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Flux compactification in 
Type IIB string theory

where all moduli of the 6-dim. “Calabi-Yau” 
manifold are stabilized

Giddings, Kachru, Polchinski,
Kachru, Kallosh, Linde, Trivedi

and many others, 2001.... 

KKLT vacua

• There are many classically meta-stable 
manifolds/vacua, 10500 or more, probably 
infinite, with positive, zero, as well as negative 
cosmological constants.

• There are many (tens to hundreds or more) 
moduli (scalar modes) that are dynamically 
stabilized. 



a cartoon :

Landscape : looks like 
a random potential in multi-dimensions



Eternal Inflation 

Suppose the universe is sitting at a local minimum, with 
a lifetime larger than the Hubble time 1/H. 

Then the number of Hubble patches will increase 
exponentially. Even after some Hubble patches have 

decayed, there would be many remaining Hubble 
patches that continue to inflate.  
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(1) d = s(Λc)/ξ + 1

(2) ξ ∼ s(Λs) ∼
1

ms
∼ Λ−1/4

s

(3) d > 60

(4) T (n) " T0/n

(5) Γ = m4
sT

(6) n ∼ 1/Hs

(7) a(t) " eHt
→ V = a(t)3 " e3Ht
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Eternal inflation implies that 
somewhere in the universe 

(outside our horizon), 
inflation is still happening today.



Pros and cons of
eternal inflation

Pros :  no matter how small is the tunneling rate from one 
site to another, it will happen. So the cosmic landscape is 
populated. In particular, the site we are living in is present 

somewhere in the universe.

Cons : since there are many (10500 or more) vacua, 
and some parts are still inflating, it is difficult to see why we 
end up where we are without invoking some strong version 

of the A principle. 
It is very difficult to make any testable prediction.

The scenarios with or without eternal inflation are very 
different.



Coleman-de Luccia Tunneling
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where R0 = 3τ/ε. Note that the last term is proportional to κ2 and so is very small most

of the time. According to Eq.(2.16), we can easily check that the bubble radius at the

moment of materialization is not larger than the event horizon R+ of the de Sitter space

in false vacuum . This is reasonable; otherwise the bubble cannot be generated causally.

A comment on the thin wall approximation : to be concrete, consider the potential
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and f(φ) is a smooth function where f(φ+) = ε and f(φ−) = 0. Then τ = µ3/3λ and the

thin wall approximation is good if µ4 " λε, or equivalently, if the top of the potential Utop

between φ+ and φ− satisfies

Utop − U(φ+) " ε/8

For the special case with r # R+, the bubble size is much smaller than the curvature

radius of the background and gravity does not play a big role. In this limit B becomes

B = 2π2r3τ −
π2

2
r4ε. (2.21)

The parameter B is stationary at

r = R0 =
3τ
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, (2.22)

which is consistent with Eq.(2.16). This result is nothing but the energy conservation.

Since the curvature of the background is small, the energy conservation reads
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It is also interesting for us to ask how to modify the tunneling rate if there are radiations

in the false vacuum and/or in the true vacuum. In the case with the neglected background

curvature, the energy conservation implies that the bubble size should be
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Figure 1: Taken from [4]. Huge variation of the CDL tunneling rate Γ ∼ e−B from U+(= U
−

+ ε)
to U

−
via a fixed barrier between them. This point is illustrated by a specific example here. Keeping

fixed the domain wall tension τ ∼ 10−12 and the energy difference ε ∼ 10−22 (both in Planck units),
B ∼ − log Γ is given as a function of the potential U

−
. In this case, we see that B varies 30 orders

of magnitude. Tunneling is exponentially enhanced when the wavefunction is higher up (i.e., larger
U
−

) in the landscape.

here the metric is multiplied by an overall minus sign and dΩH3 is the element of length

for a unit hyperboloid with timelike normal. The metric within the bubble describes a

spatially open Friedmann-Robertson-Walker Universe.

In [1] the tunneling rate for the potential in Fig. 3 in paper is computed in the thin

wall limit. In the semiclassical limit, the tunneling rate per unit volume takes the form

Γ = Ae−B (2.3)

When we include gravitation the effective 4-dimensional action for a single scalar field is

given by

S =

∫

d4x
√
−g

[

1

2
gµν∂µφ∂νφ − U(φ) −

R

2κ

]

, (2.4)

where κ = 8πG. The tunneling rate is determined by the minimum value of the Euclidean

action. The Euclidean action is defined as minus the formal analytic continuation of the

action in Lorentzian frame to imaginary time. Such a tunneling process is described by the

CDL instanton which exhibits an O(4) symmetry in Euclidean space. The metric of the

instanton in Euclidean space is given in Eq.(2.1) and the Euclidean action is

SE = 2π2
∫

dχ

[

r3(
φ′2

2
+ U) −

3r

κ
(r′2 + 1)

]

(2.5)

where the prime denotes d/dχ. The scalar field equation of motion is

φ′′ +
3r′

r
φ′ =

dU

dφ
(2.6)
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In the thin wall approximation :
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for fixed domain wall tension     and 
(false-true) energy density difference 
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In Coleman-de Luccia Tunneling



Tunneling is much faster at high C.C.

,
top

top

,
,

,
Hawking-Moss :

where g± measures the effective light degrees of freedom and g±T 4
± is the energy density

of radiations in the false/true vacuum. The parameter B is now modified to be

B = 2π2r3τ −
π2

2
r4(ε + g+T 4

+ − g−T 4
−). (2.27)

The bubble size at the stationary point is just that given in Eq.(2.26), as expected.

B ∼
27π2

2

τ4

(ε + g+T 4
+ − g−T 4

−)3
(2.28)

Suppose we want to interpret the temperature to be the Hawking temp. Let g− = g+ = g,

so T 4
+ − T 4

− ∝ ε(U+ + U−).

It is worth discussing another limit of r $ R+ which corresponds to U+ $ U− = U %
Us = 2ε2

3κτ2 + 3κτ2

8 . It happens at the high energy scale in the landscape. In this case the

bubble radius is given by

R $
√

3

κU
. (2.29)

Now B is dominated by the first term in Eq.(2.15), namely

B $ 6
√

3π2τ(κU)−3/2 =
2π2τ

H3
(2.30)

For TdS = H/2π, we have

B $
τ

4πT 3
dS

(2.31)

In the unit of Mp = 1, or equivalently κ = 1, the tension of the bubble satisfies τ ' 1. In

Planck region (U ∼ 1), B ' 1 and Γ ∼ 1. At low energy scale, the background curvature

radius is quite large and the bubble size is relatively small, and then the tunneling rate is

insensitive to the vacuum energy of the false vacuum. In Fig. in the paper, we see that B

can easily change by 30 orders of magnitude.

A reasonable interpolation formula looks like

B $ 2π2τ

(

R2
0R

2
+

R2
0 + γR2

+

)3/2

(2.32)

where one may take γ = 24/3. Recall that R0 = 3τ/ε.

3. Hawking-Moss

Γ $ e−BHM = e
−24π2[

M4
P

U(φ+
−

M4
P

U(φt)
]

(3.1)

BHM =
8π2

3

δU

H2
+H2

t
, δU = U(φt) − U(φ+) (3.2)
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The Einstein equation yields one non-trivial equation,

r′2 = 1 +
1

3
κr2(

φ′2

2
− U). (2.7)

and the equation of motion for r(χ) follows from Eqs.(2.6,2.7). Using Eq.(2.7) to simplify

the Euclidean action, one obtains

SE = 4π2
∫

dχ

[

r3U −
3r

κ

]

(2.8)

The coefficient B in the tunneling rate (2.3) is

B = SE(φ) − SE(φ+). (2.9)

In the thin wall approximation, we divide the integration for B into three parts. Out-

side the bubble, φ = φ+ and thus

Bout = 0. (2.10)

In the wall, we have

Bwall = 2π2r3τ, (2.11)

where r is the bubble size and τ is the tension of the wall which is decided by the barrier

between the false and true vacua,

τ "
∫ φ+

φ
−

dφ
√

2[U(φ) − U(φ+)] (2.12)

Here we take the thin wall approximation and Bwall is the energy stored in the thin wall.

Inside the bubble, φ is a constant and Eq.(2.7) becomes

dχ = dr(1 − κr2U/3)−1/2. (2.13)

Hence

SE,in(φ) = −
12π2

κ

∫ r

0
r̃dr̃(1 − κU(φ)r̃2/3)1/2. (2.14)

Summing the 3 parts of B, we obtain

B = 2π2r3τ+
12π2

κ2

[

1

U−

(

(

1 − κr2U−/3
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−
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]

. (2.15)

The decay coefficient B is stationary at r = R which satisfies
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R2
=
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9τ2
+

κ(U+ + U−)

6
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κ2τ2

16
, (2.16)

where ε = U+ − U−. So
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κ

[

R2
−

(

(

1 − H2
−R2
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)

− R2
+

(

(

1 − H2
+R2

)3/2 − 1
)]

(2.17)

where

H−1
± = R± = (κU±/3)−1/2
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spatially open Friedmann-Robertson-Walker Universe.
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1. Introduction

Numerically we know that the bounce in CDL [1], as the vacuum energy density U increases,

B !
27π2τ4

2ε3
→

2π2τ

H3

works very well for a wide range of values for wall tension τ , energy density difference

ε = U+ − U− (U+ is the false vacuum energy density) and the Hubble constant is given

by H2 = κU+/3, where κ = 8πGN = M−2
P . Note that the first form is independent of U

while the second form is independent of ε. We see that, for fixed τ , B decreases rapidly as

H increases.

A similar phenomenon happens in the Hawking-Moss tunneling [2]. Recently, Brown

and Weinberg [3] interpreted this as a phenomenon due to the Hawking temperature TH =

H/2π. in diSitter space. Here, we like to re-examine this interpretation, extend it further

and apply it to the cosmic landscape.

2. CDL

The CDL instanton is a solution with the topology of a four sphere S4 in Euclidean space.

For scalar fields, the instanton configuration with O(4) symmetry has the smallest Eu-

clidean action. This should be also the case with inclusion of gravitation. The geometry

after bubble nucleation is described by the analytic continuation of the CDL instanton to

Lorentzian signature. The metric with O(4) symmetry in Euclidean space is given by

ds2 = dχ2 + r2(χ)dΩ2
3, (2.1)

where dΩ2
3 is the element of distance on S3 and r is the radius of this S3. The radial

coordinate χ is continued to χ = it and the metric in Lorentzian frame is

−ds2 = −dt2 + r2(it)dΩ2
H3 , (2.2)
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where g± measures the effective light degrees of freedom and g±T 4
± is the energy density

of radiations in the false/true vacuum. The parameter B is now modified to be

B = 2π2r3τ −
π2

2
r4(ε + g+T 4

+ − g−T 4
−). (2.27)

The bubble size at the stationary point is just that given in Eq.(2.26), as expected.

B ∼
27π2

2

τ4

(ε + g+T 4
+ − g−T 4

−)3
(2.28)

Suppose we want to interpret the temperature to be the Hawking temp. Let g− = g+ = g,

so T 4
+ − T 4

− ∝ ε(U+ + U−).

It is worth discussing another limit of r $ R+ which corresponds to U+ $ U− = U %
Us = 2ε2

3κτ2 + 3κτ2

8 . It happens at the high energy scale in the landscape. In this case the

bubble radius is given by

R $
√

3

κU
. (2.29)

Now B is dominated by the first term in Eq.(2.15), namely

B $ 6
√

3π2τ(κU)−3/2 =
2π2τ

H3
(2.30)

For TdS = H/2π, we have

B $
τ

4πT 3
dS

(2.31)

In the unit of Mp = 1, or equivalently κ = 1, the tension of the bubble satisfies τ ' 1. In

Planck region (U ∼ 1), B ' 1 and Γ ∼ 1. At low energy scale, the background curvature

radius is quite large and the bubble size is relatively small, and then the tunneling rate is

insensitive to the vacuum energy of the false vacuum. In Fig. in the paper, we see that B

can easily change by 30 orders of magnitude.

A reasonable interpolation formula looks like

B $ 2π2τ

(

R2
0R

2
+

R2
0 + γR2

+

)3/2

(2.32)

where one may take γ = 24/3. Recall that R0 = 3τ/ε.

3. Hawking-Moss

Γ $ e−BHM = e
−24π2[

M4
P

U(φ+)−
M4

P
U(φt)

]
(3.1)

BHM =
8π2

3

δU

H2
+H2

t
, δU = U(φt) − U(φ+) (3.2)
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Interpret this gravitational effect as a 
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4. Comparison to BW

The difference between CDL and BW has to do with R4 space in CDL versus R3 × S1

space in BW, where S1 corresponds to β = 1/T = 2π/H. Using Eq.(2.13), we have

S3(φ) = −
24π

κ

∫ r

0
dr̃(1 − κU(φ)r̃2/3)1/2. (4.1)

In the thin wall approximation, the free energy is given by (please check !!)

S3 = 4πr2τ+
12π

κ

[

r
(

1 − r2/R2
+

)1/2
+ R+ arcsin

r

R+
− r

(

1 − r2/R2
−

)1/2 − R− arcsin
r

R−

]

.

(4.2)

Maximizing S3, we find R given by

1

R2
=

9H2
+H2

−

κ2R2
0

+
(H2

+ + H2
−)

2
+

κ2τ2

36
(4.3)

R0 = 3τ/ε. In the r # R+ case; this yields

S3 = 4πr2τ − 4πr3ε/3 (4.4)

For critical size radius r = 2τ/ε, we have

S3/T = 32π2τ3/3ε2H (4.5)

To see which path dominates, we compare this to B = SE ,

B

(S3/T )
=

27

64

R

R+
(4.6)

Since R # R+, we see that the Euclidean S4 bounce B is smaller so it dominates.

For large, R ! R+,

S3/T = 8π2τ/H3 (4.7)

so we see that B (2.30) is smaller than S3/T by a factor of 4,

B

(S3/T )
=

1

4
(4.8)

It is easy to understand the origin of this factor of 4. In CDL, we have S3 with size 2π2

versus S2 × S1 with size 4π × 2π = 8π2 in BW. This just shows that the SO(4) symmetry

lowers the Euclidean action B and so yields the correct answer.

Note that this is true only for B $ 1. Recall that

Γ = A0e
−B + AT e−S3/T + ... ∼ A1e

−B + AT e−4B (4.9)

If this condition is not satisfied, say when B " 1, then this factor of 4 difference may be

overcome by the difference in the prefactors A0 and AT . Callan and Coleman show that,

for bounce B,

Γ =

(

B

2π

)2 (

det(−∂2 + U ′′(φ+)

det′(−∂2 + U ′′(φ)

)1/2

e−B (4.10)
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Finite Hawking temperature effect
where φit is the value of φi at the top of the barrier.

However, here U(φi) should be replaced by U(φi, T ). Instead of calculating this, we

can make another estimate.

In QM, the tunneling through a barrier becomes less suppressed when the energy of

the particle increases. This happens when the particle is in a thermal bath with rising

temperature. In QFT, the thermal effect typically lifts the potential in a way such that

the tunneling becomes faster, until the barrier disappears ( i.e., the tunneling probability

approaches unity).

For λφ4 theory, with

V (φ, T = 0) = −
m2

2
φ2 +

λ

4!
φ4

we have, for high temperature T ,

V (φ, T ) =
1

2
(
λT 2

24
− m2)φ2 +

λ

48
φ2 +

λ

4!
φ4 + ... (5.7)

so the effective mass term is no longer tachyonic for T > Tc, where the critical temperature

is given by T 2
c " 24m2/λ.

Expanding the above potential about a maximum (top of a barrier), we have

V (φ) = −
α

2f2
φ2 +

α

4!f4
φ4 + ...

we see that, if in any direction,

24f2
i < T 2

H (5.8)

then there is no barrier in that direction so the wavefunction is coherent along that di-

rection. Even if this condition is not satisfied, we see that the finite TH effect will enable

to wavefunction to be coherent along some direction quickly, approaching a wavefunction

similar to a Block wave.
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Expanding about the top of a symmetric barrier :
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No trapping if for 
any modulus :
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• Tunneling of a D3-brane can be significantly 
enhanced by the Dirac-Born-Infeld action.

Brown, Sarangi, Shlaer and Weltman Tolley and Wyman
Wohns

A comment :

CDL : Hawking-Moss :



Harder to trap in higher dimensions

A 1-dim. attractive delta-function potential always 
has a bound state but not a 3-dim one.

Repulsive



Harder to trap in higher dimensions

V (r) = −V0    r < R
        = 0       r > R

k02 = 2mV0

k0R

Spherical square well :

a2 = 2m|E|
ψ(r) ∼ e−ar

R-V0



TA→C ∼ 1

TA→B ∼ TB→C

Resonance Tunneling in QM:

are exponentially smallTunneling 
probabilities

When the condition is right :

Resonance tunneling in QFT : Saffin, Padilla and Copeland
                                 Sarangi, Shiu, Shlaer



Tunneling from a typical meta-stable 
site below the Planck (or string) scale.

Why fast tunneling is possible ?

TA→C = T0/2

TA→B = TB→C = T0

to the approximate geometry for a warped throat, or as a variation of the simplest warped
deformed throat in the KKLMMT scenario.

Sharp features and/or non-Gaussianity in the cosmic microwave background radiation
due to steps in the inflaton potential have been studied [7, 8]. The duality cascade feature
shows up in the warped geometry (and in the running of the coupling (the dilaton value))
in the D3-brane potential as steps. Such steps in the inflaton potential can introduce sharp
features in the cosmic microwave background radiation, which may have been observed al-
ready [9, 10]. So the step function behavior of the throat, though small, can have distinct
observable stringy signatures in the cosmic microwave background radiation. The possibil-
ity of detecting and measuring the duality cascade is a strong enough motivation to study
the throat more carefully. Although both Seiberg duality and gauge/gravity duality are
strongly believed to be true, neither has been mathematically proven; so a cosmological
test is highly desirable. This will also provide strong evidence for string theory.

The analysis of the step feature in inflation in comparison with WMAP data has been
carried out for large field models, specifically the quadratic chaotic inflationary model
where the inflaton field starts at values much bigger than the Planck mass (φ > 15MPl)
and then decreases to zero. In brane inflation, the inflaton being the position of the brane,
is bounded by the size of the flux compactification volume, and so typically φ ! MPl. This
requires a new analysis, which is carried out here.

This paper is organized as follows. Sec 2 reviews the setup of the geometry and SEc. 3
reviews D3-brane potential where the step appears as a small correction. Sec. 4 compares
the model to the WMAP data and gives the predictions. Sec. 5 starts with a qualitative
analysis of the non-Gaussianity due to the steps and then presents a more quantitative
analysis. Sec. 6 contains a summary.

3 Setup of the geometry

T (n) " T0/n (1)

First it is useful to define a basis of coordinates and a metric. The ten dimensional metric
which describes the throat is that of AdS5 × X5, where X5 has the T 1,1 geometry in the
UV region. Including the expansion of the universe, the metric has the form

ds2 = h2(r)(−dt2 + a(t)2dx2) + h−2(r)(dr2 + r2ds2
X5

), (2)

Far away from the bottom of the throat, dsX5
= ds2

T 1,1 is the metric that describes a base
of the conifold T 1,1 which is an S3 fibered over S2. Here h(r) is the warp factor, that is, a
generic mass m → mh(r) in the presence of h(r).

Let Φ be the dilaton and gs be the coupling,

d

d log (r/r0)
e−Φ = −Sl (3)
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Naive



In a d-dimensional hyper-cubic lattice

landscape is described by a set of scalar modes, namely, light closed string modes known
as moduli and positions of branes and fluxes. (We shall refer to them collectively as mod-
uli.) Depending on the location of any specific site, the number d of moduli in the stringy
landscape describing its neighborhood may vary from dozens to hundreds. So a large d

parameterizes the vastness of the landscape. In Ref.[13], it is argued that resonance tun-
neling effect can enable a fast decay of a site with a string scale vacuum energy Λ in the
stringy cosmic landscape. The key point may be illustrated with the following simplistic
example.

Let the tunneling rate from one site to any of its neighboring site be Γ0, which is
dictated by the minimum (not typical) barrier tunneling path. Tunneling from a positive
Λ site to a larger Λ site (with smaller entropy) takes a very long time and is ignored here.
Note that tunneling from a positive Λ site to a negative Λ site is also ignored for at least
one of the following reasons : (1) it takes an exceedingly long time, (2) it leads to a big
crunch [14], (3) it pops right back up [15, 16]. In this sense, Λ = 0 is special.

Consider tunneling in a d-dimensional hyper-cubic lattice. Ignoring resonance tunnel-
ing for the moment, then the total tunneling rate is given by

Γnr
t ∼ 2d Γ0 (1.1)

since there are 2d nearest neighbors. Here, Γnr
t grows linearly with d. Since Γ0 is expo-

nentially small, Γnr
t is also exponentially small. Now let us include the resonance/efficient

tunneling effect (see the appendices for a brief review and further discussions). For a generic
wavefunction at a site, its tunneling rate to its next-to-neighboring sites will have compa-
rable Γ0, not Γ2

0, as naively expected. Since the number of paths for resonance tunneling
increase like the volume, it is argued that the effective total tunneling rate goes like

Γt ∼ nd Γ0 (1.2)

where n signifies the effective number of steps where resonance/efficient tunneling acts
with tunneling rate not much suppressed with respect to Γ0. That is, as a function of d,
Γt actually grows exponentially, not linearly. Now it becomes possible that Γt can be of
order unity for large enough d and n.

The scenario then goes as follows. Tunneling will be fast when the site has a relatively
large Λ, since it has many paths and nearby sites to tunnel to. This fast tunneling process
can happen repeatedly, until it reaches a site with Λ smaller than some critical value Λc.
Most if not all nearby sites of this low Λ site have larger Λs, so it will not tunnel to. That is,
the effective n→ 1 in most directions so its total decay width becomes exponentially small.
This low Λ site may describe today’s universe. For this scenario to work, such a shut off of
fast tunneling must be sharp, so that the universe never enters eternal inflation. Otherwise,
the universe would arrive at a meta-stable site with some intermediate Λ, and have enough
time to expand away the radiation/matter present and enter into eternal inflation 1. If this
happens, some (most) parts of our universe would still be in an eternally inflationary phase

1In brane inflation, eternal inflation of the random walk type generically does not take place [17]. So

here we are concerned only with eternal inflation of the tunneling type in the landscape.
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naive :

actually  :

at a small Λ site. This transition takes place at a critical Λc. The mobility shuts off for
Λ < Λc, and the universe ends up at a site with a small Λ < Λc. This suggests that the
quantum landscape is a mixture of two components : the sites composed of Λ > Λc form
a conducting medium while the sites composed of Λ < Λc form an insulating medium. In
terms of the string scale, we intuitively expect Λc to be exponentially small. To explain
the cosmological constant problem, we require Λc to be larger than, but not too many
orders of magnitude larger than today’s dark energy. A more detailed analysis of this
quantum landscape is necessary to find the critical value Λc. As an illustration, we give a
simple toy-like scenario, where we find that Λc can easily be exponentially small compared
to the string or the Planck scale. For a flat distribution of number of sites with the 4-
dimensional cosmological constant between the string scale Ms and zero, we see that the
critical cosmological constant goes like d−dM4

s . This yields a critical cosmological constant
at the right order of magnitude for d ∼ 50, a reasonable value. Clearly a better estimate
will be valuable.

The time for one e-fold of inflation is Hubble time 1/H (H is the Hubble parameter)
while the lifetime of the site is naively given by (HΓnr

t )−1. Since Γnr
t (1.1) is exponentially

small, eternal inflation seems unavoidable. However, in the quantum landscape, we find
that the mobility time scale is much shorter than the Hubble time scale; so we conclude
that eternal inflation in the landscape is highly unlikely. The cosmological evolution of
the universe remains to be understood. The quantum landscape does open new doors
that should be explored. Some speculations are discussed. Analogous to condensed matter
physics where the transition can go from localization to superconductivity, one may wonder
if the landscape is not only conducting but superconducting, and what are its implications.

An upcoming paper [25] comes to similar conclusions on fast tunneling as in Ref.[13]
in a different approach. See Ref.[26, 27, 28, 29, 30] for some other related discussions.

In Section 2, we review the general scaling theory of Anderson transition and apply it
to the landscape. In Section 3, we consider a specific model due to Shapiro [22]. We find
that the critical conductance is exponentially small for large d and the condition is given in
Eq.(1.4). In Section 4, we try to extract the critical Λc from the critical conductance. As
an illustration, we show that Λc can easily be exponentially small compared to the string or
the Planck scale. Section 5 contains some discussions concerning the overall scenario. We
explain how eternal inflation is avoided and give some speculative overview of the scenarios
we have in mind. Section 6 contains some final remarks. Appendix A reviews very briefly
resonance tunneling, efficient tunneling and fast tunneling used in Ref.[13]. Appendix B
discusses the meaning of the resonance tunneling effect in intuitive terms, which should
apply in both quantum mechanics and quantum field theory. Appendix C interprets the
Hawking-Moss tunneling formula in view of the resonance tunneling effect.

2. The Scaling Theory of the Conductance Transition

Consider a particle moving in a discordered (random potential) medium. The phase of
its wavefunction varies randomly. The distance over which it fluctuates by 2π defines the
mean free path l, the microscopic length scale of interest here. When the disorder is small,
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So the lifetime of a typical site is longer than the 
Hubble scale, and eternal inflation seems unavoidable.

BRIEF ARTICLE

THE AUTHOR

1

(1) T (n) ! T0/n

(2) Γ = m4
s
T

(3) n ∼ 1/Hs

1

For large enough d (and maybe n) 
the tunneling can be fast.  



Is there eternal inflation ?
• Hawking temperature makes it harder to trap the wave 

function of the universe at a classical local vacuum site in the 
landscape.  

• The presence of many moduli (tens to hundreds) makes it 
harder to trap the wavefunction.

• Even if trapped, both effects shorten the decay time of any 
metastable site in the landscape.

• Resonance tunneling effects will further shorten the decay 
time of any metastable site.

• Treating the cosmic landscape as a random potential, one can 
borrow (renormalization group) techniques developed in 
condensed matter physics to argue that there is no eternal 
inflation in the landscape until one reaches an exponentially 
small CC site.



The vastness of cosmic landscape

• At a typical meta-stable site, count the number 
of parameters or the number of light scalar 
fields.  This gives the number of moduli, or 
directions in the field space.

• This number at any neighborhood in the 
landscape may be taken as the dimension d of 
the landscape around that neighborhood.

• The landscape potential is not periodic (though 
it may be close to periodic along some axion 
directions). It is very complicated.



The wavefunction of the universe

moduli open string modes

may be crudely approximated by that of a D3-brane

cosmic scale factor

The behavior of the wavefunction in the landscape is 
a quantum diffusion and percolation problem.



is an unstable fixed point, implying that the transition between mobility and localization
is a sharp one.

Consider a specific (enveloping) wavefunction ψ(r) ∼ e−|r|/ξ at site r = 0 with a typical
Λ in the cosmic landscape (see Figure 1(b)). The wavefunction seems to be completely
localized at the site if the localization length ξ " a, where ξ measures the size of the
site and a is the typical spacing between sites. They are determined by local properties
and ξ is known as the localization length. With resonance tunneling, ξ can be somewhat
bigger, although ψ(r) may still be exponentially suppressed at distance a. At distance
scales around a, the conductance goes like

g(a) ∼ |ψ(a)| ∼ e−a/ξ (1.3)

Note that, for a# ξ, Γ0 ∼ |ψ(a)|2 ∼ e−2a/ξ.
Given g = g(a) (1.3) at scale a, what happens to g at distance scales L# a ? That is,

how does g scale ? The scaling theory of g is well studied in condensed matter physics. It
turns out that there is a critical conductance gc which is a function of d. If g(a) < gc, then
g(L) ∼ e−L/ξ → 0 as L→∞ and the landscape is an insulating medium. The wavefunction
is truly localized. Tunneling will take exponentially long and eternal inflation comes into
play. If g(a) > gc, the conductivity is finite (g(L) ∼ (L/a)(d−2)) as L → ∞ and the
landscape is in a conducting/mobile phase. The wavefunction is free to move. Around the
transition point, there is a correlation length that blows up at the phase transition. We
shall see that, at length scale a, this correlation length can be identified with ξ. That is, ξ

plays the role of the correlation length. This is how, given g(a) (1.3) at scale a, g can grow
large for large L.

In this paper, we argue that, for large d, the critical conductance is exponentially small,

gc & e−(d−1)

So it is not difficult for g(a) > gc; given g(a) (1.3), we see that fast tunneling happens
when Γ0 > e−2(d−1), or

d >
a

ξ
+ 1 (1.4)

so the wavefunction of the universe can move freely in the quantum landscape even for
an exponentially small g(a). Since the β-function has a positive slope at the localization
transition point (implying an unstable fixed point), the transition between the insulating
(localization) phase and the conducting (mobile) phase is sharp. We see that it is precisely
the vastness of the cosmic landscape (as parameterized by a large d) that allows mobility
even if the wavefunction is localized. This mobility allows the wavefunction to sample
the landscape very quickly. It also means a semi-classical description of the landscape is
inadequate.

In the mobility phase, the wavefunction and/or the D3-branes (and moduli) move
down the landscape to a site with a smaller Λ. At that site, some of its neighboring sites
have larger Λs, so the effective a increases, leading to a larger effective critical conductance
gc. This happens until the condition (1.4) is no longer satisfied and the D3-brane is stuck
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the particle is scattered randomly and its wavefunction usually changes at the scale of
the order l. However, the wavefunction remains extended plane-wave-like (Bloch wave-
like) through the medium. If the wavefunction is initially localized at some site, it would
quickly spread and move towards low potential sites. This mobility implies that the system
is a “conductor”.

Anderson [19] showed that the wave function of a quantum particle in a random poten-
tial can qualitatively change its nature if the randomness becomes large enough (strongly
disordered). In this case, the wavefunction becomes localized, so that its amplitude (enve-
lope) drops exponentially with distance from the center of localization r0:

|ψ(r)| ∼ exp(−|r− r0|/ξ) (2.1)

where ξ is the localization length. This situation is shown qualitatively in Figure 1. When
the particle wavefunction is completely localized at a single site, ξ approaches a value
comparable to the typical spacing a between sites. In d ≤ 3, it will take an exponentially
long time to tunnel to a neighboring site. The lack of mobility implies that the system is
an “insulator”.

The physical meaning of Anderson localization is relatively simple: coherent tunneling
of particles is possible only between energy levels with the same energy. However, in case
of strong randomness, l→ a and the states with the same energy are too far apart in space
for tunneling to be effective. Since we are interested in large d, while condensed matter
physics systems typically have d ≤ 3, we shall introduce a slightly refined definition here :
(1) an extended state if ξ % a, as shown in Figure 1(a);
(2) a weakly localized state if ξ ! a, as shown in Figure 1(b);
(3) a localized state if ξ < a, as shown in Figure 1(c);
(4) a strongly localized state when ξ & a. As we shall see, for large d, a strongly localized
state can still lead to mobility if it satisfies the condition (1.4). When this condition is not
satisfied, we have
(5) a truly localized state.
For d ≤ 3, a weakly localized state will have lost mobility already (although it is believed
that, under the right conditions, superconductivity can take place in the localization re-
gion). That a strongly localized state may still lead to mobility for large d is not surprising.
For large d, the particle has many directions for coherent or resonant tunneling. In a ran-
dom potential environment, it is much more likely that some direction allows easy motion.
The goal is to quantify this intuition. We shall continue to use the language of condensed
matter physics : a is the microscopic scale while L is the macroscopic scale.

For fixed d, we expect a transition from a “conductor” to an “insulator” as the potential
barriers rise and fast tunneling is suppressed. To learn more about this transition, we
should focus on the behavior of the conductivity, or, more appropriately, the conductance.
It turns out that the behavior of such a transition can be described by a scaling theory
similar to that used in the theory of critical phenomena [20]. In the scaling theory of the
transition between mobility and localization, one considers the behavior of the conductance
as a function of the sample size L. Dimensionally, we shall choose some microscopic units
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Scaling theory :

Mobility 
condition :

d ~ 100

for a random potential (disordered medium) 
in d dimensions

Mobility in the landscape implies 
no eternal inflation.

Generic decay rate to nearest 
neighbor in the landscape :

(A renormalization group approach)

No mobility in d=1,2.

g → 0, βd(g) → ln(g/gc), reproducing Eq.(2.5). For g → ∞, βd(g) → d − 2, reproducing
Eq.(2.6). The critical exponent can be expressed in terms of gc,

ν =
1 + gc

1− (d− 2)gc
(3.2)

In the ε-expansion, for small ε = d − 2 > 0, one solves for the zero of the β-function
(3.1) to obtain gc = 1/2ε. Then Eq.(3.2) recovers the value of the critical exponent ν = 1/ε

in Eq.(2.19). We see that this is a simple model that reproduces the appropriate features
expected.

Comparing to Eq.(2.17), it gives α2 ≈ 1/2. For d = 3, a numerical analysis of this
model yields gc = 0.255 and ν = 1.68. This value for the critical exponent ν is higher
than that in Eq.(2.19) for d = 3 from the ε-expansion. However, this value is compatible
with the estimate of 1.25 < ν < 1.75 [31], suggesting that the leading ε-expansion is rather
crude for ε = 1.

For large d, we find the zero of the β-function is given by

gc = e−(d−1) (3.3)

that is, gc is exponentially small for large d, and

ν → 1 (3.4)

so we obtain the desired behavior for the critical conductance gc. Comparing (3.3) to the
microscopic property (1.3) leads to the conductng/mobile condition (1.4) for large d. Recall
that the typical tunneling probability between 2 neighboring sites is Γ0 ∼ e−2a/ξ, we see
that the mobility condition is, for large d,

Γ0 > e−2(d−1) (3.5)

that is, an exponentially small tunneling probability can still lead to the conducting phase,
that is, mobility for the wavefunction.

3.2 Disorder with Percolation

This above model corresponds to a microscopically (i.e., at scales ! a) random medium
but homogeneous at a larger scale. The cosmic landscape probably looks random even at
scales beyond a. To mimic the cosmic landscape, one may introduce additional randomness
at scales larger than a but still smaller than the macroscopic scale L. This scale can be
macroscopic, or intermediate, which is some times referred to as the mesoscopic scale. Let
us introduce disorder at this scale. This may be mimicked by the more general Shapiro
model that actually considers localization in a macroscopically inhomogeneous medium,
with percolation disorder. Percolation can be incorporated into the above model by intro-
ducing a probability p (1 ≥ p ≥ 0) that a typical site is occupied by a random scatterer, or
if a path remains open for efficient tunneling. Now, βd(g) → βg(g, p) becomes a function
of p as well,

βg(g, p) = (d− 1)
(

1 +
1− p

p
ln(1− p)

)
− (g + 1) ln(1 + 1/g) (3.6)
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O

of the order of ξ. Then one expects that for L ! ξ, the effective conductance becomes
exponentially small:

gd(L) ∼ e−L/ξ (2.2)

For a small disorder, the medium is in a metallic state and the conductivity σ is independent
of the sample size if the size is much larger than the mean free path, L! l. Conductance
is determined in this case just by the usual Ohm’s law and for a d-dimensional hypercube,
we have:

gd(L) = σLd−2 (2.3)

based on a simple dimensional argument. (Recall that in d = 3, g = σ(Area)/L ∼ σL.)
The conductance g = g(a) at length scale a is a microscopic measure of the disorder. We
see that g(L) may end up with one of the 2 very different asymptotic forms for L ! a.
Here σ is rescaled so that g is dimensionless.

Elementary scaling theory of localization assumes that g of a d-dimensional hypercube
of size L satisfies the simplest differential equation of a renormalization group, where

βd(gd(L)) =
d ln gd(L)

d lnL
(2.4)

that is, the β-function βd(g) depends only on the dimensionless conductance gd(L). Then
the qualitative behavior of βd(g) can be analyzed in a simple way by interpolating it between
the 2 limiting forms given by Eq.(2.2) and Eq.(2.3). For the insulating phase, (g → 0), it
follows from Eq.(2.2) and Eq.(2.4) that :

lim
g→0

βd(g)→ ln
g

gc
(2.5)

which is negative for g → 0. For the conducting phase (large g), it follows from Eq.(2.3)
and Eq.(2.4) that :

lim
g→∞

βd(g)→ d− 2 (2.6)

which is positive for d > 2. Assuming the existence of two perturbation expansions over
the “coupling” g in the limits of weak and strong “couplings”, one can write corrections to
Eq.(2.5) and Eq.(2.6) in the following form :

βd(g → 0) = ln
g

gc
(1 + bdg + · · · ) (2.7)

βd(g →∞) = d− 2− αd

g
+ · · · αd > 0 (2.8)

Assuming these and a smooth monotonous βd(g), it is easy to plot the β-function qualita-
tively for all g and d, as shown in Figure 2.

For d > 2, βd(g) must have a zero: βd(gc) = 0, where gc is the critical conductance.
The slope at the zero is positive, so this zero of βd(g) corresponds to an unstable fixed point
of Eq.(2.4). This means that a small positive or negative departure from the zero will lead
asymptotically to very different behaviors of the conductance. As g moves from g > gc to
g < gc, mobility is lost and the wavefunction is truly localized. This sharp transition is the
mobility edge.
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The picture from the scaling theory

MOBILE

trapped,
exponentially 
long lifetimes

High CC sites

Low CC sites

Sharp transition

Since f < 1 for Λ̂ < Ms, we see that a(Λ̂) > a(Ms), and a increases as Λ̂ decreases.
Following Eq.(4.1), we see that there is a critical Λc = Λ̂4

c , below which mobility stops and
the wavefunction is truly localized. The universe lives exponentially long at any low Λ site,
where Λ < Λc.

As an illustration, one may take f(Λ̂) ≈ (Λ̂/Ms)s, so a(Λ̂)/a(Ms) ≈ (Λ̂/Ms)−s/d.
Taking a(Ms) ∼ 1/Ms and similarly ξ ∼ 1/Ms, we have

Λ̂c ≈ d−d/sMs (4.5)

Since the cosmological constant Λ in 4-dimensional spacetime goes like Λ̂4, s = 4 cor-
responds to a flat Λ distribution. For this distribution, the critical 4-dim. cosmological
constant goes like

Λc ∼ d−dM4
s (4.6)

so d ∼ 60 looks quite reasonable. (Recall that Λ̂c/Ms ∼ 10−30 to 10−20.) In fact, a smaller
s or a larger d will lead to a much too small Λc. We see that the vastness of the cosmic
landscape, as parameterized by the large d, is crucial to this particular approach to the
cosmological constant problem.

5. Discussions

As we have discussed, we like to avoid eternal inflation totally in the history of our universe.
If the universe goes through inflation for more than one e-fold in a Λ meta-stable site, then
eternal inflation is unavoidable, since tunneling of some patches of the inflating universe
will still leave other patches to continue inflating. At a given site, the time to go through
one e-fold of inflation is a Hubble time, i.e., ∆t = H−1 ∼MPlanck/Λ̂2 (recall that we have
defined Λ̂ to be the scale of the cosmological constant). (If the universe at that site starts
with some radiation, then it will take additional time to reach the inflationary stage. So
the time the universe can stay in a Λ meta-stable site without eternal inflation may be
longer than the Hubble time. Let us ignore the presence of radiation for the moment.)
In the absence of resonance tunneling, the time δt that the universe stays at the Λ site is
δt ∼ 1/HΓ0 # 1/H, so eternal inflation is unavoidable.

To avoid eternal inflation in the quantum landscape, fast tunneling has to be faster
for larger Λ. In the mobility phase, we can crudely estimate the time δt it takes for the
universe to move from one site to another, using the simple formula : potential difference V

equals the product of the current and the resistance ∼ 1/g. To get an order of magnitude
estimate, we let V ∼ Λ̂, the current ∼ (a/δt)/L and g(L) = σLd−2 ∼ B(L/a)d−2 where σ

is the rescaled conductivity and B is a dimensionless finite constant. This yields the time
it takes the state to move from a site to a neighboring site δt ∼ (a/L)d−1(1/Λ̂), or

δt < 1/Λ̂ < ∆t

So we see that the avoidance of eternal inflation in the early universe is probably automatic
when the universe is in the conducting component of the landscape, i.e., when Λ > Λc. So
it is reasonable to assume that no eternal inflation happens during the mobile phase.
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• When high up in the landscape, Hawking temperature due 
to the vacuum energy provides a finite temperature effect 
to destabilize local classical vacua (minima) in the cosmic 
landscape.  

• The presence of many moduli (tens to hundreds) makes it 
harder to trap the wavefunction. The wavefunction has 
many directions to spread.

• The presence of many vacua allows resonance tunneling 
to come into play, shortening the decay time of any 
metastable site.

• Treating the cosmic landscape as a random potential, one 
argues that the wavefunction of universe is mobile in the 
landscape, so there is no eternal inflation in the landscape 
until one reaches an exponentially small CC site.

Summary



Remark :
We present a strong argument that eternal inflation is 

improbable in the cosmic landscape.

For those whose work is based on eternal inflation, it is 
important to look closely at this fundamental assumption
that eternal inflation is generic, probable, or even possible

in the cosmic stringy landscape.

The cosmic landscape is 
a quantum landscape.


