi$LjH
† + hijNRi$Lj H −
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MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined
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Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined

M-C.C & Mahanthappa, 2005



Models with Spontaneous CP Violation

• triplet leptogenesis: 
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•    

• natural scenario:   Δ* heavier than N1            N1  decay dominant

• two contributions
• usual diagrams (type I contribution)

• new diagram (type II contribution)
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and the bi-doublet acquire VEV’s, we obtain the following mass terms for
the leptons

Me = κ′eiακ′ Pij + κRij , MDirac
ν = κPij + κ′e−iακ′ Rij (1.171)

MRR
ν = vRfij , MLL

ν = vLeiαLfij . (1.172)

The effective neutrino mass matrix, M eff
ν , which arises from the Type-II

seesaw mechanism, is thus given by

M eff
ν = M II

ν − M I
ν = (feiαL −

1

β
PT f−1P )vL , (1.173)

M I
ν = (MDirac

ν )T (MRR
ν )−1(MDirac

ν ) (1.174)

= (κP + κ′e−iακ′ R)T (vRf)−1(κP + κ′e−iακ′ R)

"
vL

β
PT f−1P ,

M I
ν = vLeiαLf . (1.175)

Consequently, the connection between CP violation in the quark sector and
that in the lepton sector, which is made through the phase ακ′ , appears
only at the sub-leading order, O (κ′/κ), thus making this connection rather
weak. We will neglect these sub-leading order terms, and there is thus only
one phase, αL, that is responsible for all leptonic CP violation.

The three low energy phases δ, α21, α31, in the MNS matrix are there-
fore functions of the single fundamental phase, αL. Neutrino oscillation
probabilities depend on the Dirac phase through the leptonic Jarlskog in-
variant, which is proportional to sinαL, J$

CP ∝ sin αL. There are two ways
to generate lepton number asymmetry. One is through the decay of the
SU(2)L triplet Higgs, ∆∗ → % + %, and the corresponding asymmetry is
given by,

ε =
Γ(∆∗

L → % + %) − Γ(∆L → % + %)

Γ(∆∗
L → % + %) + Γ(∆L → % + %)

. (1.176)

The asymmetry can also be generated through the decay of the lightest RH
neutrinos, N1 → % + H†, and the asymmetry in this case is,

ε =
Γ(N1 → % + H†) − Γ(N1 → % + H)

Γ(N1 → % + H†) + Γ(N1 → % + H)
. (1.177)

Whether N1 decay dominates or ∆L decay dominates depends upon if N1 is
heavier or lighter than ∆L. As the mass of the triplet Higgs is typically at
the scale of the LR breaking scale, it is naturally heavier than the lightest
RH neutrino. As a result, N1 decay dominates. With the particle content
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Fig. 1.15. Diagrams in the minimal left-right model that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos.

of this model, there are three diagrams at one loop that contribute to
leptogeiesis, as shown in Fig. 1.15. The contribution from diagram (a) and
(b) mediated by charged lepton and Higgs doublet, which appear also in
standard leptogenesis with SM particle content, is given by [60],

εN1 =
3

16π

(
MR1

v2

)
·
Im

(
MD

(
M I

ν

)∗ MT
D

)

11

(MDM†
D)11

. (1.178)

Now, there is one additional one-loop diagram, Fig. 1.15 (c), mediated by
the SU(2)L triplet Higgs. It contributes to the decay amplitude of the
right-handed neutrino into a doublet Higgs and a charged lepton, which
gives an additional contribution to the lepton number asymmetry [60],

ε∆L =
3

16π

(
MR1

v2

)
·
Im

(
MD

(
M II

ν

)∗ MT
D

)

11

(MDM†
D)11

, (1.179)

where MD is the neutrino Dirac mass term in the basis where the RH
neutrino Majorana mass term is real and diagonal,

MD = ORMD, fdiag = ORfOT
R . (1.180)

Because there is no phase present in either MD = Pκ or M I
ν or OR, the

quantity MD

(
M I

ν

)∗ MT
D is real, leading to a vanishing εN1 . This state-

ment is true for any chosen unitary transformations UL and UR defined in
Eq. (1.167). On the other hand, the contribution, ε∆L , due to the diagram
mediated by the SU(2)R triplet is proportional to sinαL.

As all leptonic CP violation in this model come from one single origin,
that is, the phase in the VEV of the LH triplet, 〈∆L〉, strong correlation
between leptogenesis and low energy CP violating processes can thus be
established. In particular, both J"

CP and ε are proportional to sinαL.
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Models with Spontaneous CP Violation

• predict small θ13

• in large Jcp regime: 
strong correlation between Jcp and <mee>

• Jcp:  (0 - 10-3)
• <mee>:  (10-4 ~ 10-2) eV; current limit ~ 0.1 eV

M.-C.C & Mahanthappa, 2005

• symmetry between 2nd & 4th quadrants
• in large Jcp regime: strong correlation between Jcp and 
∆ε’ (even without flavor effects)

• total amount of lepton number asymmetry
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Models with Spontaneous CP Violation
M.-C.C & Mahanthappa, 2007

•  relation between CPV in quark & lepton sectors
•  electron EDM ~ 10-32 e-cm

• with an additional U(1) symmetry 

⇒ can lower seesaw scale to 106 GeV (and below)
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FIG. 1: One-loop diagram in minimal LR model that contribute to the electron EDM: (a) Diagram shown

with particle in their mass eigenstates; (b) Diagram shown with particles in the weak charged current

interaction eigenstates.
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Here, Ma (for a = 1, 2) are masses of the two W boson masses, and mj are the neutrino masses.
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Models with Spontaneous CP Violation

• SM + D0 (vectorial quark) + S (singlet scalar) 

• SCPV in SO(10)

• no symmetry reason why <S> is the only complex VEV

2

II. THE MODEL

We add to the SM the following fields: a singlet charge
− 1

3
vectorial quark D0, three righthanded neutrino fields

ν0
R (one per generation) and a neutral scalar singlet field,

S. We impose a Z4 symmetry, under which the fields
transform in the following manner:

D0 → −D0, S → −S

ψ0
l → iψ0

l , e0
R → ie0

R, ν0
R → iν0

R (1)

where ψl
0 denotes the lefthanded lepton doublets, while

e0
R, ν0

R stand for the righthanded charged lepton and neu-
trino singlets, respectively. All other fields remain invari-
ant under the Z4 symmetry. Furthermore, we impose
CP invariance on the Lagrangean, thus constraining all
Yukawa couplings to be real. In any weak basis (WB)
the Yukawa terms can be written as:

LY = Lq + Ll (2)

Lq = ψ0
qGuφ u0

R + ψ0
qGdφ̃ d0

R +

+(fqS + fq
′S∗)D0

Ld0
R + M̃D0

LD0
R + h.c. (3)

Ll = ψ0
l Glφ e0

R + ψ0
l Gν φ̃ ν0

R +

1

2
ν0T

R C(fνS + +fν
′S∗)ν0

R + h.c. (4)

Here ψ0
q , u0

R, and d0
R are the SM quark fields, and

φ is the SM Higgs doublet. Notice that an addi-
tional bare mass term of the form M̃D0

LD0
R was in-

cluded in Lq. This term is both gauge and Z4 in-
variant and is present in the Lagrangean together with
the mass terms arising from the Yukawa interactions
upon SU(2) × U(1) × Z4 symmetry breaking. The
scalar potential will contain terms in φ and S with
no phase dependence, together with terms of the form
(µ2 + λ1S∗S + λ2φ†φ)(S2 + S∗2) + λ3(S4 + S∗4) which,
in general, lead to the spontaneous breaking of T and
CP invariance [13] with φ and S acquiring vacuum ex-
pectation values (vevs) of the form:

〈φ0〉 =
v√
2
, 〈S〉 =

V exp(iα)√
2

(5)

III. THE HADRONIC SECTOR

A crucial aspect of this model is the fact that the phase
α ≡ arg〈S〉 arising at a high energy scale does generate at
low energies a CP violating phase δKM in the 3×3 sector
of the mixing matrix connecting standard quarks. In this
respect, the presence of the vector-like quark D0 plays
a crucial rôle, since it is through the couplings (fqS +

fq
′S∗)D0

Ld0
R that the phase α appears in the effective

mass matrix for the down standard-like quarks. Without
loss of generality, one may choose to work in a weak basis
where the up quark mass matrix is diagonal. In this basis,
it can be readily shown [14] that the 3×3 VCKM matrix,

mixing the standard quarks in the charged weak current
is obtained through the following relations:

VCKM
−1 h VCKM = d2 (6)

h ≡ m0
dm

0
d

† − (m0
dMD

†MD m0
d

†
)/M

2
(7)

where d2 = diag(m2
d, m

2
s, m

2
b), m0

d = v√
2

Gd, M
2

=

MDMD
† + M̃2 and MD = V√

2
(f q

+ cos(α) + if q
− sin(α)),

with f± ≡ fq ± fq
′.

It is clear from Eqs. (6), (7) that the phase δKM ,
generated through spontaneous CP violation is not sup-
pressed by factors of v

V
. Note that we are assuming that

the mass terms (MD)j are of the same order of magnitude
as M̃ . This is a reasonable assumption since both terms
are SU(2) × U(1) × SU(3)c invariant. For very large V
(e.g. V ∼ MGUT ∼ 1015 Gev), δKM is the only leftover
effect at low energies, from spontaneous CP breaking at
high energies. For not so large a value of V (e. g., V
of the order of a few Tev) the appearance of significant
flavour changing neutral currents (FCNC) in the down
quark sector leads to new contributions to Bd − Bd and
Bs − Bs mixing which can alter [15] some of the predic-
tions of the SM for CP asymmetries in B meson decays.
These FCNC are closely related to the non-unitarity of
the 3 × 3 CKM matrix, with both effects suppressed by
powers of v

V
.

As a result of the Z4 symmetry, this model satisfies the
Nelson-Barr criteria [11], [12] and therefore the Θ param-
eter is zero in tree approximation. Recall that the param-
eter Θ associated with strong CP violation can be written
as Θ = ΘQCD + ΘQFD, where ΘQCD = gs

2FF̃/32π2,
and ΘQFD = arg(det m), m denoting the quark mass
matrix. In this model CP is a good symmetry of the
Lagrangean, only spontaneously broken by the vacuum,
which implies ΘQCD = 0. Furthermore, ΘQFD vanishes
at tree level [14] in a natural way so that higher order
corrections to Θ are finite and calculable. The symmetry
Z4 plays a crucial rôle in the vanishing of the argument
of the determinant of the down type quark mass ma-
trix Md. One-loop corrections are suppressed by small
Yukawa couplings which is a general property of this class
of models, as pointed out by Nelson [11]. A nice feature
of this model is that one loop corrections are further sup-
pressed by the ratio v2/V 2 [14] .

IV. THE LEPTONIC SECTOR

In the leptonic sector, after spontaneous symmetry
breakdown, one obtains from Eq. (4) the following mass
terms:

Lm = −
[

ν0
Lmν0

R +
1

2
ν0T

R CMν0
R + l0Lmll

0
R

]

+ h.c. =
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II. THE MODEL
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− 1
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III. THE HADRONIC SECTOR
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→quark CPV

→leptonic CPV

<126> complex: break (B-L)

Branco, Parada and Rebelo discussed in their paper [8] also the possibility of a
common origin to all CP violations. Their model however is in the framework of a
non-SUSY Standard Model (SM), extended by a heavy complex singlet Higgs and
an exotic vectorlike quark.

I would like to suggest in this letter a scenario, along this line [13] [14], for SV CP
in SUSY GUTs by giving an explicit realization in the framework of the minimal
renormalizable SUSY SO(10) [15] (without the need for exotic fermions).

As an introduction let me start by revising the renormalizable non-SUSY SO(10)
and a possible SCPV [13].

non-SUSY GUTs require intermediate gauge symmetry breaking (Ii) [16] to have
gauge coupling unification.

GUT −→ Ii −→ SM = SUC(3) × SUL(2) × UY (1) . (1)

Most models involve an intermediate scale at ≈ 1012−13GeV which is also that of
breaking of B − L, the masses of RH neutrinos and the CP violation responsi-
ble for leptogenesis (BAU).

SO(10) fermions are in three 16 representations: Ψi(16).

16 × 16 = (10 + 126)S + 120AS . (2)

Hence, only H(10), Σ(126) and D(120) can contribute directly to Yukawa couplings
and fermion masses. Additional Higgs representations are needed for the gauge
symmetry breaking.
One and only one V EV ∆ =< Σ(1, 1, 0) > can give a (large) mass to the RH
neutrinos via

Y ij
! νi

R
∆νj

R
(3)

and so induces the seesaw mechanism. It breaks also B − L and SO(10) →
SU(5).

To generate SCPV in conventional SO(10) one can use the fact that Σ(126) is the
only relevant complex Higgs representation. Its other special property is that (Σ)4

S

is invariant in SO(10) [17]. This allows for a SCPV at the high scale, using the
scalar potential [13]:

V = V0 + λ1(H)2

S
[(Σ)2

S
+ (Σ

∗

)2

S
] + λ2[(Σ)4

S
+ (Σ

∗

)4

S
] . (4)

Inserting the V EV s

< H(1, 2,−1/2) >=
v
√

2

∆ =
σ
√

2

eiα (5)

in the neutral components, the scalar potential reads

V (v, σ, α) = A cos(2α) + B cos(4α) . (6)
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Models with Tri-bimaximal Neutrino Mixing

• global neutrino oscillation data strongly suggests TBM mixing 
pattern

• TBM mixing can arise from underlying symmetry 

• S3 : less constrained Mohapatra, Nasri, Yu, 2006

• Z7 x Z3
• A4:

• tri-bimaxmal mixing results from group theory!
• no CKM mixing 

• (d)T:  double covering of A4
• retain predictivity of A4 in neutrino sector
• realistic CKM in SU(5) x (d)T

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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FIG. 1. Geometrical illustration of the group T ′. The rotations C2 and C3 are defined in the
text.
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Models with Tri-bimaximal Neutrino Mixing

• TBM neutrino mixing from group theoretical CG coefficientsI. INTRODUCTION
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H ′
5
FT3ζψψ′ in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and φ0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed. The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 × Z ′
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 × Z ′
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, ∆45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in Lν give the following neutrino mass matrix [3], which is invariant under

GTST2 [10],

Mν =
λv2

Mx











2ξ0 + u −ξ0 −ξ0

−ξ0 2ξ0 u − ξ0

−ξ0 u − ξ0 2ξ0











, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

Mν is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
ν MνVν = diag(u + 3ξ0, u, −u + 3ξ0)

v2
u

Mx
, (14)

where the diagonalization matrix Vν is the tri-bimaximal mixing matrix, Vν = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H ′
5
FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the τ mass, is generated upon the breaking of (d)T → GT and (d)T → GS. As mb and mτ
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consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H ′
5
FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the τ mass, is generated upon the breaking of (d)T → GT and (d)T → GS. As mb and mτ
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


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


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Models with Tri-bimaximal Neutrino Mixing

Therefore the TB mixing of eq. (2) is reproduced, at the leading order. For the neutrino

masses we obtain:

|m1|2 =

[

−r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm

|m2|2 =
1

8 cos2 ∆(1 − 2r)
∆m2

atm

|m3|2 =

[

1 − r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm , (22)

where r ≡ ∆m2
sol/∆m2

atm ≡ (|m2|2 − |m1|2)/(|m3|2 − |m1|2), ∆m2
atm ≡ |m3|2 − |m1|2 and

∆ is the phase difference between the complex numbers a and b. For cos ∆ = −1, we have
a neutrino spectrum close to hierarchical:

|m3| ≈ 0.053 eV , |m1| ≈ |m2| ≈ 0.017 eV . (23)

In this case the sum of neutrino masses is about 0.087 eV. If cos ∆ is accidentally small, the
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Figure 1: On the left panel, sum of neutrino masses versus cos∆, the phase difference between a and
b. On the right panel, the lightest neutrino mass, m1 and the mass combination mee versus cos∆. To
evaluate the masses, the parameters |a| and |b| have been expressed in terms of r ≡ ∆m2

sol/∆m2
atm ≡

(|m2|2 − |m1|2)/(|m3|2 − |m1|2) and ∆m2
atm ≡ |m3|2 − |m1|2. The bands have been obtained by varying

∆m2
atm in its 3σ experimental range, 0.0020 eV ÷ 0.0032 eV. There is a negligible sensitivity to the

variations of r within its current 3 σ experimental range, and we have realized the plots by choosing
r = 0.03.

neutrino spectrum becomes degenerate. The value of |mee|, the parameter characterizing
the violation of total lepton number in neutrinoless double beta decay, is given by:

|mee|2 =

[

−
1 + 4r

9
+

1

8 cos2 ∆(1 − 2r)

]

∆m2
atm . (24)
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Models with Tri-bimaximal Neutrino Mixing

• TBM mixing arises from underlying broken discrete symmetries 
(A4, Z7 x Z3, (d)T) through type-I seesaw
➡ exact TBM mixing

➡ no leptogenesis as 
➡ true even when flavor effects included

• corrections to TBM pattern due to high dim operators

• type-II seesaw contribution in S3

• exact TBM limit: 

Jenkins, Manohar, 2008

Mohapatra, Yu, 2006
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0.01 eV
(MDM†

D)11
M1

< 1
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We also have

|fa| = a
MT

v2 sin2 βλ
, |fb| = b

MT

v2 sin2 βλ
(23)

where a ≡ |a′| and b ≡ |b′|, and εII
2 can be written as

εII
2 =

3

8π

(b sin φb − a sin φa)M2

v2 sin2 β

M2
T

M2
2

ln(1 +
M2

2

M2
T

). (24)

Note that in the tri-bimaximal limit,

Mν =











aeiφa beiφb beiφb

beiφb aeiφa − c beiφb + c

beiφb beiφb + c aeiφa − c











, (25)

which can be diagnolized by UTB

UT
TBMνUTB =











aeiφa − beiφb 0 0

0 aeiφa + 2beiφb 0

0 0 −2c + aeiφa − beiφb











. (26)

Therefore one of the Majorana phases is given by

ϕ1 # Arc sin[
a sin φa − b sin φb

m1

] (27)

up to O(
√

∆m2
!

∆m2

A
). And for MT ≥ (101 − 102)M2, one has

M2

T
M2

2

ln(1 + M2
2

M2

T
) # 1. So the lepton

asymmetry can be written as

εII
2 # −

3

8π

m1M2 sin ϕ1

v2 sin2 β
. (28)

Thus we see that the Majorana phase ϕ1 directly gives the lepton asymmetry, as noted in

the introduction. This is the first main result of this paper.

To estimate the value of the baryon to photon ratio, we note that in this case εI
2 # 0 and

ε2 = εII
2 , using Eq.(17) and Eq.(28), giving

nB

nγ
# 6.1 × 10−10(

m1

2.8 × 10−3eV
)(

M2

1012GeV
)(

sin ϕ1

1
)(

η

5 × 10−3
), (29)

where we take v = 170Gev and tan β = 10. To get the right range for baryon to photon

ratio, the lightest right-handed neutrino mass should be larger than about 1012GeV. Strict

lower bound is on the product m1M2 ≥ 2.8 GeV2. The thermal production of νR2 requires

a reheat temperature of the Universe after inflation be Treh
>∼ 1012 − 1013GeV.

If we take as upper bound on M2 to be 1014GeV required to fit the atmospheric neutrino

data, to get right baryon to photon ratio, we have to have a lower bound of m1 ∼ 10−5eV.

On the other hand, if we take M2 ∼ 1014GeV and m1 ∼ 10−3eV, we get the lower bound of

sin ϕ1 as ∼ 10−2.
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Quantum Boltzmann Equations

• Classical vs Quantum Boltzmann equations:

‣ collision terms: involving quantum interference

‣ time evolution: quantum mechanical treatment 

• Classical Boltzmann equations: 

scattering independent from previous one

∂nN1

∂t
= − 〈ΓN1

(t)〉nN1
+ 〈Γ̃N1

(t)〉neq
N1

,

〈ΓN1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

ΓN1
(t),

ΓN1
(t) = 2

∫
d3p

(2π)3

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

〈Γ̃N1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

Γ̃N1
(t),

Γ̃N1
(t) = 2

∫
d3p

(2π)3

f eq
! f eq

H

f eq
N1

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

(28)

where 〈ΓN1
(t)〉 is the time-dependent thermal average of the Lorentz-dilated decay width.

Integrating over large times, t → ∞, thereby replacing the cosines by energy conserving

delta functions [29],

∫ ∞

0

dtz cos [(ωN1
− ω! − ωH) (t − tz)] = πδ (ωN1

− ω! − ωH) , (29)

we find that the two averaged rates 〈ΓN1
〉 and 〈Γ̃N1

〉 coincide and we recover the usual

classical Boltzmann equation for the RH distribution function

∂nN1

∂t
= − 〈ΓN1

〉
(
nN1

− neq
N1

)
,

〈ΓN1
〉 =

∫
d3k

(2π)3

f eq
N1

neq
N1

∫
d3p

(2π)3

|M(N1 → #H)|2

2ω!2ωHωN1

(2π)δ (ωN1
− ω! − ωH) .

(30)

Taking the time interval to infinity, namely implementing Fermi’s golden rule, results in

neglecting memory effects, which in turn results only in on-shell processes contributing to

the rate equation. The main difference between the classical and the quantum Boltzmann

equations can be traced to memory effects and to the fact that the time evolution of the

distribution function is non-Markovian. The memory of the past time evolution translates

into off-shell processes. It would be certainly interesting to perform a numerical study to

assess the impact of the memory effects onto the final baryon asymmetry.
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Buchmuller, Fredenhagen, 2000; 
Simone, Riotto 2007; 
Lindner, Muller 2007



Quantum Boltzmann Equations

• Quantum Boltzmann equations:

‣ Closed-Time-Path (CTP) formulation for non-equilibrium QFT

‣ involve time integration for scattering terms

➡  “memory effects”:   time-dependent CP asymmetry

Schwinger, 1961; Mahanthappa, 1962; 
Bakshi, Mahanthappa, 1963; Keldysh, 1965
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Quantum Boltzmann Equations

• time scale of Kernel  <<  relaxation time scale ~ 1/ΓN1 

Classical Boltzmann eqs ≈ Quantum Boltzmann equation

• In resonant leptogenesis:  ∆M = (M2-M1) ~ ΓN2 

Kernel time scale ~ 1/∆M > 1/ΓN1   possible

⇒ quantum Boltzmann equations important!!



Conclusions

• Leptogenesis: promising mechanism for BAU
• connection between leptogenesis & low energy CPV 

processes generally does not exist in a model independent 
way
• statement weakened when flavor effects included

• models for neutrino mass: reduced number of parameters, 
allowing connection 
• 2x3 seesaw
• models with SCPV: single source for all CPV
• TBM mixing pattern compatible with leptogenesis, if 

• higher order corrections included; or 
• type-II seesaw 

• Quantum Boltzmann equations?


