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It is an idea going back to Guth that to 
explain the horizon and flatness problems 

of cosmology, a period of early universe 
inflation

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), a(t) ∼ eHt

would be a good thing.

Since we must eventually exit inflation,
this expansion should be driven by a 

dynamical scalar field (not a false vacuum
energy which is relaxed by a first order

transition).



I.  UV sensitivity in inflationary model 
building

The potentials which 
support slow-roll 

inflation are a little
bit strange:

Figure stolen from A. Linde



The slow-roll conditions which ensure
accelerated expansion of sufficient 

duration:

are sensitive to dimension six, Planck 
suppressed corrections to the potential.
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How do we mock up this rapid expansion, as 

would be caused by a very large 

cosmological constant, without actually 

having a large cosmological constant (which 

we know isn’t present today)?

A simple idea suggests itself.  Add a scalar field with a 
rather flat potential:

! Scalar field " with a potential. V(") ~ 1016 GeV

! Potential drives acceleration.
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Suppose there is a potential that sources 

gravity, and depends on a variable: a scalar 

field.



I.e., if a quantum correction induces a small 
shift to the potential of the form:

Therefore, one must understand all of
the possible contributions to the potential 

to a very high degree of accuracy, to
discuss inflationary model building in a 

reasonable way.

∆V = V0
φ2

M2
P

→

∆η ∼ O(1)



This degree of
sensitivity to high

scale physics is
rare in model 

building.  Even 
proton decay in GUTs 

only depends on 
dimension six, GUT
scale suppressed

operators:



In this talk, we discuss in detail one way
that people have tried to construct models 

where the relevant effects can be 
understood in detail and, potentially, 
computed in a very wide class of string

theory compactifications.

Happily, these models or their close 
relatives also have potential striking 

observable signatures (low-tension cosmic 
string networks; Non-Gaussianity).



II.  Building inflation with D-branes

Dvali, Tye

One well studied class of scenarios 
postulates that the inflaton is the modulus 
controlling a brane / anti-brane separation.  
Its potential arises from Coulomb attraction 

between the oppositely charged branes:

Burgess,
 Martineau,
 Quevedo, 

Rajesh, Zhang



In its earliest form, this idea suffers from 
the following problem.  The Coulomb 

potential for branes separated by a distance 
d is

V (r) = 2T3

(
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Or in terms of a canonically normalized 
field:

V (φ) = 2T3
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Then using the standard definition of the 
slow-roll parameters, we see that if the 

radius of the compactification manifold is l
(this enters in determining the 4d Planck 

mass from the 10d one):

η = O(1)(L/d)6

So you run out of space in the extra 
dimensions, before you can separate enough 

to inflate!



A second problem, which is more serious, is 
that even if one did find a model where eta 

has no (very ) negative eigenvalue, the 
Einstein-frame potential energy is basically

V ∼ 2T3
L12

This sources rapid runaway to large l, not 
slow roll of the brane separation mode.  A 

similar problem typically occurs with other 
compactification “moduli” (e.g. the dilaton).



So we learn a general lesson:

If one wishes to inflate at some hubble 
scale H in string theory, it is important to 

give dangerous moduli a mass which is 
larger than H.

In particular, high scale inflation (which 
can generate observable b-modes) requires
moduli stabilization at a very high scale.



Various ways to solve the problems of the 
Brane/Anti-brane inflation model have been 

discovered.

In one variant, one places the branes in a 
warped compactification geometry with 

approximate metric:

If on the resolved side one started with N D3 branes
and M D5 branes wrapping the small two-sphere, the
resulting near-horizon geometry is instead a deformed 
conifold with 3-form fluxes through the three-sphere

and its dual cycle:

It is useful to think of this modified solution as being related 
to the  “deformed” conifold geometry:

x2 + y2 + z2 + w2 = ε2

This geometry has two 3-cycles, a so-called A-cycle
which is the three-cycle generated by real choices
of x,y,z,w, and a B-cycle which is swept out by the

2-sphere and the radial directon of the cone.

For N = KM, we can think of this geometry being sourced
by fluxes: ∫

A
FRR

3 = M

∫

B
HNS

3 = −K

with KM = N.  Far out along the cone (far from the tip),
the gravity solution takes the form:

i.  Placing N D3 branes at the tip of the cone :

one finds a near horizon geometry AdS5 × T 1,1 .

The metric and five-form in the gravity solution are :

ds2 = h−1/2ηµνdxµdxν + h1/2(dr2 + r2ds2
T 1,1)

h(r) =
27π

4
1
r4

(α′)2gsN

(F5)rtx1x2x3 = ∂rh
−1

where:
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The picture you should have in mind for the 
extra dimensions is a cone with 5d base 

(compactified at some large value of the 
radial coordinate):

In many simple cases, one can explicitly see what the 
flux backreaction does to the geometry of the extra 
dimensions.  For instance, in the simplest nontrivial 

noncompact Calabi-Yau space, the conifold:

x2 + y2 + z2 + w2 = 0

turning on garden variety three-form fluxes produces a 
space-time with a highly warped metric:

14

The tip is actually smoothed out in a way 
that will not be important for us.  



This geometry arises in a canonical example 
of the AdS/CFT correspondence.  It is called 
the (warped) conifold; the dual field theory 

is an N=1 supersymmetric conformally 
invariant gauge theory.

Klebanov,
Witten;

Klebanov,
Strassler

The warping arises from backreaction of 
background gauge fluxes threading the 

extra dimensions.  These help to stabilize 
the problematic moduli fields.

Gukov, Vafa, Witten;
Dasgupta, Rajesh, Sethi;

Giddings, S.K., Polchinski

W =
∫

M (F − τH) ∧ Ω)



The Coulomb attraction between a brane and 
an anti-brane in this warped geometry takes 

the form:

where: 

r0 is the anti-D location (end of throat)

r1 is the D brane location (inflaton)

and the warped geometry naturally allows 
r0 to be exponentially small.

V (r1) = 2T3
r4
0

R4

(
1− 1

N
r4
0

r4
1

)



This class of models then offers promise of 
evading the most basic problems outlined 

earlier:

* The fluxes together with other effects 
(e.g. non-perturbative dynamics to fix the 

volume modulus) allow one to fix the fast-
rolling moduli.

* The warping softens the Coulomb 
potential enough so that at attainable brane 

separations, one can achieve slow roll.

S.K., Kallosh,
Linde, Trivedi



Subtleties from inflaton/modulus mixing

Unfortunately, new more refined problems
arise as old problems are solved.  

Suppose we call the chiral multiplet 
containing the volume modulus  

ρ ∼ L4.

Dimensional reduction on the compact
Calabi-Yau manifold shows that the 4d
effective theory has Kahler potential:

The small warp factor and the consequent exponential flatness are the heart of our

proposal, so an alternative explanation of the origin of these small numbers may be helpful.

Recall that there is a holographic dual gauge theory which describes the geometry of the

KS model. This gauge theory is approximately scale invariant in the deep ultraviolet, with

slowly running gauge couplings. It undergoes K duality cascades before leading in the

infrared to a confining gauge theory with a mass gap. Then the smallness of the redshift

factor,
(r0

R

)4
= e−

8πK
3gsM (4.10)

can be ascribed to the exponential smallness of the confinement scale in such a gauge

theory.

In summary, we have seen that one can construct concrete examples of string com-

pactifications which lead to the general behavior described in §3. One of their virtues is

that they automatically lead to very flat inflaton potentials, without the need for large

brane separation or excessive fine-tuning of initial conditions. The primary source of this

flatness is the redshift suppression (4.7) which is exponentially sensitive to the (integer)

choice of fluxes K and M . However, all of these virtues must be re-examined in the light

of concrete ideas about how to stabilize the closed string moduli. In this general class of

flux compactifications, the fluxes stabilize many moduli but not e.g. the overall volume.

We now turn to the discussion of volume stabilization.

5. Volume Stabilization: New Difficulties for D-brane Inflation

The results of §3,4 indicate that warped geometries provide a promising setting for

making models of inflation with naturally small ε and η. However, as emphasized in §2,

one must ensure that the compactification volume is stabilized in order to avoid rapid

decompactification instead of inflation. We will now demonstrate that in the concrete

models of [5] this is far from a trivial constraint.

In these models the four-dimensional N = 1 supergravity at low energies is of the

no-scale type. The Kähler potential for the volume modulus ρ and the D-brane fields φ

takes the form [6]7

K(ρ, ρ̄, φ, φ̄) = −3 log
(

ρ + ρ̄ − k(φ, φ̄)
)

(5.1)

7 The variable ρ is called −iρ in [7].
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A stabilization mechanism that fixes ρ
(or any combination of fields other than the 

one appearing in the argument of the log)
then generically imparts a mass to the d-

brane position modes!

You can see this because the resulting 
supergravity potential has the form:

5.1. Scenario I: Superpotential Stabilization

Perhaps the most straightforward method of stabilizing the volume involves a nonper-

turbative contribution to the superpotential. Various sources of nonperturbative superpo-

tentials for the ρ modulus are known; one instructive example described in [7] involves a

superpotential

W (ρ) = W0 + Ae−aρ (5.8)

where A and a are constants and W0 is the contribution (5.4) of the three-form flux. For

the remainder of this section we will consider W = W (ρ) to be a general holomorphic

function of ρ.

In the presence of D3-branes the superpotential must in addition develop some de-

pendence on φ, as it should be invariant under (5.7). For instance, as argued in [24], the

superpotential due to Euclidean brane instantons or gauge dynamics on D7-branes has

to vanish when a D3-brane hits the relevant cycle. This can be understood directly by

examining and integrating out the massive D3-D7 strings in the latter case. This subtlety

must be accounted for to get a globally well-defined W , and we will see in a moment that

this actually changes the inflaton mass term. Nevertheless, we will first study the simpler

case W = W (ρ), both because it reflects the essential features of the problem and because

the full dependence of W on φ is not known.

Let us start by presenting a general argument which highlights a problem faced by

any inflationary model involving a moving D3-brane in the models of [7]. The main point

is that one will choose some configuration with a positive energy V . When the compact

manifold is large then this energy will go to zero rather quickly, as a power of the volume

modulus r:

V (r, φ) =
X(ρ)

rα
=

X(ρ)

(ρ − φφ̄/2)α
(5.9)

where α is a number of order one and the form of X(ρ) depends on the source of energy.

This follows because in existing proposals the inflationary energy arises either from brane

tensions or from fluxes, and all known brane and flux energies vanish as some power of r.

On the other hand the stabilization mechanism would fix ρ (or else some combination of

ρ and φ) rather than r. This implies that as the brane moves and φ changes there will be

a change in the potential,

V = V0

(

1 + α
φφ̄

2r
+ ...

)

. (5.10)
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This is a Hubble-scale mass for the would-be 
inflaton.   The problem here is very 

analogous to the SUGRA eta problem.
Copeland, Liddle, Lyth,

Stewart, Wands

III.  Holographic Systematics

So far, we have written the D3-brane 
potential in the throat as:

V (φ) = VD3/D3(φ) + H2φ2

* The first term includes the brane tensions
and the Coulomb attraction to the anti-D3



* The second term           arises from the    H2φ2

minimal effect of stabilizing the volume of 
the extra dimensions, as we just described.

But the true formula for V should look like 
this:

V = VD3/D3 + H2φ2 + ∆V

where the last term includes all of the 
corrections to the potential that come from 
embedding the system into a compact Calabi-

Yau space.



How on earth can we estimate the effects 
that contribute to something so general?

* 

While the precise duality applies to the noncompact
Calabi-Yau with flux, one can also construct string solutions 

where the extra dimensions are compact, but are well 
modeled in some neighborhood by the noncompact “warped 

conifold” solution.     Giddings, Kachru, Polchinski

In such models, the flux-generated potential on the
moduli space, allows one to give the Calabi-Yau moduli

a large mass  -- roughly l2s/R3

18

We know the explicit solution for the 
warped throat region.  Such a region could 
arise (and rather frequently does) as part 
of many distinct compact Calabi-Yau spaces 

with different bulk fluxes, brane contents, 
etc.



There is a completely systematic way to
estimate the leading corrections to the 

throat solution!

We’ll first describe this in the throat 
gravity solution, then use AdS/CFT duality 

to describe it in a dual gauge theory.

A.  The perturbed throat geometry

The Type IIB string theory has a metric
and various p-form antisymmetric tensor 

fields (generalized gauge fields).  



However, the Dirac-Born-Infeld action of a 
D3-brane moving in a IIB background couples 
to a very specific combination of background 

fields as a potential.  If:

ds2 = e2A(y)gµνdxµdxν + e−2A(y)g̃mn(y)dymdyn

(where the unwarped compact metric is 
Calabi-Yau) and if the 5-form field strength

F5 = (1 + !10)[dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3]

then the D3-brane “sees” a potential:

V = T3

(
e4A − α

)



So, we need to understand the leading 
possible perturbations to the object

Φ− = e4A − α

induced by coupling the throat to a compact 
Calabi-Yau geometry.

[Note that e.g. the potential attracting the 
D3 to the anti-D3 can be understood in this 
language as well; we will not go through 

that exercise here.]
DeWolfe, S.K.,

Mulligan



Our leading-order throat solution involves 
compactification on the Calabi-Yau cone over

T 1,1.  Luckily, the KK harmonics of the
field on this space have been solved forΦ−

by Ceresole, Dall’Agata, D’Auria and 
Ferrara.

Their results (after some massaging) yield:

symmetry, YLM(Ψ) is the corresponding angular harmonic, and

∆ ≡ −2 +

√
6
[
J1(J1 + 1) + J2(J2 + 1) − R2/8

]
+ 4 . (2.10)

With some notational prescience, we have used the symbol ∆ to represent the radial depen-
dence; we will verify in §3 that ∆ is indeed the dimension of the corresponding operator

deforming the CFT. Here, ∆ relates to the eigenvalue of the five-dimensional Laplacian on
T 1,1, !5YLM = −ΛYLM , where

Λ ≡ 6
[
J1(J1 + 1) + J2(J2 + 1) − R2/8

]
. (2.11)

Group-theoretic considerations give selection rules for the quantum numbers and restrict the
harmonics appearing in the expansion (2.9) [12]. The lowest few modes appear in Table 1 of

[23]; the full tower of modes is given in Table 7 of [12].8

Our next step is to relate the ‘transverse’ fields γ and b appearing in (2.9) to the ‘longi-
tudinal’ fields e4A and α = C0123 that determine the D3-brane potential via Φ− = e4A − α.

If b ≡ δCabcd ∼ r∆−4 then δFabcde also scales as r∆−4 because it contains only an additional
angular derivative. Using the self-duality of the five-form field strength, and noting that the

unperturbed ten-dimensional metric satisfies
√
−g ∼ r3, we find that δF0123r = ∂rδC0123 =

∂rδα ∼ r∆−1. This implies that δα ∼ r∆.

A similar argument applies to perturbations of the warp factor. There exists a propor-

tionality relation between the perturbation of the conformal factor δg µ
µ and γ; for example,

in the analogous case of AdS5 × S5, δg µ
µ = 16

15γ [24]. Thus, δgµν ∝ γ r2ηµν , so that the
perturbed metric is

gµν = r2ηµν(1 + const. × γ) = e2Aηµν . (2.12)

It then follows that the perturbation to the warp factor scales as δe4A ∼ r4γ ∼ r∆. The
harmonic expansion of Φ− may therefore be written as

Φ−(r, Ψ) =
∑

L,M

ΦLM

( r

rUV

)∆(L)
YLM(Ψ) + c.c. , (2.13)

where ΦLM are constants. It is straightforward to verify that Φ− obeys the Laplace equation
in the unperturbed Calabi-Yau metric of the conifold.

We now digress briefly to discuss the effect of a single mode

Φ(∆)
− =

( r

rUV

)∆
fL(Ψ) , (2.14)

8We advise the reader that the discussion in [23] does not include the lowest components of current
supermultiplets, which will be important for us but were not relevant for the purposes of those authors.

9

where L = (J1, J2, R), M = (m1, m2) label 
SU(2)× SU(2)× U(1) global quantum numbers
under the isometries of T 1,1  (and Ψ
represents the 5 angular variables there).
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The delta values that appear are:

and group-theoretic selection rules 
restrict which quantum numbers are 

allowed.

This all looks complicated but the upshot is 
very simple.

* The lowest eigenvalues that are allowed 
by selection rules have

(J1, J2, R) = (1/2, 1/2, 1), (1, 0, 0), (0, 1, 0)→ ∆ = 3/2, 2, 2



So, there are two cases to consider:

“Fractional” case: 

∆ = 3/2 perturbation present

“Quadratic” case:
∆ = 2 is leading perturbation present

Obviously, the first case is generic.  
However, the second possibility is also 

quite realistic, because unbroken global 
symmetries of the full compact manifold 

can forbid the fractional case.

→ Φ−(r) ∼
(
( r

rUV
)3/2 + ...

)

→ Φ−(r) ∼
(
( r

rUV
)2 + ...

)



The phenomenology in these two cases is 
very different.

In the “fractional” case, one needs to 
inflate in a potential of the form: 

iii) Unworkable Case: ∆ > 2

Finally, we could imagine warped throats dual to gauge theories where all contributing
operators have dimensions ∆ > 2. If such throats are supersymmetric, they cannot

have continuous isometries, since the latter would imply the presence of ∆ = 2 scalar
superpartners of conserved currents. Constructing such throats is technically challeng-

ing and at present no examples exist. In any event, such throats are not desirable for
brane inflation, because the leading correction to the inflaton potential is generically

too small to solve the eta problem.

5.2 Comments on Phenomenology

5.2.1 ‘Fractional’ Case: 1 < ∆ < 2

If the symmetries of a compactification of the warped deformed conifold allow a perturbation
by the chiral operator Tr(AiBj) with ∆ = 3/2, we obtain the following phenomenological

potential for the inflaton

V (φ) = V0

[

1 +
1

3

(
φ

Mpl

)2

− c3/2

(
φ

MUV

)3/2
]

, (5.4)

where c3/2 ∼ O(1) and V0 ∼ 2a4
0T3 (see Appendix A). This is identical to the functional form

discussed in §4 of [9], but the microscopic interpretation of the φ3/2 term is now different.

This implies that the microscopic constraints on the coefficient c3/2 that were important
in the context of [9] will not apply, and the corresponding difficulties in fine-tuning the
inflationary potential are significantly reduced.

The slow-roll parameter η corresponding to (5.4) is

η(φ) ≈ 2

3
−

3c3/2

4

(
Mpl

MUV

)3/2 (
Mpl

φ

)1/2

. (5.5)

As in [9] we notice that η is large and negative for small φ, i.e. limφ→0 η = −∞. To have

inflation (η ≈ 0) inside the throat (φ < φUV ∼ MUV) we hence require

η(φUV) =
2

3
−

3c3/2

4

(
Mpl

φUV

)2

> 0 (5.6)

or

c3/2 <
8

9

(
φUV

Mpl

)2

!
4

N
. (5.7)

In the second inequality of (5.7) we have applied the field range bound of [35]. Since naturally
c3/2 ∼ O(1), the fine-tuning required to get ‘inflection point inflation’ inside the throat, c3/2 <
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to obtain inflation, one needs to inflate 
near an inflection point.
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Figure 2: Inflaton potential V(φ).
Compactification data: n = 8, ωF = 10, N = 32, Qµ = 1.2, B6 = 1.5, B4 = 9, s = 1.1, which

implies φµ = 0.25, W0 = −3.432 × 10−4, D + Dother = 1.2 × 10−8, ω0 ≈ 10.1.

at some distance from the tip. We are confident that this is a minimum and not a saddle

point, because we have explicitly shown in the Appendices that the curvature of the potential
in the angular directions is non-negative. (The curvature is zero along directions protected

by the unbroken SO(3) symmetry of the background, and positive in the other directions.)
Moreover, we have shown that the potential is stable with respect to changes in the Kähler
modulus.

Next, we notice that as we vary s, the metastable minimum grows more shallow, and the

two zeroes of V ′, the local maximum and the local minimum, approach each other. A zero
of V ′′ is trapped in the shrinking range between these two zeroes of V ′. For a critical value

of s, the zero of V ′′ and the two zeroes of V ′ coincide, and the potential has an inflection
point. As s changes further, the potential becomes strictly monotonic.

We therefore find that there exists a range of s for which both the first and second

derivatives of the potential approximately vanish. This is an approximate inflection point.
In the next section we discuss a phenomenological model that captures the essential features
of (3.23) in the vicinity of this inflection point.

anti-D3-brane as well, which is well-known to accomplish the uplifting by itself [16]. If this antibrane is
removed, the structure of the potential changes, and it is not clear from our results so far that a remaining
D3-brane would suffice to uplift to a de Sitter vacuum. We leave this as a promising direction for future
work.
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Then, for suitable D7 embedding and initial 

D3 location, one can find a very flat 

potential:

* Quite plausibly, perturbing the throat 

geometry by the equivalent of slightly 

irrelevant operators in the dual field 

theory, one can tune the inflaton 

potential. Baumann, Dymarsky, SK, Klebanov, 

Mcallister (random discussions)



This is very similar to models that were 
studied in the very specific case that D7-

branes (generating non-perturbative 
corrections to the potential) stretched 

down the throat:

However we have seen that the form of the 
potential is generic (even without D7s in the 

throat).

bulk CY

warped throat

D7

r

D3

D3

r0 μ

Figure 1: Cartoon of an embedded stack of D7-branes wrapping a four-cycle Σ4, and a mobile

D3-brane, in a warped throat region of a compact Calabi-Yau. The D3-brane feels a force
from the D7-branes and from an anti-D3-brane at the tip of the throat.

under consideration. Hence, for our purposes the D7-brane moduli are massive enough to

be ignored. Next, the stabilized value of rµ is determined by the fluxes in the bulk of the
fourfold. In a generic compactification the number of choices of such fluxes is vast, so we
expect that for a given compactification and for any desired value r!

µ, there exist choices of

flux that fix the D7-brane to a location rµ ≈ r!
µ.

2.2 D3-brane potential from moduli stabilization

The effect of moduli stabilization on the D3-brane is captured by the F-term potential of
N = 1 supergravity,

VF = eκ2K
[
DΣWKΣΩDΩW − 3κ2WW

]
, κ2 = M−2

P ≡ 8πG , (2.8)

where {ZΣ} ≡ {ρ, zα; α = 1, 2, 3} and DΣW = ∂ΣW + κ2(∂ΣK)W . The combined Kähler

potential for the volume modulus, ρ, and the three open string moduli (D3-brane positions),
zα, is of the form postulated by DeWolfe and Giddings [29]5

κ2K(ρ, ρ, zα, zα) = −3 log[ρ + ρ̄ − γk(zα, zα)] ≡ −3 log U , (2.9)

5In [30] it was suggested that this result may receive corrections in strongly-warped scenarios. However,
the proposed corrections do not affect the metric on the Kähler moduli space, and thus are irrelevant for
most of the considerations presented here. However, a truly thorough search for possible effects of such
corrections on our analysis must await a more complete understanding of the structure of corrections to the
Kähler potential.

7

Baumann, Dymarsky,
Klebanov, McAllister,

Steinhardt;
Krause, Pajer



The tuning required to get an inflection 
point in the regime where one trusts the 

throat geometry looks mild, O( 1
100 )

In the “quadratic” case, things are rather 
different.

4/N , seems moderate. Moreover, as explained in Appendix A, there is a straightforward
physical interpretation of suppressing the value of c3/2: one reduces the F-term potential of

a D3-brane in the UV region by arranging that all moduli-stabilizing divisors are far from
the inflationary throat.

5.2.2 Quadratic Case: ∆ = 2

If the leading operator has dimension ∆ = 2, the phenomenology is quite different. The
potential (5.1) takes the form

V (φ) = VD3/D3(φ) + H2

[

1 − c2

(
Mpl

MUV

)2
]

︸ ︷︷ ︸
≡ β

φ2 , (5.8)

with a tunable ∆V ∼ βH2φ2 term. The phenomenology of warped brane inflation with

a mass that is fine-tuned to solve the eta problem was discussed for β # 1 in [6] and
parametrized in detail for β ! 1 in [18, 36].

It is worth noting that in the quadratic case the potential can be flattened in a much larger

field range than in the inflection point models. Nevertheless, one cannot obtain monomial
large-field inflation, even if this were consistent with the form of the potential, because of

the field-range bound of [35].

Finally, let us remark that an expulsive potential is required for a DBI inflation scenario
[37] in which the brane moves out of the throat [38, 39]. It would be interesting to use our
results to parametrize possible models in this class.
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One tries to tune β < 1 to achieve
inflation.  This was the original class of 
warped models; the phenomenology was 
studed in detail by Firouzjahi and Tye.



In both classes of models, one can obtain a 
red spectrum with very small tensor modes 
easily.  Cosmic Strings may be present, with

10−12 < GNµ < 10−8
Sarangi, Tye;

Copeland, Myers, Polchinski

B.  Dual gauge theory perspective

For the experts, I briefly describe why these 
results are obvious from the perspective of 

the dual gauge theory.  



String theory on the conical geometry we 
studied, is dual to an N=1 supersymmetric

gauge theory with 

SU(N)× SU(N)

gauge group, and bi-fundamental matter 
fields 

A1,2, B1,2

governed by a superpotential:

W = hεijεklAiBkAjBl
Klebanov, 

Witten



The leading perturbations when we couple 
the throat to a compact Calabi-Yau are going 

to be operators of the form:

region glued into a compact Calabi-Yau space. Throughout this paper, we suppose that the
throat is long, so that the gauge theory is approximately conformal across a wide range of

energy scales. Moreover, we consider a D3-brane that is well-separated both from the UV
and from the infrared (IR) regions. Much of our analysis will refer to the specific example of

the warped deformed conifold throat [7], which asymptotically approaches AdS5×T 1,1, up to
factors logarithmic in the AdS radius [8]. Since these factors vary slowly, an approximation
that is quite useful is to study D3-brane motion in the exactly conformal background AdS5×
T 1,1.

We assume that the moduli are stabilized as in [15] or its variants. Supersymmetry is
broken by the presence of the anti-D3-brane at the end of the throat [16]; if the minimal

warp factor in the throat is a0, this sources a vacuum energy ∼ 2a4
0T3, where T3 is the brane

tension.

In this kind of scenario, we argue in Appendix A that quite generally, there are bulk

moduli fields3 X with F-terms FX ∼ ξ a2
0. We implicitly assume that the value of the

coefficient ξ can be fine-tuned by considering different bulk fluxes, different bulk sources

of SUSY-breaking, or even distinct Calabi-Yau geometries. (This is of course the standard
procedure suggested by Wilsonian effective field theory.) We further assume that there are
no direct couplings in the superpotential between the CFT fields and X; this is very plausible

due to the non-renormalization theorem. Then the coupling of the CFT fields to the bulk
moduli will result in a leading perturbation to the Kähler potential K, and correspondingly

to the scalar potential V , of the form:

∆K = c

∫
d4θ M−∆

UV X†X O∆ ⇒ ∆V = c M−∆
UV |FX |2 O∆ , (1.2)

where O∆ is a gauge-invariant operator of dimension ∆ in the (approximately) conformal
gauge theory dual to the throat, and c is a constant. The scale MUV relates to the UV cutoff

of the gauge theory or equivalently to the large r limit of the throat geometry.

As noted above, the operators O∆ of interest are built out of scalar fields, so that they
create a potential on the Coulomb branch of the gauge theory. In particular, we will be

interested in contributions to the potential for radial motion, with corresponding scalar field
φ. We will show that for suitable O∆, (1.2) induces a radial potential of the form

∆V = −c M−∆
UV |FX |2 φ∆ , (1.3)

with c > 0. The overall minus sign in (1.3) arises after a minimization in the angular

directions. This potential contributes an expulsive force driving the D3-brane towards the
UV.

3Strictly speaking, X could instead be an open string modulus superfield whose lowest component is the
inflaton φ itself, as we explain in Appendix A.

4

A few lines of argument suggests that in 
kklt-type models, the scale of bulk f-terms 
then gives effects of the size we mentioned,

for the specific cases:

“fractional”:   

“Quadratic”:

one can begin by listing chiral and otherwise protected operators in the gauge theory, with
the understanding that at strong ’t Hooft coupling a gravity-side analysis is necessary to

determine the dimensions of more general operators.

The gauge theory dual to the warped deformed conifold geometry is an SU(N + M) ×
SU(N) gauge theory with bi-fundamental fields Ai, Bj (i, j = 1, 2). The single-trace op-

erators built out of these scalar fields and their complex conjugates are labeled by their
SU(2)A × SU(2)B × U(1)R quantum numbers (J1, J2, R). Using the AdS/CFT correspon-

dence, the dimensions of these operators are given by (2.10), though in the highly protected
cases of interest to us, the dimensions can be determined directly in the gauge theory as
well.

Chiral operators

For J1 = J2 = R/2, these operators are chiral and have the simple form

O∆ = Tr
(
A(i1B(j1A

i2Bj2 . . . AiR)BjR)

)
+ c.c. (3.2)

The dimensions of these chiral operators, ∆ = 3R/2, are fixed by the N = 1 superconformal

invariance. The lowest-dimension such operators are

O3/2 = Tr (AiBj) + c.c. , (3.3)

which have {J1, J2, R} = {1
2 ,

1
2 , 1}. These chiral operators have ∆ = 3/2 and determine

the leading term in the inflaton potential via (3.1), unless they are forbidden to appear by

symmetries that are preserved by the full string compactification; see §4.

Non-chiral operators

There are a number of operators which have the next lowest dimension, ∆ = 2. For

example, there are operators with {J1, J2, R} = {1, 0, 0}:10

O2 = Tr
(
A1Ā2

)
, Tr

(
A2Ā1

)
,

1√
2
Tr

(
A1Ā1 − A2Ā2

)
, (3.4)

and the corresponding {J1, J2, R} = {0, 1, 0} operators made out of the fields Bj. While
non-chiral, these operators are protected because they are related by supersymmetry to
SU(2) × SU(2) currents; therefore, their dimension, 2, is exact in the gauge theory.11 using

gauge/gravity analysis we can see that the above operators source an inflaton potential
at the linearized level; therefore, they will play an important role in our considerations. In

10An additional operator with ∆ = 2 is the SU(2) × SU(2) × U(1)R singlet operator U that belongs to
the baryon number current multiplet. This operator is responsible for resolution of the conifold [31], and it
sources a D3-brane potential in the throat at the non-linear level [22].

11See footnote 4.
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I would like to close by stressing three 
important points:

i) The quadratic operators (in this case) are 
lowest components of symmetry currents of 
the throat.  That is why their dimension is 

protected and stays at 2 even at strong 
coupling.  Such currents are present in all 
of the known throats, though there could 

well be throats without them that we 
haven’t written down yet.

ii) The fractional operator is easily 
forbidden by a discrete symmetry, e.g.

Ai → −Ai



It is easy to find compact Calabi-Yau spaces 
with a conifold throat that would preserve 

this symmetry; inflation in these cases 
would fall into the quadratic case.  

iii)  Our analysis immediately generalizes to 
infinite classes of throat geometries, given 

sufficient information about the KK 
spectrum.  For instance, as we discuss in the 
paper, we expect the full infinite class of 

Y p,q cones falls into the quadratic case.

(I say “expect” because this relies on the 
assumption that no un-protected 
non-chiral operators have ∆ < 2).


