Linking Leptogenesis and Neutrino Oscillation

Mu-Chun Chen, University of California - Irvine

COSMO o8, Madison, Wisconsin, August 27, 2008

Baryon Number Asymmetry in SM

- Within SM:

CP violation in quark sector not sufficient to explain the observed matter-antimatter asymmetry of the Universe

- CP phase in CKM matrix: Shaposhnikov, 1986; Farrar, Shaposhnikov, 1993

$$
B \simeq \frac{\alpha_{w}^{4} T^{3}}{s} \delta_{C P} \simeq 10^{-8} \delta_{C P} \quad \delta_{C P} \simeq \frac{A_{C P}}{T_{C}^{12}} \simeq 10^{-20}
$$

- effects of CP violation suppressed by small quark mixing

$$
\begin{aligned}
& A_{C P}=\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{u}^{2}-m_{t}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)\left(m_{d}^{2}-m_{b}^{2}\right) \cdot J \\
& B \sim 10^{-28}
\end{aligned}
$$

too small to account for the observed $B \sim 10^{-10}$

- various Baryogenesis mechanisms
- neutrino oscillation opens up a new possibility:

Leptogenesis

Compelling Neutrino Oscillation Evidences

Atmospheric Neutrinos:

SuperKamiokande (up-down asymmetry, L/E, θz dependence of μ-like events)
dominant channel: $\quad \nu_{\mu} \rightarrow \nu_{\tau}$ next: K2K, MINOS, CNGS (OPERA)

```
Solar Neutrinos:
Homestake, Kamiomande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO,
KamLAND
    dominant channel: }\mp@subsup{\nu}{e}{}->\mp@subsup{\nu}{\mu,\tau}{
    next: BOREXINO, KamLAND, ...
```

LSND:
dominant channel: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
MiniBOONE -- negative result (2007)

Parameters for 3 Light Neutrinos

- three neutrino mixing

$$
\nu_{\ell L}=\sum_{j=1}^{3} U_{\ell j} \nu_{j L} \quad \ell=e, \mu, \tau
$$

- mismatch between weak and mass eigenstates
- PMNS matrix

$$
U=V\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{21} / 2} & 0 \\
0 & 0 & e^{i \alpha_{31} / 2}
\end{array}\right) \quad V=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

- Dirac CP-violating phase: $\delta=[0,2 \pi]$
- Majorana CP-violating phases: α_{21}, α_{31}

Current Status of Oscillation Parameters

- oscillation probability:

$$
P\left(\nu_{a} \rightarrow \nu_{b}\right)=\left|\left\langle\nu_{b} \mid \nu, t\right\rangle\right|^{2} \simeq \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right)
$$

- 3 neutrinos global analysis: Maltoni, Schwetz, Tortola, Valle (updated Sep 2007)
solar+KamLAND+CHOOZ+atmospheric+K2K+Minos
$\sin ^{2} \theta_{23}=0.5(0.38-0.64), \quad \sin ^{2} \theta_{13}=0(<0.028) \quad \sin ^{2} \theta_{12}=0.30(0.25$

$$
\begin{equation*}
\Delta m_{23}^{2}=\left(2.38_{-0.16}^{+0.2}\right) \times 10^{-3} \mathrm{eV}^{2}, \quad \Delta m_{12}^{2}=(8.1 \pm 0.6) \times 10^{-5} \mathrm{eV}^{2} \tag{0.34}
\end{equation*}
$$

- Tri-bimaximal Neutrino Mixing: $\quad \sin ^{2} \theta_{\text {atm, }}$ TBM $=1 / 2 \quad \sin \theta_{13, \mathrm{TBM}}=0$.

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

$$
\begin{gathered}
\sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \quad \tan ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 2 \\
\tan ^{2} \theta_{\odot, \exp }=0.429 \\
\text { new KamLAND result: } \quad \tan \theta_{\odot, \text { exp }}^{2}=0.47_{-0.05}^{+0.06}
\end{gathered}
$$

Discovery phase into precision phase for some oscillation parameters

Neutrino Mass Spectrum

- search for absolute mass scale:
- end point kinematic of tritium beta decays:

$$
\begin{array}{ll}
\text { Tritium } \rightarrow H e^{3}+e^{-}+\bar{\nu}_{e} & \begin{array}{l}
\text { Mainz: } m_{\mathrm{v}}<2.2 \mathrm{eV} \\
\\
\text { KATRIN: increase sensitivity } \sim 0.2 \mathrm{eV}
\end{array}
\end{array}
$$

- WMAP + 2dFRGS + Ly $\alpha: \sum\left(m_{v_{i}}\right)<(0.7-1.2) \mathrm{eV}$
- neutrinoless double beta decay
current bound: $|<m>|<(0.19-0.68) \mathrm{eV}$ (CUORICINO, Feb 2008)

The known unknowns:

- How small is θ_{13} ? (v_{e} component of V_{3})
- $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$? (V_{3} composition)
- Neutrino mass hierarchy $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
- CP violation in neutrino oscillations?

Seesaw Mechanism

- a natural way to generate small neutrino masses

Minkowski, I977; Gell-mann, Ramond, Slansky, I98I;Yanagida, 1979; Mohapatra, Senjanovic, I98।

- possibility to link origin of BAU to neutrino oscillation through leptogenesis
- Introduce right-handed neutrinos, which are SM gauge singlets [predicted in many GUTs, e.g. SO(ı)]
- The Lagrangian:

$$
\mathcal{L}_{Y}=f_{i j} \bar{e}_{R_{i}} \ell_{L_{j}} H^{\dagger}+h_{i j} \bar{\nu}_{R_{i}} \ell_{L_{j}} H-\frac{1}{2}\left(M_{R}\right)_{i j} \bar{\nu}_{R_{i}}^{c} \nu_{R_{j}}+h . c .
$$

- integrating out N_{R} : effective mass matrix

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right) \quad \text { light neutrino mass: } m_{\nu} \sim \frac{m_{D}}{M_{R}} m_{D} \\
m_{\nu} \sim \sqrt{\Delta m_{a t m}^{2}} \sim 0.05 \mathrm{eV}, m_{D} \sim m_{t} \sim 172 \mathrm{GeV} \\
\Rightarrow M_{R} \sim 10^{15} \mathrm{GeV} \sim \mathrm{MGUT} \\
\text { seesaw } \Rightarrow \text { Neutrinos are Majorana fermions } \\
\Rightarrow \text { Lepton Number violation }
\end{gathered}
$$

Leptogenesis

- implemented in the context of seesaw mechanism
- out-of-equilibrium decays of RH neutrinos produce primordial lepton number asymmetry

$$
\epsilon_{1}=\frac{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}
$$

- sphaleron processes: $\Delta \mathrm{L} \rightarrow \Delta \mathrm{B}$
- the asymmetry

Buchmuller, Plumacher, I998;
Buchmuller, Di Bari, Plumacher, 2004

$$
\begin{aligned}
& Y_{B}=\frac{n_{B}-n_{\bar{B}}}{s} \sim 8.6 \times 10^{-11} \quad Y_{B} \simeq 10^{-2} \epsilon \kappa \\
& \kappa: \text { efficiency factor } \sim\left(10^{-1}-10^{-3}\right) \\
& \Phi^{+}+\ell^{-} \rightarrow N_{1}, \quad \ell^{-}+\Phi^{+} \rightarrow \Phi^{-}+\ell^{+}, \text {etc. }
\end{aligned}
$$

Realizations of Leptogenesis

- Standard Leptogenesis with Type-I seesaw + hierarchycal RH neutrino mass spectrum

Fukugita, Yanagida, 1986

- Leptogenesis with Type-II seesaw Joshipura, Paschos, Rodejohann, 2001; Hambye, Senjanovic, 2004; Antusch, King, 2004, ...
- Resonant leptogenesis: near degenerate RH neutrino mass spectrum

Pilaftsis, 1997; ...

- soft leptogenesis

Grossman, Kashti, Nir, Roulet, 2003; D’Ambrosio, Giudice, Raidal, 2003; Boubekeur, 2002; Boubekeur, Hambye, Senjanovic, 2004, ...

$$
\epsilon=\left(\frac{4 \Gamma_{1} B}{\Gamma_{1}^{2}+4 B^{2}}\right) \frac{\operatorname{Im}(A)}{M_{1}} \delta_{B-F}
$$

A, B: SUSY CP-violating phases lose connection to neutrino oscillation

- Dirac leptogenesis

Dick, Lindner, Ratz, Wright, 2000; Murayama, Pierce, 2002; ...

Testing Leptogenesis?

Sakharov conditions:

- out-of-equilibrium (expanding Universe)
- Lepton number violation (neutrinoless double beta decay)
- CP violation

Connection to Low Energy Observables

- Lagrangian at high energy (in the presence of RH neutrinos)
$\mathcal{L}=\bar{\ell}_{L_{i}} i \gamma^{\mu} \partial_{\mu} \ell_{L_{i}}+\bar{e}_{R_{i}} i \gamma^{\mu} \partial_{\mu} e_{R_{i}}+\bar{N}_{R_{i}} i \gamma^{\mu} \partial_{\mu} N_{R_{i}}$

$$
+f_{i j} \bar{e}_{R_{i}} \ell_{L_{j}} H^{\dagger}+h_{i j} \bar{N}_{R_{i}} \ell_{L_{j}} H-\frac{1}{2} M_{i j} N_{R_{i}} N_{R_{j}}+\text { h.c. }
$$

in f_{ij} and M_{ij} diagonal basis \rightarrow $h_{i j}$ general complex matrix: $\left\{\begin{array}{l}9-3=6 \text { physical phases } \\ 9^{-} 3\end{array}\right.$

- Low energy effective Lagrangian (after integrating out RH neutrinos) $\mathcal{L}_{e f f}=\bar{\ell}_{L_{i}} i \gamma^{\mu} \partial_{\mu} \ell_{L_{i}}+\bar{e}_{R_{i}} i \gamma^{\mu} \partial_{\mu} e_{R_{i}}+f_{i i} \bar{e}_{R_{i}} \ell_{L_{i}} H^{\dagger}+\frac{1}{2} \sum_{k} h_{i k}^{T} h_{k_{j}} \ell_{L_{i}} \ell_{L_{j}} \frac{H^{2}}{M_{k}}+h . c$. in f_{ij} diagonal basis \rightarrow
h_{ij} symmetric complex matrix: $\left\{\begin{array}{l}6-3=3 \text { mixing angles } \\ 6-3=3 \text { physical phases }\end{array}\right.$
- high energy \rightarrow low energy:
numbers of mixing angles and CP phases reduced by half

Connection to Low Energy Observables

- diagonal basis for charged lepton and RH neutrino mass matrices
- neutrino Dirac Yukawa interactions: $h=V_{R}^{\nu \dagger} \operatorname{diag}\left(h_{1}, h_{2}, h_{3}\right) V_{L}^{\nu}$
- CP asymmetry parametrized by (orthogonal parametrization)

$$
\begin{aligned}
m=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) & \text { (light neutrino masses) }
\end{aligned}
$$

$$
\begin{aligned}
& M=\operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right) \\
& R=v M^{-1 / 2} h U m^{-1 / 2}
\end{aligned}
$$

$$
R=v M^{-1 / 2} h U m^{-1 / 2} \quad \text { R: phases in RH sector }
$$

$$
h h^{\dagger} v^{2}=V_{R}^{\nu \dagger} \operatorname{diag}\left(h_{1}^{2}, h_{2}^{2}, h_{3}^{2}\right) V_{R}^{\nu} v^{2}=M^{1 / 2} R m R^{\dagger} M^{1 / 2} \quad h=\frac{1}{v} M^{1 / 2} R m^{1 / 2} U^{\dagger}
$$

combination relevant for leptogenesis in I -flavor approximation

R: high energy parameters
U: low energy information

Connection to Low Energy Observables

hierarchical RH neutrinos: $\quad M_{1} \ll M_{2} \ll M_{3}$
One Flavor Approximation: $\mathrm{T}>1 \mathrm{I}^{12} \mathrm{GeV}$

- individual lepton number asymmetry

$$
\varepsilon_{1 l}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{1 / 2} m_{k}^{3 / 2} U_{j 1}^{*} U_{l k} R_{1 j} R_{1 k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}}, \quad v=174 \mathrm{GeV}
$$

where the effective masses $\widetilde{m_{l}} \equiv \frac{\left|\lambda_{1 l}\right|^{2} v^{2}}{M_{1}}=\left|\sum_{k} R_{1 k} m_{k}^{1 / 2} U_{l k}^{t}\right|^{2}, \quad l=e, \mu, \tau$

- out-of-equilibrium temperature
$\mathrm{Y}_{\mathrm{e}, \mu, \mathrm{T}}$ all small $Y_{l} H^{c}(x) \overline{l_{R}}(x) \psi_{l L}$ out of equilibrium at $T \sim M_{1}>10^{12} \mathrm{GeV}$
$\Rightarrow \mathrm{L}_{\mathrm{e}, \mu, \mathrm{T}}$ not distinguishable
- Boltzmann equations for $n\left(N_{1}\right)$ and $\Delta L=\Delta\left(L_{e}+L_{\mu}+L_{\tau}\right)$
- resulting lepton number asymmetry
$\varepsilon_{1}=\sum_{l} \varepsilon_{1 l}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{2} R_{1 j}^{2}\right)}{\sum_{k} m_{k}\left|R_{1 k}\right|^{2}} \quad \widetilde{m_{1}}=\sum_{l} \widetilde{m_{l}}=\sum_{k} m_{k}\left|R_{1 k}\right|^{2}$

Connection to Low Energy Observables

- one-flavor approximation
presence of low energy leptonic CPV
(neutrino oscillation, neutrinoless double beta decay)
real R, complex U:
non-vanishing low energy CPV (h) vanishing leptogenesis

leptogenesis $=0$
- no model independent connection can exist

Abada, Davidson, Josse-Michaux, Losada, Riotto, 2006;
Flavor matters?
Nardi, Nir, Roulet, Racker, 2006
leptogenesis at $T \sim M_{1}<10^{12} \mathrm{GeV}$:
three flavors distinguishable (different $\mathrm{T}_{\mathrm{eq}}=\mathrm{Y}^{2} \mathrm{M}_{\mathrm{p}}$) non-universal wash-out factors

Connection to Low Energy Observables

- At $\mathrm{M}_{1} \sim \mathrm{~T} \sim 10^{12} \mathrm{GeV}: \quad Y_{\tau}-$ in equilibrium, $Y_{e, \mu}$ - not
- At $\mathrm{M}_{1} \sim \mathrm{~T} \sim 10^{9} \mathrm{GeV}: \quad Y_{T}, Y_{\mu}$ - in equilibrium, Y_{e} - not
- two flavor regime: $M_{1} \sim 10^{9}-10^{12} \mathrm{GeV}$

$$
\varepsilon_{1 \tau} \text { and }\left(\varepsilon_{1 e}+\varepsilon_{1 \mu}\right) \equiv \varepsilon_{2} \text { evolve independently }
$$

- three flavor regime $M_{1}<10^{9} \mathrm{GeV}$

$$
\varepsilon_{1 \tau}, \varepsilon_{1 e} \text { and } \varepsilon_{1 \mu} \text { evolve independently }
$$

- asymmetry associated with each flavor

$$
\epsilon_{\alpha}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{\beta \rho} m_{\beta}^{1 / 2} m_{\rho}^{3 / 2} U_{\alpha \beta}^{*} U_{\alpha \rho} R_{1 \beta} R_{1 \rho}\right)}{\sum_{\beta} m_{\beta}\left|R_{1 \beta}\right|^{2}}
$$

$$
\text { leptogenesis } \neq 0 \quad \text { low energy } \mathrm{CPV} \neq 0
$$

Connection to Low Energy CPV

- including flavor effects: for inverted mass spectrum, low energy CP phases can be important under certain conditions

Molinaro, Petcov, 2008

R CPV, blue
U CPV, green
total $\left|Y_{B}\right|$ (red line)

$$
\alpha_{21}=\pi / 2,\left|R_{11}\right| \cong 1.0
$$

$$
M_{1}=10^{11} \mathrm{GeV} \quad s_{13}=0.2 \text { and } \delta=\pi
$$

CPV: $\alpha_{2 \mathrm{I}}$ in U and R phases

Connection in Specific Models

- models for neutrino masses: additional symmetries or textures
- reduce the number of parameters
- connection can be established
- texture assumption
2×3 seesaw model
- all CP violation can come from a single source minimal left-right model with spontaneous CP violation
- implications of tri-bimaximal neutrino mixing A4 model

Seesaw with 2 RH Neutrinos

- cancellation of Witten anomaly
- leptonic SU(2) horizontal symmetry
- two RH neutrinos
- 2×3 seesaw mechanism
- Lagrangian

Frampton, Glashow, Yanagida, 2002

$$
\mathcal{L}=\frac{1}{2}\left(N_{1} N_{2}\right)\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right)\binom{N_{1}}{N_{2}}+\left(N_{1} N_{2}\right)\left(\begin{array}{ccc}
a & a^{\prime} & 0 \\
0 & b & b^{\prime}
\end{array}\right)\left(\begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right) H+\text { h.c. },
$$

- effective neutrino mass matrix

$$
\left(\begin{array}{ccc}
\frac{a^{2}}{M_{1}} & \frac{a a^{\prime}}{M_{1}} & 0 \\
\frac{a a^{\prime}}{M_{1}} & \frac{a^{\prime 2}}{M_{1}}+\frac{b^{2}}{M_{2}} & \frac{b b^{\prime}}{M_{2}} \\
0 & \frac{b b^{\prime}}{M_{2}} & \frac{b^{\prime 2}}{M_{2}}
\end{array}\right) \quad a, b, b^{\prime} \text { are real and } a^{\prime}=\left|a^{\prime}\right| e^{i \delta}
$$

Seesaw with 2 RH Neutrinos

- bi-large mixing angle $\quad a^{\prime}=\sqrt{2} a \quad b=b^{\prime} \quad a^{2} / M_{1} \ll b^{2} / M_{2}$

$$
\begin{gathered}
m_{\nu_{1}}=0, \quad m_{\nu_{2}}=\frac{2 a^{2}}{M_{1}}, \quad m_{\nu_{3}}=\frac{2 b^{2}}{M_{2}} \\
U=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & -1 / 2 & 1 / \sqrt{2}
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0-\sin \theta \cos \theta
\end{array}\right) \quad \theta \simeq m_{\nu_{2}} / \sqrt{2} m_{\nu_{3}}
\end{gathered}
$$

- relation between sign of baryonic asymmetry and sign of CP violation in neutrino oscillation

$$
\begin{gathered}
\xi_{o s c}=-\frac{a^{4} b^{4}}{M_{1}^{3} M_{2}^{3}}\left(2+Y^{2}\right) \xi_{B} \propto-B \\
\left(B \propto \xi_{B}=Y^{2} a^{2} b^{2} \sin 2 \delta\right)
\end{gathered}
$$

Sources of CP Violation

- Manifestations of CP violation
- weak scale CPV (kaon, B-meson, neutrino oscillation, ...)
- cosmological BAU
- strong CP problem
\Rightarrow can they come from a common origin??
- Explicit CP violation
- complex Yukawa couplings
- Spontaneous CP violation
- complex VEV

Models with Spontaneous CP Violation

M-C.C \& Mahanthappa, 2005

- minimal left-right model:
- gauge symmetry

$$
\begin{aligned}
S U(3)_{c} \times S U & (2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times P \\
& \rightarrow S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y},
\end{aligned}
$$

- particle content

$$
\begin{array}{ll}
Q_{i, L}=\binom{u}{d}_{i, L} \sim(1 / 2,0,1 / 3), & Q_{i, R}=\binom{u}{d}_{i, R} \sim(0,1 / 2,1 / 3) \\
L_{i, L}=\binom{e}{\nu}_{i, L} \sim(1 / 2,0,-1), & L_{i, R}=\binom{e}{\nu}_{i, R} \sim(0,1 / 2,-1)
\end{array}
$$

- minimal higgs sector
- in general, 4 complex VEV's

$$
\langle\Phi\rangle=\left(\begin{array}{cc}
\kappa e^{i \alpha_{\kappa}} & 0 \\
0 & \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}
\end{array}\right),\left\langle\Delta_{L}\right\rangle=\left(\begin{array}{rr}
0 & 0 \\
v_{L} e^{i \alpha_{L}} & 0
\end{array}\right),\left\langle\Delta_{R}\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
v_{R} e^{i \alpha_{R}} & 0
\end{array}\right)
$$

Models with Spontaneous CP Violation

- Lagrangian invariant under unitary transformations

$$
U_{L}=\left(\begin{array}{cc}
e^{i \gamma_{L}} & 0 \\
0 & e^{-i \gamma_{L}}
\end{array}\right), \quad U_{R}=\left(\begin{array}{cc}
e^{i \gamma_{R}} & 0 \\
0 & e^{-i \gamma_{R}}
\end{array}\right)
$$

$$
\begin{aligned}
\psi_{L} \rightarrow U_{L} \psi_{L}, \quad & \psi_{R} \rightarrow U_{R} \psi_{R} \\
\Phi \rightarrow U_{R} \Phi U_{L}^{\dagger}, \quad \Delta_{L} \rightarrow & U_{L}^{*} \Delta_{L} U_{L}^{\dagger}, \quad \Delta_{R} \rightarrow U_{R}^{*} \Delta_{R} U_{R}^{\dagger}
\end{aligned}
$$

- VEVs transform accordingly

$$
\kappa \rightarrow \kappa e^{-i\left(\gamma_{L}-\gamma_{R}\right)}, \quad \kappa^{\prime} \rightarrow \kappa^{\prime} e^{i\left(\gamma_{L}-\gamma_{R}\right)}, \quad v_{L} \rightarrow v_{L} e^{-2 i \gamma_{L}}, \quad v_{R} \rightarrow v_{R} e^{-2 i \gamma_{R}}
$$

- only two physical phases:

$$
<\Phi>=\left(\begin{array}{cc}
\kappa & 0 \\
0 & \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}
\end{array}\right), \quad<\Delta_{L}>=\left(\begin{array}{cc}
0 & 0 \\
v_{L} e^{i \alpha_{L}} & 0
\end{array}\right), \quad<\Delta_{R}>=\left(\begin{array}{cc}
0 & 0 \\
v_{R} & 0
\end{array}\right)
$$

$\alpha_{\kappa^{\prime}} \Rightarrow$ all CPV in quark sector (contributions to lepton sector negligible for high seesaw scale)

$$
\alpha_{L} \Rightarrow \text { all CPV in lepton sector }
$$

Models with Spontaneous CP Violation

- all leptonic CP violation from a single phase
- the three CP-violating phases in MNS matrix are functions of the intrinsic phase α_{L}
- the phase α_{L} enters
- neutrino oscillation

$$
\begin{gathered}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\delta_{\alpha \beta}-4 \sum_{i>j} R e\left(U_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i i}^{*}\right) \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right)+2 \sum_{i>j} J_{\mathrm{CP}}^{\text {lep }} \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right) \\
J_{\mathrm{CP}}^{\text {ep }}=-\frac{I m\left(H_{12} H_{23} H_{31}\right)}{\Delta m_{21}^{2} \Delta m_{32}^{2} \Delta m_{31}^{2}}, H \equiv\left(M_{\nu}^{e f f}\right)\left(M_{\nu}^{e f f}\right)^{\dagger} \\
\hline
\end{gathered}
$$

- neutrino-less double beta decay

$$
\begin{aligned}
\left|\left\langle m_{e e}\right\rangle\right|^{2}= & m_{1}^{2}\left|U_{e 1}\right|^{4}+m_{2}^{2}\left|U_{e 2}\right|^{4}+m_{3}^{2}\left|U_{e 3}\right|^{4}+2 m_{1} m_{2}\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2} \cos \alpha_{21} \\
& +2 m_{1} m_{3}\left|U_{e 1}\right|^{2}\left|U_{e 3}\right|^{2} \cos \alpha_{31}+2 m_{2} m_{3}\left|U_{e 2}\right|^{2}\left|U_{e 3}\right|^{2} \cos \left(\alpha_{31}-\alpha_{21}\right)
\end{aligned}
$$

- leptogenesis

Models with Spontaneous CP Violation

- triplet leptogenesis:
- $N_{1} \rightarrow \ell+H^{\dagger}$

$$
\epsilon=\frac{\Gamma\left(N_{1} \rightarrow \ell+H^{\dagger}\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}+H\right)}{\Gamma\left(N_{1} \rightarrow \ell+H^{\dagger}\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}+H\right)}
$$

$$
\Delta^{*} \rightarrow \ell+\ell
$$

$$
\epsilon=\frac{\Gamma\left(\Delta_{L}^{*} \rightarrow \ell+\ell\right)-\Gamma\left(\Delta_{L} \rightarrow \bar{\ell}+\bar{\ell}\right)}{\Gamma\left(\Delta_{L}^{*} \rightarrow \ell+\ell\right)+\Gamma\left(\Delta_{L} \rightarrow \bar{\ell}+\bar{\ell}\right)}
$$

- natural scenario: Δ^{*} heavier than $\mathrm{N}_{\mathrm{I}} \rightarrow \mathrm{N}_{\mathrm{I}}$ decay dominant
- two contributions

M-C.C \& Mahanthappa, 2005

- usual diagrams (type I contribution)

$$
\mathcal{M}_{D}=O_{R} M_{D}
$$

$$
\epsilon^{N_{1}}=\frac{3}{16 \pi}\left(\frac{M_{R_{1}}}{v^{2}}\right) \cdot \frac{\operatorname{Im}\left(\mathcal{M}_{D}\left(M_{\nu}^{I}\right)^{*} \mathcal{M}_{D}^{T}\right)_{11}}{\left(\mathcal{M}_{D} \mathcal{M}_{D}^{\dagger}\right)_{11}}=0
$$

- new diagram (type II contribution)

$$
\epsilon^{\Delta_{L}}=\frac{3}{16 \pi}\left(\frac{M_{R_{1}}}{v^{2}}\right) \cdot \frac{\operatorname{Im}\left(\mathcal{M}_{D}\left(M_{\nu}^{I I}\right)^{*} \mathcal{M}_{D}^{T}\right)_{11}}{\left(\mathcal{M}_{D} \mathcal{M}_{D}^{\dagger}\right)_{11}} \sim \sin \alpha_{L}
$$ choice of $\mathrm{U}_{\mathrm{L}, \mathrm{R}}$

Models with Spontaneous CP Violation

$$
\text { observed BAU } \Rightarrow \mathrm{J}_{\mathrm{cp}}-\mathrm{IO}^{-5}
$$

$$
\frac{\left(M_{D} M_{D}^{\dagger}\right)_{11}}{M_{1}} \propto\left(\frac{m_{c}}{m_{t}}\right)^{2} v_{L}<\mathcal{O}\left(10^{-7}\right) \mathrm{eV}
$$

Models with Spontaneous CP Violation

M.-C.C \& Mahanthappa, 2007

- with an additional $\mathrm{U}(1)$ symmetry
\Rightarrow can lower seesaw scale to $10^{6} \mathrm{GeV}$ (and below)

$$
\begin{aligned}
d_{e} & \simeq-\frac{e \alpha}{4 \pi M_{W}^{2}} \frac{\kappa \kappa^{\prime}}{v_{R}^{2}-v_{L}^{2}} \operatorname{Im}\left(e^{-i \alpha_{\kappa^{\prime}}} M_{D}\right)_{e e} \\
& \simeq 10^{-19} \times r\left(\frac{G e V}{v_{R}}\right)^{2}\left(\frac{\left|\left(M_{\nu_{D}}\right)_{e e}\right|}{M e V}\right)\left(\sin \left(2 \alpha_{\kappa^{\prime}}\right)\right) \mathrm{e}-\mathrm{cm}
\end{aligned}
$$

- relation between CPV in quark \& lepton sectors
- electron EDM $\sim 10^{-32} \mathrm{e}-\mathrm{cm}$

Models with Spontaneous CP Violation

- $\mathrm{SM}+\mathrm{D}^{\circ}$ (vectorial quark) +S (singlet scalar) Branco, Parada, Rebelo, 2003

$$
\begin{aligned}
&\left\langle\phi^{0}\right\rangle=\frac{v}{\sqrt{2}}, \quad\langle S\rangle=\frac{V \exp (i \alpha)}{\sqrt{2}} \\
&\left(f_{q} S+f_{q}^{\prime} S^{*}\right) \overline{D_{L}^{0}} d_{R}^{0}+\tilde{M} \overline{D_{L}^{0}} D_{R}^{0} \quad \rightarrow \text { quark CPV } \\
& \frac{1}{2} \nu_{R}^{0 T} C\left(f_{\nu} S+f_{\nu}^{\prime} S^{*}\right) \nu_{R}^{0} \rightarrow \text { leptonic CPV }
\end{aligned}
$$

- SCPV in SO(ıо) Achiman, 2004, 2008

$$
\begin{aligned}
& <126>\text { complex: break (B-L) } \quad \bar{\Delta}=\left\langle\bar{\Sigma}(1,1,0)>=\frac{\sigma}{\sqrt{2}} e^{i \alpha}\right. \\
& Y_{\ell}^{i j} \nu_{R}^{i} \bar{\Delta} \nu_{R}^{j}
\end{aligned}
$$

- no symmetry reason why $\langle S\rangle$ is the only complex VEV

Models with Tri-bimaximal Neutrino Mixing

- global neutrino oscillation data strongly suggests TBM mixing pattern
$U_{\text {TBM }}=\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right) \quad \underset{\sin \theta_{13, \mathrm{TBM}}=0}{ } \longrightarrow$ Leptogenesis?
- TBM mixing can arise from underlying symmetry
- S_{3} : less constrained Mohapatra, Nasri, Yu, 2006
- $Z_{7} \times Z_{3}$ Luhn, Nasri, Ramond, 2007
- A4: Ma, 2004; Altarelli, Feruglio, 2006
- tri-bimaxmal mixing results from group theory!

- no CKM mixing
- (d) T: double covering of A_{4}

Carr, Frampton, 2007;
Feruglio, Hedgedorn, Lin, Merlo, 2007

- retain predictivity of A_{4} in neutrino sector
- realistic CKM in $\mathrm{SU}(5) \mathrm{x}^{(d)} \mathrm{T} \quad$ M.-C.C \& Mahanthappa, 2007

Models with Tri-bimaximal Neutrino Mixing

- TBM neutrino mixing from group theoretical CG coefficients

$$
\begin{gathered}
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \quad \text { Form diagonalizable! } \\
V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}} \\
V_{\nu}=U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
\end{gathered}
$$

Models with Tri-bimaximal Neutrino Mixing

$\operatorname{Cos} \triangle$

$\operatorname{Cos} \triangle$

prediction in A_{4} and ${ }^{(\mathrm{d})} \mathrm{T}$ models

Models with Tri-bimaximal Neutrino Mixing

- TBM mixing arises from underlying broken discrete symmetries ($\left.A_{4}, Z_{7} \times Z_{3},{ }^{(d)} T\right)$ through type-I seesaw

Jenkins, Manohar, 2008
\Rightarrow exact TBM mixing

$$
\sin \theta_{13}=0 \Rightarrow J_{C P}^{l e p} \propto \sin \theta_{13}=0
$$

CP violation through Majorana phases: α_{21}, α_{31}
\Rightarrow no leptogenesis as $\quad \operatorname{Im}\left(y_{D} y_{D}^{\dagger}\right)=0$
\Rightarrow true even when flavor effects included

- corrections to TBM pattern due to high dim operators small symmetry breaking parameter $\eta \ll 1$:

$$
\sin \theta_{13} \sim \eta \sim 10^{-2}, \epsilon \sim 10^{-6} \text { can be generated }
$$

- type-II seesaw contribution in S_{3} Mohapatra, Yu, 2006
- exact TBM limit:

$$
\varepsilon_{2}^{I I} \simeq-\frac{3}{8 \pi} \frac{m_{1} M_{2} \sin \varphi_{1}}{v^{2} \sin ^{2} \beta} . \quad \varphi_{1}: \text { one of the Majorana phases }
$$

Quantum Boltzmann Equations

Buchmuller, Fredenhagen, 2000; Simone, Riotto 2007; Lindner, Muller 2007

- Classical vs Quantum Boltzmann equations:
- collision terms: involving quantum interference
- time evolution: quantum mechanical treatment
- Classical Boltzmann equations:
scattering independent from previous one

$$
\begin{aligned}
\frac{\partial n_{N_{1}}}{\partial t} & =-\left\langle\Gamma_{N_{1}}\right\rangle\left(n_{N_{1}}-n_{N_{1}}^{\mathrm{eq}}\right) \\
\left\langle\Gamma_{N_{1}}\right\rangle & =\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{f_{N_{1}}^{\mathrm{eq}}}{n_{N_{1}}^{\mathrm{eq}}} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\left|\mathcal{M}\left(N_{1} \rightarrow \ell H\right)\right|^{2}}{2 \omega_{\ell} 2 \omega_{H} \omega_{N_{1}}}(2 \pi) \delta\left(\omega_{N_{1}}-\omega_{\ell}-\omega_{H}\right)
\end{aligned}
$$

Quantum Boltzmann Equations

- Quantum Boltzmann equations:

Schwinger, 1961; Mahanthappa, 1962;
Bakshi, Mahanthappa, 1963; Keldysh, 1965

- Closed-Time-Path (CTP) formulation for non-equilibrium QFT
- involve time integration for scattering terms
\Rightarrow "memory effects": time-dependent CP asymmetry

$$
\begin{aligned}
\frac{\partial n_{N_{1}}}{\partial t} & =-\left\langle\Gamma_{N_{1}}(t)\right\rangle n_{N_{1}}+\left\langle\widetilde{\Gamma}_{N_{1}}(t)\right\rangle n_{N_{1}}^{\text {eq }} \\
\left\langle\Gamma_{N_{1}}(t)\right\rangle & =\int_{0}^{t} d t_{z} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{f_{N_{1}}^{\text {eq }}}{n_{N_{1}}^{\text {eq }}} \Gamma_{N_{1}}(t), \\
\Gamma_{N_{1}}(t) & =2 \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\left|\mathcal{M}\left(N_{1} \rightarrow \ell H\right)\right|^{2}}{2 \omega_{\ell} 2 \omega_{H} \omega_{N_{1}}} \cos \left[\left(\omega_{N_{1}}-\omega_{\ell}-\omega_{H}\right)\left(t-t_{z}\right)\right]
\end{aligned}
$$

Quantum Boltzmann Equations

- time scale of Kernel << relaxation time scale $\sim 1 / \Gamma_{\mathrm{N} 1}$

Classical Boltzmann eqs \approx Quantum Boltzmann equation

- In resonant leptogenesis: $\Delta \mathrm{M}=\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right) \sim \Gamma_{\mathrm{N} 2}$

Kernel time scale $\sim 1 / \Delta M>1 / \Gamma_{N 1}$ possible
\Rightarrow quantum Boltzmann equations important!!

Conclusions

- Leptogenesis: promising mechanism for BAU
- connection between leptogenesis \& low energy CPV processes generally does not exist in a model independent way
- statement weakened when flavor effects included
- models for neutrino mass: reduced number of parameters, allowing connection
- 2x3 seesaw
- models with SCPV: single source for all CPV
- TBM mixing pattern compatible with leptogenesis, if
- higher order corrections included; or
- type-II seesaw
- Quantum Boltzmann equations?

