Dark Matter @ the LHC

Shufang Su • U. of Arizona

COSMO 08 Madison

S. Su Dark Matters

Dark Matter and Collider Studies

Shufang Su • U. of Arizona

COSMO 08 Madison

S. Su Dark Matters

(Incomplete) review of dark matter candidates

- not covered by previous talk (Roszkowski) and next talk (Dutta)
- relevant for collider study

Outline

- Dark matter and new physics
- WIMP: (not so) recent development
- WIMPless miracle
- superWIMP: gravitino and axino
 - ➡ stable dark matter (RPC)
 - metastable dark matter (RPV)

DM problem provide precise, unambiguous evidence for new physics

Independent motivation for new physics in particle physics

DM problem provide precise, unambiguous evidence for new physics

Independent motivation for new physics in particle physics

> New physics to protect electroweak scale

- new symmetry: supersymmetry
- new space dimension: extra-dimension
- little Higgs, twin Higgs, ...

Dark Matter: new stable particle

in many theories, dark matter is easier to explain than no dark matter

- there are usually many new weak scale particle
- constraints (proton decay, large EW corrections)

discrete symmetry

stability

good dark matter candidate

mass and interaction strengths span many, many orders of magnitude

mass and interaction strengths span many, many orders of magnitude

mass and interaction strengths span many, many orders of magnitude

mass and interaction strengths span many, many orders of magnitude

mass and interaction strengths span many, many orders of magnitude

WIMP miracle

<u>WIMP</u>: Weak Interacting Massive Particle

• $\mathfrak{m}_{WIMP} \sim \mathfrak{m}_{weak}$ • $\sigma_{an} \sim \alpha_{weak}^2 \mathfrak{m}_{weak}^{-2}$ $\Omega h^2 \sim \frac{2.6 \times 10^{-10} \text{GeV}^{-2}}{\langle \sigma_A v \rangle}$ $\langle \sigma_A v \rangle \sim \frac{\alpha^2}{m_{weak}^2} 0.1 \sim 10^{-9} \text{GeV}^{-2}$ $\left. \right\} \Rightarrow \Omega h^2 \sim 0.3$

naturally around the observed value

 $m_{1/2}$

 \mathbf{m}_0

S. Su Dark Matters

S. Su Dark Matters

 \mathbf{m}_0

 \mathbf{m}_0

Talk by Bhaskar Dutta "Precision Cosmology at the LHC"

 $m_{1/2}$

S. Su Dark Matters

Talk by Bhaskar Dutta "Precision Cosmology at the LHC"

Also, talks by K. Olive, X. Tata, G. Kane.

 $m_{1/2}$

Sneutrino dark matter

- suppressed coupling to Z Han, Hempfling (1997); Hall, Moroi, Murayama (1997)
- RH sneutrino DM: weaker than WIMP Asaka et al, Gopalakrishna et al,...

UED: LKP dark matter

S. Su Dark Matters

Little Higgs with T-parity: LTP

LTP in LH models: B_H

S. Su Dark Matters

DM in Inert Higgs Doublet Model

 $\delta_2 = m_A - m_S = 10 \text{ GeV}$

DM in Inert Higgs Doublet Model

 $\delta_2 = m_A - m_S = 10 \text{ GeV}$

DM in Inert Higgs Doublet Model

SU(2)_L Higgs doublet $\widehat{H}_{1^{\pm}}, \widehat{H}_{2^{0}}$ =S+iA

couple to gauge boson only

Deshpande, Ma, Barbieri et. al., Cirelli et. al., Honorez et. al., Gustafsson et. al., Majumdar et. al., Dolle and Su (2007), ...

$$\Omega_X \propto rac{1}{\langle \sigma v
angle} \sim rac{m_X^2}{g_X^4}$$

- $(m_X, g_X) \sim (m_{weak}, g_{weak}), \Omega h^2 \sim 0.3$
- only fixes one combination of dark matter mass and coupling

could have $m_X \neq m_{weak}$ as long as the relation holds

WIMPless miracle

Feng and Kumar (2008) H. Tu's talk

S. Su Dark Matters

WIMPless DM: hidden?

- if no direct coupling to SM: interact only through gravity
- impact on structure formation
- no direct/indirect/collider signals

WIMPless DM: not hidden

WIMPless DM: not hidden

my ~ max (m_{weak}, m_x)

WIMPless DM

-

DM interaction << Weak interaction. Possible?

CDM <u>requirements</u>

- Stable
- Non-baryonic
- Neutral
- Cold (massive)
- Correct density
- Gravitational interacting

(much weaker

than electroweak)

-

DM interaction << Weak interaction. Possible?

CDM <u>requirements</u>

- Stable
- Non-baryonic
- Neutral
- Cold (massive)
- Correct density
- Gravitational

 interacting
 (much weaker
 than electroweak)

-

DM interaction << Weak interaction. Possible?

CDM <u>requirements</u>

- Stable
- Non-baryonic
- Neutral
- Cold (massive)
- Correct density
- Gravitational

 interacting
 (much weaker
 than electroweak)

But the relic density argument strongly prefers WIMP-type mass-coupling relation.

-

DM interaction << Weak interaction. Possible?

CDM <u>requirements</u>

- Stable
- Non-baryonic
- Neutral
- Cold (massive)
- Correct density
- Gravitational

 interacting
 (much weaker
 than electroweak)

But the relic density argument strongly prefers WIMP-type mass-coupling relation.

 $\Omega_{\rm DM} \propto 1/\langle \sigma v \rangle \propto m^2/g^4$

-

DM interaction << Weak interaction. Possible?

CDM <u>requirements</u>

- Stable
- Non-baryonic
- Neutral
- Cold (massive)
- Correct density
- Gravitational

 interacting
 (much weaker
 than electroweak)

But the relic density argument strongly prefers WIMP-type mass-coupling relation.

$$Ω_{\rm DM} \propto 1/\langle \sigma v \rangle \propto m^2/g^4$$

for super-weak coupling

- (ov) too small
- Ω_{DM} too big
 - overclose the Universe

	gravitino DM \widetilde{G}	axino DM ã
	spin 3/2 superpartner of graviton	spin 1/2 superpartner of axion
mass	GeV - TeV	eV - GeV
interaction	∝ m _{pl} -1, m _{pl} ~ 10 ¹⁹ GeV	∝ f _a -1, f _a ≥ 5 x 10 ⁹ GeV

	gravitino DM \tilde{G}	axino DM ã
	spin 3/2 superpartner of graviton	spin 1/2 superpartner of axion
mass	GeV - TeV	eV - GeV
interaction	∝ m _{pl} -¹, m _{pl} ~ 10 ¹⁹ GeV	∝ f _a -1, f _a ≥ 5 x 10 ⁹ GeV

Talk by L. Roszkowski

Thermal production

WIMP \rightarrow superWIMP + SM particles

S. Su Dark Matters

WIMP \rightarrow superWIMP + SM particles

S. Su Dark Matters

S. Su Dark Matters

SM

S. Su Dark Matters

SM

 $\Omega_{\text{SWIMP}} = \frac{m_{\text{SWIMP}}}{m_{\text{SWIMP}}} \Omega_{\text{WIMP}}$ m_{WIMP}

S. Su Dark Matters

22

 $\Omega_{\text{SWIMP}} = \frac{m_{\text{SWIMP}}}{m_{\text{WIMP}}} \Omega_{\text{WIMP}}$

S. Su Dark Matters

S. Su Dark Matters

superWIMP DM

	gravitino DM	axino DM
lifetime	10 ⁴ sec - 15 years for m _{3/2} : 1 GeV - 50 GeV	O(0.01 sec)-O(10 h) for f: 5x10 ⁹ - 5x 10 ¹² GeV
BBN constraints	severe	mild
$ \begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-14} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \\ 10^{-16} \\ 10^{-17} \\ \end{array} $ $ \begin{array}{c} Vp(F0) \\ Vp(F0) \\ Vp(F0) \\ D/H \\ 0 \\ 95\%C.L. \\ B_{h} = 1 \\ 2E_{jet} = 100 \text{GeV} \\ \eta = (6.1 \pm 0.3) \times 100 \\ CMB \text{ constr} \\ 10^{-17} \\ \end{array} $ $ \begin{array}{c} 0 \\ \text{S. Su Dark Matters} \\ Cog_{10} \\ Cog_{$	$\begin{array}{c} 3 \\ 3 \\ 10 \\ 10^{-7} \\ 10^{-8} \\ Y_X \\ 10^{-9} \\ 10^{-10} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-13} \\ 10^{-15} \\ 10^{-16} \\ 10^{-16} \\ 10^{-17} \\ 5 \\ 10 \\ 7_X/\text{sec} \\ y_2 \text{sec} \\$	$(2.5 10^{-10})$ Excluded by ⁶ Li overproduction d NLSP T_X in thousand seconds Pospelov (2005), Kohri and Takayama 2006), Cyburt et al (2006), Jedamzik 2007), 23

BBN constraints

charged NLSP (stau)	neutralino NLSP	sneutrino NLSP
EM, had BBN	EM, had BBN	Br _{had} < 10 ⁻³
τ ≤ 10 ³ ~ 10 ⁴ sec	τ ≤ 10² sec	longer lifetime
m _{3/2} < 1 GeV	smaller mass	larger m _{3/2}
strongly constrained	strongly constrained	viable
Pospelov, Cyburt et. al., Kohri et. al., Kaplinghat et. al., Kawasaki et. al., Feng et. al., Steffen	Kawasaki et. al., Feng et. al., Steffen	Kawasaki et. al., Feng et. al., Steffen

- harmless NLSP: sneutrino
- dilute with entropy production Buchmuller et. al. (2006)
- NLSP decay earlier \Rightarrow RPV scenario

⇒ RPC scenario

RPC super WIMP DM with charged slepton NLSP

RPC super WIMP DM with charged slepton NLSP

RPC superWIMP DM with charged slepton NLSP

• Probes gravity in a particle physics experiments!

 Precise test of supergravity or Peccei-Quinn scale

RPC super WIMP DM with charged slepton NLSP

RPC superWIMP DM with charged slepton NLSP

 Probes gravity in a particle physics experiments!

 Precise test of supergravity or Peccei-Quinn scale

How to trap charged slepton?

Hamaguchi, kuno, Nakaya, Nojiri, (2004) Feng and Smith, (2004) De Roeck et. al., (2005)

Charged slepton trapping

Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays Feng and Smith (2004)

Charged slepton trapping

Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays

• LHC: 10⁶ slepton/yr possible, but most are fast. Catch 100/yr in 1 kton water Feng and Smith (2004)

Charged slepton trapping

Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays Feng and Smith (2004)

• LHC: 10⁶ slepton/yr possible, but most are fast. Catch 100/yr in 1 kton water

• LC: tune beam energy to produce slow sleptons, can catch 1000/yr in 1 kton water

RPC gravitino DM with long lived stau

Buchmuller, Hamaguchi, Ratz and Yanagida (2004)

$$\widetilde{\mathbf{\tau}} \rightarrow \mathbf{\tau} + \widetilde{\mathbf{G}} \qquad \Gamma_{\widetilde{\tau}}^{2-\text{body}} = \frac{m_{\widetilde{\tau}}^5}{48\pi \, m_{3/2}^2 \, M_{\text{P}}^2} \times \left(1 - \frac{m_{3/2}^2}{m_{\widetilde{\tau}}^2}\right)^4$$

RPC axino DM with long lived stau

Brandenburg, Covi, Hamaguchi, Roszkowski and Steffen (2005)

$$\Gamma(\tilde{\tau}_{\rm R} \to \tau \ \tilde{a}) \simeq \xi^2 (25 \ {\rm sec})^{-1} C_{\rm aYY}^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\tau}}^2}\right) \left(\frac{m_{\tilde{\tau}}}{100 \ {\rm GeV}}\right) \left(\frac{10^{11} \ {\rm GeV}}{f_a}\right)^2 \left(\frac{m_{\tilde{B}}}{100 \ {\rm GeV}}\right)^2$$

RPC axino DM with long lived stau

Brandenburg, Covi, Hamaguchi, Roszkowski and Steffen (2005)

$$\Gamma(\tilde{\tau}_{\rm R} \to \tau \, \tilde{a}) \simeq \, \xi^2 \, (25 \, \, {\rm sec})^{-1} C_{\rm aYY}^2 \left(1 - \frac{m_{\widetilde{a}}^2}{m_{\widetilde{\tau}}^2}\right) \left(\frac{m_{\widetilde{\tau}}}{100 \, {\rm GeV}}\right) \left(\frac{10^{11} \, {\rm GeV}}{f_a}\right)^2 \left(\frac{m_{\tilde{B}}}{100 \, {\rm GeV}}\right)^2$$

$$\Gamma(\tilde{\tau}_{\rm R} \to \tau \, \tilde{a}) \simeq \, \xi^2 \, (25 \, \mathrm{sec})^{-1} C_{\rm aYY}^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\tau}}^2}\right) \left(\frac{m_{\tilde{\tau}}}{100 \, \mathrm{GeV}}\right) \left(\frac{10^{11} \, \mathrm{GeV}}{f_a}\right)^2 \left(\frac{m_{\tilde{B}}}{100 \, \mathrm{GeV}}\right)^2$$

$$\Gamma(\tilde{\tau}_{\rm R} \to \tau \, \tilde{a}) \simeq \, \xi^2 \, (25 \, \text{sec})^{-1} C_{\rm aYY}^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\tau}}^2}\right) \left(\frac{m_{\tilde{\tau}}}{100 \, \text{GeV}}\right) \left(\frac{10^{11} \, \text{GeV}}{f_a}\right)^2 \left(\frac{m_{\tilde{B}}}{100 \, \text{GeV}}\right)^2$$

$$\Gamma(\tilde{\tau}_{\rm R} \to \tau \, \tilde{a}) \simeq \, \xi^2 \, (25 \, \mathrm{sec})^{-1} C_{\rm aYY}^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\tau}}^2}\right) \left(\frac{m_{\tilde{\tau}}}{100 \, \mathrm{GeV}}\right) \left(\frac{10^{11} \, \mathrm{GeV}}{f_a}\right)^2 \left(\frac{m_{\tilde{B}}}{100 \, \mathrm{GeV}}\right)^2$$

Microscopic determination of M_{pl}, f_a

Microscopic determination of M_{pl}, f_a

Microscopic determination of M_{pl}, f_a

Determining reheating temperature

Talk by Leszek Roszkowski "Can One Determine Reheating Temperature at the LHC with Axino or Gravitino Dark Matter "

Axino vs. Gravitino Brandenburg, Covi, Hamaguchi, Roszkowski and Steffen (2005)

	axino DM	gravitino DM
lifetime	∝ f _a ²/m _{stau} m _{bino} ²	$\propto m_{\rm pl}^2 m_{3/2}^2 / m_{\rm stau}^5$
	O(0.01 sec)-O(10 h) for f _a : 5x10 ⁹ - 5x 10 ¹² GeV	10 ⁻⁸ sec - 15 years for m _{3/2} : 1 keV - 50 GeV
	$\tilde{\tau}_R \to \tau_R + \tilde{a} + \gamma$	$\tilde{\tau}_R \to \tau_R + \tilde{G} + \gamma$
Br _{3body}	large	small
angular distri	different Roszkowski's talk	

Axino vs. Gravitino Brandenburg, Covi, Hamaguchi, Roszkowski and Steffen (2005)

Axino vs. Gravitino Brandenburg, Covi, Hamaguchi, Roszkowski and Steffen (2005)

	axino DM	gravitino DM
lifetime	∝ f _a ²/m _{stau} m _{bino} ²	$\propto m_{\rm pl}^2 m_{3/2}^2 / m_{\rm stau}^5$
	O(0.01 sec)-O(10 h) for f _a : 5x10 ⁹ - 5x 10 ¹² GeV	10 ⁻⁸ sec - 15 years for m _{3/2} : 1 keV - 50 GeV
	$\tilde{\tau}_R \to \tau_R + \tilde{a} + \gamma$	$\tilde{\tau}_R \to \tau_R + \tilde{G} + \gamma$
Br _{3body}	large	small
angular distri	different Roszkowski's talk	

$$W_{\Delta L=1} = \lambda_{ikj} l_i e_j^c l_k + \lambda'_{kji} d_i^c q_j l_k$$

$$\tau_{\rm NLSP} \simeq 10^3 {\rm s} \left(\frac{\lambda}{10^{-14}}\right)^{-2} \left(\frac{m_{\rm NLSP}}{100 {\rm ~GeV}}\right)^{-1}$$

$$W_{\Delta L=1} = \lambda_{ikj} l_i e_j^c l_k + \lambda'_{kji} d_i^c q_j l_k$$

$$\tau_{\rm NLSP} \simeq 10^3 {\rm s} \left(\frac{\lambda}{10^{-14}}\right)^{-2} \left(\frac{m_{\rm NLSP}}{100 {\rm ~GeV}}\right)^{-1}$$

- baryogenesis constraints: $\lambda \ , \lambda' < 10^{-7}$

$$W_{\Delta L=1} = \lambda_{ikj} l_i e_j^c l_k + \lambda'_{kji} d_i^c q_j l_k$$

$$\tau_{\rm NLSP} \simeq 10^3 {\rm s} \left(\frac{\lambda}{10^{-14}}\right)^{-2} \left(\frac{m_{\rm NLSP}}{100 {\rm ~GeV}}\right)^{-1}$$

- baryogenesis constraints: $\lambda \ , \lambda' < 10^{-7}$

 $au_{3/2} \sim 10^{26} {
m s} \left(\frac{\lambda}{10^{-7}} \right)^{-2} \left(\frac{m_{3/2}}{10 {
m GeV}} \right)^{-3} >> {
m age} {
m of the Universe: 10^{17} sec}$

Collider signature: RPV gravitino DM

Buchmuller, Covi, Hamaguchi, Ibarra and Yanagida (2007)

stau NLSP
•
$$\tilde{\tau}_{R} \rightarrow \tau \nu_{\mu}$$
, $\mu \nu_{\tau}$ $c \tau_{\tilde{\tau}}^{lep} \sim 30 \text{ cm} \left(\frac{m_{\tilde{\tau}}}{200 \text{ GeV}}\right)^{-1} \left(\frac{\epsilon_{2}}{10^{-7}}\right)^{-2} \left(\frac{\tan \beta}{10}\right)^{-2}$
baryogenesis: $\epsilon_{2} < 10^{-6}$
 \Rightarrow charged track longer than 3 mm
Signal: heavily ionizing charged track, followed by a lepton or a jet and \mathbb{Z}_{T}

•
$$\tau_{L} \rightarrow bt$$
 $c\tau_{\tilde{\tau}}^{had} \sim 1.4 \text{ m} \left(\frac{m_{\tilde{\tau}}}{200 \text{GeV}}\right)^{-1} \left(\frac{\epsilon_3}{10^{-7}}\right)^{-2} \left(\frac{\tan\beta}{10}\right)^{-2} \left(\frac{\cos\theta_{\tau}}{0.1}\right)^{-2}$

Signal: heavily ionizing charged track, followed by two jets, one lepton and $\ensuremath{\mathcal{B}_{T}}$

distinguish from RPC decay

$$\mathbf{\tilde{\tau}_{R}} \rightarrow \mathbf{\tau} \, \mathbf{\tilde{G}} \qquad c \tau_{\tilde{\tau}}^{3/2} \sim 40 \, \mathrm{cm} \left(\frac{m_{3/2}}{1 \, \mathrm{keV}}\right)^{2} \left(\frac{m_{\tilde{\tau}}}{200 \, \mathrm{GeV}}\right)^{-5}$$

decay inside the detector if $m_{3/2} < 10 \text{ keV}$

Signal: heavily ionizing charged track, followed by a lepton or jet and \mathbf{E}_{T}

For RPV case,

- similar branching ratio of $\widetilde{\tau}_R \rightarrow \tau v_{\mu}$, μv_{τ}
- stau decaying into jets

RPV gravitino DM: neutralino NLSP

neutralino NLSP

• $\chi_1^0 \rightarrow \tau W$, bbv: jets in the events

Mukhopadhyaya et. al (1998) Chun and Lee (1999) Dreiner and Ross (1991)

$$c\tau_{\chi_1^0}^{2-\text{body}} \sim 20 \text{ cm} \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}}\right)^{-3} \left(\frac{\epsilon_3}{10^{-7}}\right)^{-2} \left(\frac{\tan\beta}{10}\right)^2,$$
$$c\tau_{\chi_1^0}^{3-\text{body}} \sim 600 \text{ m} \left(\frac{m_{\widetilde{\nu}_L}}{300 \text{ GeV}}\right)^4 \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}}\right)^{-5} \left(\frac{\epsilon_3}{10^{-7}}\right)^{-2} \left(\frac{\tan\beta}{10}\right)^{-2}$$

• comparing to RPC: $\chi_1^0 \rightarrow \gamma \widetilde{G}_i$ photon plus missing energy

$$c\tau_{\chi_1^0}^{3/2} \sim 80 \text{ cm} \left(\frac{m_{3/2}}{1 \text{ keV}}\right)^2 \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}}\right)^{-5}$$

Conclusion

- **We now know the composition of the Universe**
- **W** No known particle in the SM can be DM
 - \Rightarrow precise, unambiguous evidence for new physics
- **H** New physics
- \Rightarrow new stable particle as DM candidate
- **H** many WIMP candidates
 - How to do precision cosmology at colliders ⇒ Dutta's talk synergy between cosmology and particle physics
- **WIMPless miracle:** DM mass/coupling vary
- **uperWIMP:** RPC or RPV? Collider studies
- Other dark matter scenarios? Collider connections?