Direct Searches for WIMP Dark Matter

Uwe Oberlack Department of Physics & Astronomy Rice University http://xenon.physics.rice.edu

> Cosmo '08 Madison, WI, August 25, 2008

WIMP DM Direct Detection

- Elastic scattering of WIMP's χ off of nuclei A.
- Energy spectrum and rate depend on WIMP velocity v_{χ} and density ρ_{χ} distribution in DM halo.
 - → Local: $\rho_{\chi} \sim 0.3$ GeV/cm³, $(\rho_{\chi}/m_{\chi}) \sim 1-10$ / L
 - $\rightarrow v_{\chi} \sim 230$ km/s
- For standard spherical halo: Featureless recoil spectrum with <E> ~ O(10 keV).
- Scattering rate ~ N (ρ_x/m_x) <v_x σ_{scat} >
 - \rightarrow N: number of target nuclei in the detector
 - $\rightarrow \rho_x/m_x$: local number density of WIMPs

- $\rightarrow \sigma_{scat}$ cross section per nucleus. <...>: velocity average
- Rate: 10⁻² 10⁻⁵ events / kg / day

WIMP DM Direct Detection Cross Sections

- Compute cross sections χ quark and χ gluon with various SUSY models. Large parameter space, constrained by accelerator and direct search experiments, and cosmology.
 - → spin-independent: coupling to mass of nucleus. Coherence $\Rightarrow \sigma A^2$
 - spin-dependent: coupling of spins of nucleus and neutralino interaction with paired nucleons in the same energy state cancel
 no A² enhancement

Distribution of nucleons within nucleus: nuclear form factor.
 → SI: Large nuclei gain ~A² at small momentum transfer, but lose at higher momentum transfer due to coherence loss.

Backgrounds in Direct DM Search

- Cross-sections are *very* small: <10⁻⁴³ cm² or 10⁻⁷ pb (spin-independent)
- Without background, sensitivity ∞ (mass × exposure time)⁻¹
- With background subtraction \propto (M t)^{-1/2} until limited by systematics.
- Backgrounds:
 - → Gamma-rays & beta decays:
 - ~100 events/kg/day
 - Need efficient β and γ background discrimination.
 - Shielding: low-activity lead, water, noble liquids (active), liquid N₂, ...

→ Neutrons from (a, n) and spontaneous fission (concrete, rock, etc.):

- ~ 1 event/kg/day (LNGS)
- Neutron moderator (polyethylene, paraffin, ...)
- → Neutrons from CR muons:

depends on depth.

μ-veto, n-veto, shielding

Uwe Oberlack

DM Detector Overview

There are **many** DM detector concepts, with different goals or strengths:

- Sensitivity to spin-independent or spin-dependent interactions (or both).
 - → SD: unpaired protons vs unpaired neutrons.
- Detection principles (1 or 2).
- Energy resolution (threshold detector, low, high).
- Position sensitivity (none, surface/bulk, 3D, tracking).
- Background reduction:
 - → Passive shielding / active veto. (external backgrounds)
 - → Reduction of bulk or surface radioactivities (U, Th, Rn, Kr, etc.)
 - Purification.
 - Material selection / screening.
 - Suppression of α , β , γ , n, as necessary.
 - Level of irreducible intrinsic backgrounds.
- Background discrimination techniques:
 - → 0 or more
 - → Discrimination power
- Stage of fruition.

I will focus on a few examples. For more details, see the conferences DM08 and IDM2008. http://www.physics.ucla.edu/hep/dm08/ http://agenda.albanova.se/conferenceDisplay.py?confld=355

DM Detector Overview Detection Principles

DM Detector Overview Detection Principles

DM Detector Overview

Detector Type	Experiments	Strengths / Caveats		
Ionization	MAJORANA, GERDA	Search for ββ-decay		
Crystal Scintillator	LIBRA/DAMA, NAIAD, KIMS	low threshold, large mass, poor background discrimination		Background Discrimination Techniques: • none (low bgd)
Cryogenic	CDMS, CRESST, EDELWEISS	good background discrim., smaller mass / high cost		
Liquid Noble Gas	Ar: ArDM, WARP, DEAP/CLEAN	large mass, good backgrnd discrim., position resol. (dual phase)	Ar: intrinsic background	 pulse shape charge/phonon light/phonon light/charge super-heated bubbles/droplets
	Xe: XENON, XMASS, ZEPLIN, LUX		Xe: self shielding, odd & even isotopes	
Bubble Chamber	COUPP, PICASSO	large mass, good background discrim.		 ionization track plus: 3D position
Gas Detector	DRIFT, DM-TPC	directional information, good background discrim.		

DAMA/LIBRA Annual Modulation

(R. Bernabei et al. arXiv:0804.2741)

~250 kg of Nal counters (24 operational)

- plenary talk Friday 11am by Chris Savage
 Chris Savage
 Chris Sun
 Sun
 Son
 Son
- Drukier, Freese, Spergel PRD86 Freese et al. PRD88

Uwe Oberlack

- Modulation in 2-6 keV single hits: 8.2 σ
- Mostly in 2-4 keV, ~0.02 cts/d/kg/keV
- Total single rate ~1 cts/d/kg/keV
- Standard DM distribution: ~5% modulation
- Period & phase about right for DM.
- No annual modulation in 6-14 keV.
- No annual modulation in multiple hits. (Statistics?)
- Claim of DM detection.
- Conflict with other experiments in standard
 Cosmo '08 @ MaSGenarios.
 9

CDMS II: Z-sensitive Ionization and Phonon Detectors (Ge,Si)

- Phonon Side: 4 quadrants of phonon sensors (Transition Edge Sensors)
 - → Energy & Position (Timing)
- Charge Side: 2 concentric electrodes
 - → Energy (Background) discrimination) & Veto

CDMS II: Transition Edge Sensors with Electrothermal Feedback for Fast Phonons

AAA.

Detect **fast phonons,** after a WIMP interacts in a Ge/Si absorber using transition edge sensors with electrothermal feedback K.D.Irwin et al., Rev. Sci. Instr. 66 (1995)

To << Tc ; VB is placed across the film (TES)

=> equilibrium: when ohmic heating balanced by heat flow into the absorber

When an excitation reaches the TES

=> R / => I / by ΔI => P /

=> feedback signal = change in Joule power heating the film $(P=IV_B=V_B^2/R)$

The deposited energy:

$$\boldsymbol{E} = -\boldsymbol{V}_B \int \Delta \boldsymbol{I}(t) \mathrm{d}t$$

L. Baudis

SC film

Ge/Si

Low-temperature sink To

Heat

flow

Thermal link

CDMS II Background Discrimination

arXiv:08020350, R. Mahapatra PPC2008

- 5 towers of detectors (previously 2)
- Fix cuts blind with calibration data.
- Choose cuts aiming at background level ~0.5 events, i.e., efficiency goes down with time.
- So far losses offset by analysis and detector improvements.

Uwe Oberlack

CDMS II – 2008 Result

arXiv:08020350

- 5 towers of detectors (previously 2)
- Fix cuts blind with calibration data, aiming at γ background ~0.5 events, i.e., efficiency goes down with time.
- So far losses offset by analysis and detector improvements. Exposure: 121.3 kg days
- Expect ~0.2 events neutron background.

Liquid Xenon for Dark Matter Search

- Large atomic number A~131 best for SI interactions (σ~A²) if low threshold
- ~50% odd isotopes: very good for SD interactions
- No long-lived isotopes.
 Kr-85 reduction to ppt proven.
- High Z (54) and density:
 → compact & self-shielding
- Scalability to large mass for σ~10⁻⁴⁷ cm² ~ 1evt/1ton/yr
 - → cost
 - → "easy" cryogenics (-100°C)
- Efficient scintillator
- Background discrimination
 - → Ionization/Scintillation
 - → 3D imaging of TPC

Liquid Xenon Dual Phase TPC *

- Dual phase liquid/gas xenon TPC at ~ -94°C / 2 bar
- Wimp recoil on Xe nucleus in dense liquid (2.85 g/cm³)
 → Ionization + UV Scintillation
- Detection of primary scintillation light (S1) with PMTs on top and bottom
- PTFE cylinder for reflectivity
- Charge drift towards liquid/gas interface at field of 0.73 kV/cm (XENON10)
- Charge extraction liquid/gas at high field (5 kV/cm) between meshes 1 (liquid) and 2 (gas)
- Charge produces proportional scintillation signal (S2) in the gas phase (10 kV/cm)

- 3D position measurement:
 - → X/Y: from S2 signal, resolution few mm due to small PMT size (1").
 - → Z: from electron drift time (~1 mm).

Background Discrimination based on Ionization/Scintillation Ratio in Dual Phase LXe/LAr TPC's

Uwe Oberlack

XENON10 Background Rejection: S2/S1

Gamma Calibration (ER band)

- Weekly
- Cs-137 source (1 kBq) in shield

Neutron Calibration (NR Band)

- Dec 1, 2006 (12 h)
- AmBe source (3.7 MBq) in shield
- Single interactions

99.5% background rejection (99.9% at low E) at 50% acceptance.

XENON10 Background Rejection: Spatial

2-12 keVee S1 (2.2 p.e./keVee)

13 events inside fiducial volume removed by final quality cut.

XENON10 WIMP Search with Blind Cuts

Oct 6, 2006 – Feb 14, 2007: 136 kg days exposure (58.6 live days × 5.4 kg × 0.86 cut efficiencies × 0.50 NR acceptance)

- WIMP search box defined by 50% NR acceptance region (blue lines) and E_r in 4.5-27 keV (black lines).
- Search box optimized with calibration data and additional 40 live days of unmasked data.
- 10 events in the box from "blind" data after cuts.
- Energy spectrum <u>not</u> as expected from WIMPs.
- ~7 events expected from gamma-ray leakage.
- NR energy scale based on 19% constant "quenching factor" at low energies.

XENON10 WIMP Search Result for Spin-Independent Interactions

Status 2007

- 90% CL upper limit on WIMPnucleon cross section derived with Maximal Gap Method [Yellin, PRD 66 (2002)]
- At 100 GeV/c² WIMP mass 8.8 × 10⁻⁴⁴ cm² (no background subtraction)
- Uncertainty in scintillation efficiency: conservative < 1.0 × 10⁻⁴³ cm²

XENON10 Spin-Dependent Limits

(arXiv:0805.2939, PRL accepted)

$$\frac{d\sigma}{d|\mathbf{q}|^2} = \frac{C_{spin}}{v^2} G_F^2 \frac{S(|\mathbf{q}|)}{S(0)}$$

 $S(|\mathbf{q}|)$: Spin structure function at momentum transfer q. G_F : Fermi constant.

C_{spin}: spin enhancement factor

$$C_{spin} = \frac{8}{\pi} [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2 \frac{J+1}{J} \qquad \stackrel{<}{\underset{}}$$

<S_{p,n}>: expectation value of spin content of proton/neutron groups within nucleus. J: total nuclear spin.

Pure neutron cross section: world best limit. At 30 GeV/c²: σ < 5×10⁻³⁹ cm²

XENON10 Spin-Dependent Limits

- Plot for WIMP mass of 50 GeV/c²
- Elliptical contours: expected events $N_{evt} = A a_n^2 + B a_n a_n + C a_n^2$
- New regions excluded in a_p - a_n plane.

The Next Generation: XENON100 at LNGS

- Use of XENON10 shield + inner Cu layer
- Goal: 50-100 times lower background
- Material screening
- 10 times larger target mass:
 50 kg fiducial, 170 kg total LXe
- Active LXe Veto
- New PMTs with low activity and high QE
- Improved grids, electronics, ...
- Cryocooler/Feedthroughs outside shield
- DM search in 2008

Status:

- Shield modification completed Jan 08
- Detector underground mounted in shield Feb 08
- LXe purification/circulation tested Mar'08
- Modifications May'08, starting filling.

The XENON100 / XENON1T Collaboration

8 faculty - 3 research scientists - 7 postdocs- 12 Ph.D. students ~ 30

XENON100 TPC

Status of XENON100 PMTs

- Photomultipliers: Hamamatsu R8520-06-Al
- 98 on top 80 on bottom 64 in active LXe shield
- QE~23% for top array; QE~33% for bottom array
- XENON10 PMTs for LXe shield
- Calibrated with external LED's & quartz fibers
- S1 source calibrations with gamma sources

Status of XENON100 – Background

Current Status in WIMP DM Sensitivities

Projected DM Sensitivities 2008-2012

DM Direct Searches: Progress Over Time

Plot updated from DM Review: R. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54 (2004) 315-359

Summary & Outlook

- Cryogenic Ge (CDMS) has been the driver over the last ~8 years. Will expand to 5 towers. Scalability improved with lower grade Ge?
- Various new detector technologies are maturing. Liquid noble gas concepts have made rapid progress (XENON, WARP) and are starting to set the pace.
- XENON10 provided the best spin-independent DM limits in 2007. Currently neck and neck with CDMS.
- Next step XENON100 currently in progress (2008).
- LUX: ~2× mass of XENON100, arriving later. Single & double phase LAr, ...
- Scalability of liquid noble detectors promises ton-scale detectors by ~2011, multi-ton for DUSEL (~2015?).
- Progress for SD limits as well (COUPP, XENON10).
- Timeline for new DM direct search detectors is compatible with LHC (2008) and indirect searches by GLAST (launched in June)
- DAMA/LIBRA annual modulation: new physics or nasty old physics? DM? Large detector, huge exposure, but little information on events compared to recent concepts.

Look for more signatures with current and upcoming experiments.

• This is a very exciting period in WIMP DM search – stay tuned!