Update on Brane Inflation from String Theory

Jim Cline, McGill University

Cosmo 08, Madison, 28 August 2008

Inflation from String Theory is Not Easy

- String theory is a precise and constrained framework. Can't just do whatever you want.
- This is a good thing—focus on fewer classes of models.
- We get novel/complicated Lagrangians which look strange from field theory point of view. (e.g., $\phi^{2/3}$ chaotic inflation from monodromy, Silverstein et al.)
- Also good; this makes stringy inflation potentially distinctive.

Outline

DBI inflation

- Nonlocal (p-adic string theory) inflation
- Racetrack inflation
- Warped brane-antibrane inflation
- D3-D7 inflation

Outline

- DBI inflation
- Nonlocal (p-adic string theory) inflation
- Racetrack inflation
- Warped brane-antibrane inflation
- D3-D7 inflation

examples of difficulties

main subjects

1. DBI inflation

(Alishahiha, Silverstein, Tong, '04) Uses brane motion in type IIB string theory with warped (Klebanov-Strassler) throat:

Metric in throat:

$$ds^{2} = h^{2}(r)(-dt^{2} + a^{2}(t)d\vec{x}^{2}) + h^{-2}(r)dr^{2} + \text{angular}$$

with $h(r) \cong \frac{r}{R}$ (AdS₅) and

 $h(r_0) \sim e^{-\text{fluxes}}$

— exponentially small

D3-brane Dirac-Born-Infeld + SUSY-breaking Lagrangian:

$$\mathcal{L} = -T_3 h^4(r) \sqrt{1 - h^{-4}(r)(\partial r)^2} - V(r)$$

DBI: dinstinctive features

• Warped space can give slow roll despite steep potential, due to relativistic speed limit:

$$\frac{dr}{dt} \rightarrow h^2 = \frac{r^2}{R^2} \rightarrow \frac{r_0^2}{R^2}$$

• Fluctuations are enhanced by relativistic factor

$$\gamma = \frac{1}{\sqrt{1 - h^{-4}(r)(\partial r)^2}}$$

leading to large nongaussianity, $f_{NL} \sim 100$

Bean, Chen, Peiris, Xu, '07 Chen, Huang, Kachru, Shiu, '07

DBI: theoretical challenges

- Strong warping at bottom of throat, needed for slow roll, is generically killed by <u>back-reaction</u>, from:
 - \Rightarrow SUSY-breaking (Maldacena; McAllister, Silverstein '08)

warp factor gives scale of lowest KK masses, which are large due to SUSY-breaking

 \Rightarrow Inflationary background (X. Chen, '08), *i.e.*,

$$h'(r)^2 = \text{vacuum contributions} + \frac{H^2}{h^2}$$

• Almost all phenomenologically acceptable models violate constraint on field range from size of extra dimensions:

Bean, Shandera, Tye, Xu '07 Peiris, Baumann, Friedman, Cooray '07 Allowed models which have observable f_{NL} predict $n_s > 1$.

2. Nonlocal inflation

N. Barnaby, T. Biswas, JC '06; Barnaby, JC '07 & '08

- String theory is UV complete: consistently describes physics above string scale where low energy effective field theory description is inadequate. Can we have inflation above the string scale?
- *p*-adic string theory: worldsheet restricted to *p*-adic numbers (Freund, Olson, Witten '87) sums $\alpha' = m_s^{-2}$ corrections to all orders, giving nonlocal action:

$$S = \frac{m_s^4}{g_s^2} \frac{p^2}{p-1} \int d^{26}x \left(-\frac{1}{2}\phi p^{-\Box/2m_s^2}\phi + \frac{\phi^{p+1}}{p+1} \right)$$

• Theoretical laboratory for studying inflation with $\Box \sim H^2 > m_s^2$ in a theory where higher derivative corrections make sense (*e.g.*, no ghosts: N. Barnaby's talk).

Nonlocal inflation: distinctive features

Can get slow roll from potential

$$V \propto \frac{1}{2}\phi^2 - \frac{1}{p+1}\phi^{p+1}$$

even if naive η parameter $\gg 1$

Last stage of inflation dominated by inflaton *kinetic* energy — new mechansim for slow roll

Nongaussianity can be observably large; large cubic term in V need not spoil slow roll

Nonlocal inflation: problems

• Hard to keep extra dimensions from inflating/backreacting if

 $H > m_s > (\text{size of extra dimensions})^{-1}$ (Spectral index $n_s = 0.96$ requires $H \cong 4m_s$ due to prediction $n_s = 1 - \frac{4}{3} \left(\frac{m_s}{H}\right)^2$)

- *p*-adic string theory doesn't include α' corrections to gravity; we just coupled it to general relativity
- We would need fully string theoretic methods not just effective field theory to investigate realistic string theories; don't know *p*-adic version of superstring

3. Racetrack Inflation

Blanco-Pillado, Burgess, JC, Escoda, Gomez-Reino, Kallosh, Linde, Quevedo, '04 & '06 Kähler moduli can be inflatons in standard compactification with superpotential

$$W = W_0 + Ae^{-aT} + Be^{-bT}$$

or (more realistic "better racetrack")

$$W = W_0 + Ae^{-aT_1} + Be^{-bT_2}$$

Tuning potential gives flat saddle point along some axionic direction, $\phi = c_1 \text{Im}T_1 + c_2 \text{Im}T_2$

hilltop inflation

Racetrack: positive features

- Based on an explicit string compactification, ${\rm I\!P}_{[1,1,1,6,9]}$ (Denef, Douglas, Florea, '04)
- Makes strong prediction for spectral index, $n_s \le 0.95$ (Brax, Davis, Postma, '07)

Eternal topological inflation; needs no tuning of initial conditions

Racetrack: drawbacks

Not particularly fine-tuned, but unattractive parameter values seem to be required in superpotential $(W = W_0 + Ae^{-aT_1} + Be^{-bT_2})$:

$$W_0 = 5.227 \times 10^{-6}, \quad A = 0.56, \quad B = 7.47 \times 10^{-5}$$

$$a = \frac{2\pi}{40}, \quad b = \frac{2\pi}{258}$$

(Note $a, b = \frac{2\pi}{N}$ where SU(N) is condensing gauge group)

4. Warped brane-antibrane inflation

Kachru, Klebanov, Linde, Maldacena, McAllister, Trivedi, '03

Same type IIB setup as DBI; antibranes attract D3 brane:

Coulomb potential is flattened by small warp factor $a_0 = r_0/R$:

$$V(r) \sim a_0^4 V_0 - \frac{a_0^8 T_3 R^4}{2(r-r_0)^4}$$

 η parameter suppressed,

 $\eta \sim a_0^4 \ll 1$

But there is still an η problem!

(KKLMMT '03; DeWolfe, Giddings '02)

Complexify D3 coordinates, $r_{a=1,...,6} \rightarrow \phi_{i=1,...,3}$

Kähler potential for volume modulus T is

$$K = -3\ln(T + \overline{T} - c\,\phi_i\bar{\phi}_i)$$

In SUGRA, F-term potential $V_F \sim e^K$, thus

$$V \sim e^{K} V_0 \sim \tilde{V}_0 \left(1 + \tilde{c} |\phi|^2\right)$$

 $\implies \eta$ parameter is O(1).

Must fine-tune $\eta \rightarrow -0.015$ (WMAP value) using some other correction, *e.g.*, ϕ dependence of nonperturbative superpotential,

$$W = W_0 + A(\phi)e^{-aT}$$

Superpotential corrections

But is such fine-tuning possible? $A(\phi)$ is computable within string theory

(Baumann, Dymarsky, Klebanov, Maldacena, McAllister, Murugan, '06) $A(\phi)$ depends on how stack of N D7 branes is embedded in the warped throat:

Roughly,

$$A(\phi) \sim \left(1 - \left(\frac{\phi}{\phi_{\mu}}\right)^p\right)^{1/N}$$

(angular dependences not shown here)

Burgess, JC, Firouzjahi, Dasgupta '06: Inflation not possible in popular Ouyang '04 embedding—corrections go in wrong direction

"Delicate" brane-antibrane inflation

Baumann, Dymarsky, Klebanov, McAllister, Steinhardt '07 find embedding (Kuperstein '05) where inflation works, with inflection point potential (note intricate form!)

"Delicate" brane-antibrane inflation

Baumann, Dymarsky, Klebanov, McAllister, Steinhardt '07 find embedding (Kuperstein '05) where inflation works, with inflection point potential (note intricate form!)

"Delicate" because small change in parameters destroys inflection point.

Problems: Baumann *et al.* tuned uplifting term D/U^2 to get flat potential. But D/U^2 is fixed by need to have V = 0 at end of inflation. Panda, Sami, Tsujikawa '07: Cannot simultaneously satisfy constraints on n_s and amplitude of CMB fluctuations (??) Underwood, '08: Overshoot problem if ϕ starts too large!

Example of "delicateness" JC, L. Hoi, in progress

Can tune uplifting parameter *s* within narrow range to get inflection point. Amount of tuning depends on value of A_0 in superpotential $W = W_0 + A_0 e^{-aT}$:

Note <u>minimum</u> number of e-foldings! Potential gets local minimum outside these values.

Larger $A_0 \Rightarrow$ less tuning of s, but small A_0 needed for COBE normalization. And s is already fixed by V(0) = 0!

Improved treatment of uplifting

Chen, Gong, Shiu '08; JC, L. Hoi, in progress SUGRA potentials give V < 0 at minimum; SUSY-breaking $\overline{D3}$ at bottom of throat can uplift it (KKLT '03)

For more freedom to tune potential, uplift with extra $\overline{D3}$'s (with tension D_1) in a distant throat.

$$V_{\text{uplift}} \to \frac{1}{(T + \bar{T} - c|\phi|^2)^2} \left(\frac{D_0}{1 + \tilde{c}D_0/\phi^4} + D_1 \right)$$

Can tune D_0/D_1 in place of total uplifting *s*. (Other relevant parameters: A_0 , ϕ_{μ} , *T*.)

How fine tuned is the model?

JC, L. Hoi, in progress

We did Monte Carlo search of parameter space to find least finetuned, phenomenologically acceptable parameters.

Let σ_i define range of parameter λ_i around value $\overline{\lambda}_i$ which is compatible with inflation:

 $\bar{\lambda}_i + \sigma_i < \lambda_i < \bar{\lambda}_i - \sigma_i$

Define local relative volume of N model parameters,

$$V_N(\bar{\lambda}_i) = \prod_{i=1}^N \frac{2\sigma_i}{\bar{\lambda}_i}$$

Large $V_N \leftrightarrow$ less tuning. Average λ_i is tuned to 1 part in $V_N^{-1/N}$.

We find that best region has $V_4 = 0.05$, $V_4^{1/4} \sim 0.5$. This is not fine-tuned at all!

Compare to fiducial point of Baumann *et al.*, $V_4 = 3 \times 10^{-10}$!

Monte Carlo Distributions

JC, L. Hoi, in progress

Example showing relative volume versus inflationary scale:

- Less tuned, large V_4 models appear most frequently in Monte Carlo chains.
- High scale of inflation is favored (but still too low to see tensors).

Dynamical self-tuning of potential

JC & H. Stoica '05 noted that if equilibrium position of brane is shifted to $\phi_0 \neq 0$ and mobile D3 is a stack of N_{D3} branes, potential can get flatter by brane tunneling:

B. Underwood & JC (in preparation): This idea can work in Baumann *et al.* potential, due to attractive force from D7 branes, and form of uplifting + Coulomb potential,

$$V_{\rm uplift} \sim 2 \frac{N_{D3} + M}{1 + cN_{D3}/r^4}$$

If $N_{D3} \gg 1$, V_{uplift} changes by small steps with each brane tunneling. Potential can naturally achieve flat inflection point. Note: solves initial condition problem; rolling branes start at flat point in potential!

5. D3-D7 inflation

Dasgupta, Herdeiro, Hirano, Kallosh '02; Koyama, Tachikawa, Watari '03; Hsu, Kallosh '04; Dasgupta, Hsu, Kallosh, Linde, Zagermann '04; Haack, Kallosh, Krause, Linde, Lüst, Zagermann '08

Type IIB theory compactified on $K3 \times T^2/Z_2$. Inflationary D3 brane moves on torus T^2 , along Re(*z*) direction:

Resembles SUSY D-term hybrid inflation (?). Flat potential along Re(z) is protected by approximate shift symmetry $Re(z) \rightarrow Re(z) + c$

D3-D7 action; shift symmetry

 $K3 \times T^2/Z_2$ has Kähler potential

$$K = -\ln \left(\begin{bmatrix} S + \bar{S} - c(z - \bar{z})^2 \end{bmatrix} \sum_{i=1}^{19} [T_i + \bar{T}_i]^2 \right)$$
volume D3 position K3 moduli

- Has symmetry under shifts of Re(z): gives flat direction in potential at tree level.
- Fayet-Iliopoulos D-term at fixed point #1 gives logarithmic correction to inflaton potential:

$$V_D = \frac{D^2}{2\text{Re}(f_1)}; \quad f_r = S - \frac{1}{a} \Big\{ \ln \vartheta_1 [\pi(z_r - z)|\tau] + \ln \vartheta_1 [\pi(z_r + z)|\tau] \Big\}$$

gauge kinetic fn. Jacobi theta fn. fixed pt. pos. T^2 modular parameter

• But superpotential corrections break shift symmetry more strongly:

$$W = W_0 + \sum_{r} A_r e^{-af_r(S,z)/N_r} + \sum_{i} B_i e^{-b_i T_i}$$

(Burgess, JC, Dasgupta, Firouzjahi '06)

D3-D7: what kind of inflation?

Recent Haack *et al.* paper finds hilltop inflation by tuning (truncated) superpotential correction against D-term:

But they used only small-z limit of F-term potential.

Using exact potential, we (Burgess, JC, Postma) find different result.

(Exact potential is complicated) C. Burgess, JC, M. Postma, work in progress

$$\begin{split} & \left[n(546) = \text{Simplify} [\texttt{V1} / . \tan 2 + \texttt{r}_2 / . \tan 1 + \texttt{r}_1 / . \texttt{Np} + \texttt{Np} / . \texttt{EE} \rightarrow \texttt{D} / . \texttt{VZ} + \texttt{V_s} \right] \\ & \text{oud}(546) = -D / \left(\text{Log} \left[\text{EllipticTheta} \left[1, -\pi \left(\mathbf{x} - \mathbf{i} \, \mathbf{y} \right), \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right] \right] \\ & \text{EllipticTheta} \left[1, \pi \left(\mathbf{x} - \mathbf{i} \, \mathbf{y} \right), \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right] \\ & \text{EllipticTheta} \left[1, \pi \left(\mathbf{x} - \mathbf{i} \, \mathbf{y} \right), \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right] \\ & \text{EllipticTheta} \left[1, \pi \left(\mathbf{x} - \mathbf{i} \, \mathbf{y} \right), \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right] = 2 \text{ SNp} \right) - \\ & \left(a \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right) \text{EllipticTheta} \left[1, \pi \left(\mathbf{x} + \mathbf{i} \, \mathbf{y} \right), \, e^{\mathbf{i} \pi \left(\texttt{r}_1 + \mathbf{i} \, \texttt{r}_2 \right)} \right] \right] - 2 \text{ SNp} \right) - \\ & \left(a \, e^{-2a \cdot 3 - 2b \cdot \textbf{t} - \mathbf{i} \left(a \, \alpha + b \, \beta \right)} \right) \left(2 \, e^{\mathbf{a} \cdot \pi} \, \mathsf{N}_p^2 \, \texttt{r}_2 \, \mathsf{W}_z \left[\mathbf{x} - \mathbf{i} \, \mathbf{y} \right] \, \mathsf{W}_z \left[\mathbf{x} + \mathbf{i} \, \mathbf{y} \right] \right] \\ & \left(b \, B \, e^{\mathbf{a} \left(\mathbf{s} + \mathbf{i} \, \alpha \right)} \right) \left(2 \, e^{\mathbf{a} \cdot \pi} \, \mathsf{N}_p^2 \, \texttt{r}_2 \, \mathsf{W}_z \left[\mathbf{x} - \mathbf{i} \, \mathbf{y} \right] \, \mathsf{W}_z \left[\mathbf{x} + \mathbf{i} \, \mathbf{y} \right] \right) \\ & \left(-2 \, \pi \left(B \, e^{\mathbf{a} \, b \, \beta} \, (2 + b \, t \right) + e^{b \, t} \left(1 + e^{2 \cdot \mathbf{a} \, \beta} \right) \, \mathsf{W0} \right) \, \texttt{r}_2 + A \, e^{b \, (t + \mathbf{i} \, \beta)} \\ & \left(-2 \, \pi \left(B \, e^{\mathbf{a} \, b \, \beta} \, e^{\mathbf{b} \, \mathsf{W0} \right) \, y^2 + \left(b \, B \, e^{\mathbf{a} \, b \, \beta} \, t + \mathbf{a} \, s \left(B \, e^{\mathbf{a} \, b \, \beta} \, t + \mathbf{a} \, s \left(B \, e^{\mathbf{a} \, b \, \beta} \, t + \mathbf{a} \, s \left(B \, e^{\mathbf{a} \, b \, \beta} \, t + \mathbf{a} \, s \right) \right) \\ & \left(4 \, \mathbf{a} \, \pi \, \mathsf{y} \, \mathsf{y} \, \mathsf{w}_z \left[\mathbf{x} + \mathbf{i} \, \mathbf{y} \right] + t_2 \, \mathsf{W}_z' \left[\mathbf{x} + \mathbf{i} \, \mathbf{y} \right] \right) + 2 \, A \, e^{\mathbf{b} \, t + \mathbf{a} \, \alpha} \, \pi \, \mathsf{N} \, \mathsf{W}_z \left[\mathbf{x} - \mathbf{i} \, \mathbf{y} \right]^{1 + \frac{1}{\mathbf{B}_p}} \\ & \left(e^{\mathbf{a} \, (s + \mathbf{i} \, \alpha)} \, \mathsf{N}_p \, \tau_2 \left(-2 \, \pi \, \left(B \, e^{\mathbf{b} \, (t + \mathbf{i} \, \beta)} \, \mathsf{W0} \right) \, y^2 + \left(b \, B \, t + \mathbf{a} \, s \, \left(B \, e^{\mathbf{b} \, (t + \mathbf{i} \, \beta)} \, \mathsf{W0} \right) \right) \tau_2 \right) \\ & \mathsf{W}_z \left[\mathbf{x} + \mathbf{i} \, \mathbf{y} \right] + 2 \, A \, e^{\mathbf{b} \, (t + \mathbf{i} \, \beta)} \, \mathsf{N}_p \left(-4 \, \pi^2 \, \mathbf{y}^4 - 2 \, \pi \, \mathbf{y}^2 \, \tau_2 \, \mathbf{a} \, s \, (1 + \mathbf{a} \, s) \, \tau_2^2 \right) \, \mathsf{W}_z \left[\mathbf{x}$$

where

$$W_z(z) = \theta_1(\pi(z - \frac{1}{2})|\tau)\theta_1(\pi(z + \frac{1}{2})|\tau)$$

Why D3-D7 hilltop inflation fails

Potential of form $V = -\frac{1}{2}m^2\phi^2 + A\ln\phi$ has $V'' = -2m^2$ at maximum; must tune m^2 small to get inflation.

But minimum is very shallow for small m^2 . Uplifting term destroys minimum even at $10^{-6} \times$ strength needed for uplifting!

 $\lambda \phi^4$ term becomes important when m^2 is small.

D3-D7: inflection point inflation?

C. Burgess, JC, M. Postma, work in progress Using exact potential, we instead find inflection point potential:

- However, *extreme* fine tuning of parameters and initial condition is required to get enough inflation.
- Must tune to 7th digit in potential and 3rd digit in initial conditions for 60 e-foldings! Much more delicate than $D3-\overline{D3}$ inflation.
- D-terms are also theoretically problematic—difficult to keep them nonzero when charged fields relax to minimum.

Better alternative: warped saddle point

(Burgess, JC, Postma, in progress)

Use warped K3 background (Dasgupta, Rajesh, Sethi '99) with anti-D3 uplifting,

$$V_{\text{uplift}} \sim e^{\frac{2}{3}K(z,S,T_i)}$$

Assume D3 can be stabilized high in throat, by superpotential corrections of K3 moduli.

We find saddle point at $z_1 \equiv \operatorname{Re}(z) = \frac{1}{2}, \ \alpha = \pi$ $\alpha = \operatorname{axion of } S$ (volume) modulus; Inflaton direction $= 0.99\hat{\alpha} - 0.16\hat{z}_1$

Better alternative: warped saddle point

(Burgess, JC, Postma, in progress)

Use warped K3 background (Dasgupta, Rajesh, Sethi '99) with anti-D3 uplifting,

$$V_{\text{uplift}} \sim e^{\frac{2}{3}K(z,S,T_i)}$$

Assume D3 can be stabilized high in throat, by superpotential corrections of K3 moduli.

We find saddle point at $z_1 \equiv \operatorname{Re}(z) = \frac{1}{2}, \ \alpha = \pi$ $\alpha = \operatorname{axion of } S$ (volume) modulus; Inflaton direction $= 0.99\hat{\alpha} - 0.16\hat{z}_1$

Resembles racetrack inflation

But it is easier to obtain—need only tune T^2 modular parameter τ . A, B, a, b can take any values.

Take $\operatorname{Re}(\tau) = 0$ for simplicity. Need $\operatorname{Im}(\tau) \cong 1.00272 - 1.00283$

 T^2 is very close to being square.

No initial condition problem, inflation is eternal. $n_s \leq 0.95$ for all values of η_{saddle} , just like racetrack model.

We did not find other scenarios for inflation in this model.

Conclusions

- String cosmology has advanced significantly: specific, detailed and constrained string theory constructions are combined with precision data
- Some popular models of string inflation are now disfavored by requirements of internal consistency and data
- Brane inflation scenarios are among most highly developed and studied; seem capable of passing all consistency tests and experimental constraints
- D3-D3 inflation not so fine-tuned as initially believed; novel possibility of dynamical self-tuning mechanism by brane tunneling, solving initial condition problem
- D3-D7 with warping and antibrane uplifting may provide a more natural version of racetrack-like inflation