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A Power Asymmety?

Isotropic or Asymmetric!?
A=7
D=7

I 175 uK
WMARP First Year Low-Resolution Map

Image from Eriksen, et al. astro-ph/030/507

Cosmo ‘08: August 25,2008



An Asymmetric Universe!

: , ) Hansen, Banday, Gorski,
There is a hemispherical power asymmetry! There 2004

is more power on large scales south of the ecliptic.
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Eriksen, Hansen, Banday,
Gorski, Lilie 2004
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An Asymmetric Universe!

: , ) Hansen, Banday, Gorski,
There is a hemispherical power asymmetry! There 2004

. JRPR Eriksen, Hansen, Banday,
is more power on large scales south of the ecliptic. Gorskd Lile 2004

©® Power asymmetry is maximized when the “equatorial” plane is tilted with
respect to the Galactic plane: “north” pole at (¢,0) = (237°, —10°).
©® Only 0.7% of simulated isotropic maps contain this much asymmetry.
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The asymmetry persists in the WMAP3 data.
) =s(n)[1+ A(7-p)] + N(n)

An Asymmetric Universe!

A

T(n

Probability distribution
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N

Eriksen, Banday, Gorski,
Hansen, Lilie 2007

Bayesian analysis: A ~ (.12
north™ p ) ~ (210°, —27°)

pole:

The probability of measuring

| this amplitude or larger given
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Eriksen, et al. astro-ph/070108
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The asymmetry persists in the WMAP3 data.

An Asymmetric Universe!

A

Eriksen, Banday, Gorski,
Hansen, Lilie 2007

T(n) =s(n) |1+ A(n-p)] + N(n)
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The asymmetry is difficult to
explain with foregrounds:
present in all colors
not aligned with the Galaxy

The asymmetry is difficult to

| explain with systematics:

also detected by COBE

Hansen, et al. 2004, Eriksen, et al. 2004



Asymmetry from a “Supermode”

The amplitude of quantum

f

v t
0P ¢

py — 2 {H(@T

uctuations depends on
ne background value of

ne inflaton field.
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Power Spectrum of Potential Fluctuations
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Asymmetry from a “Supermode”

The amplitude of quantum

f

uctuations depends on

A 7 the background value of
Jo the inflaton field.
) . 2 [H(¢)?]

Power Spectrum of Potential Fluctuations

0
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' Create asymmetry by

adding a large-amplitude
superhorizon fluctuation:
a “supermode.”



Asymmetry from a “Supermode”

A modulation amplitude A ~ 0.12 —

APy (k)

Py (k)s600

Y

-0.20

Generating this much asymmetry requires a BIG supermode.
® Perturbations with different wavelengths are very weakly coupled.

® The fluctuation power is not very sensitive to ¢ <= ng, ~ 1.

AP\I; s
— 2. /51 —n,
= ﬁ( ne)
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Asymmetry from a “Supermode”

AP
A modulation amplitude A ~ 0.12 — w (k) ~ £0.20

Py (k)s600

Generating this much asymmetry requires a BIG supermode.

® Perturbations with different wavelengths are very weakly coupled.
® The fluctuation power is not very sensitive to ¢ <= ngs ~ 1.

AP\I; s A¢
— —2./—(1 —n,)—=
P\;[; E( " )mp1

Ap — AV — AT
Surely the resulting
| temperature dipole would

be far too large?
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The Dipole Sometimes Cancels...

The SW Effect In an Einstein - deSitter Universe,

a superhorizon perturbation

induces no CMB dipole. Grishchuk Zeldovich
1978

® The SW dipole is cancelled by the
Doppler dipole.

+AV e AV
@ If there is radiation or a cosmological

The Doppler Effect constant, then the Dopper dipole is
reduced.

® The ISWV dipole will partially cancel the
SWV dipole.

Will a superhorizon perturbation
+AU o AV jnduce a CMB dipole in our Universe?
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The Dipole Cancels!

Superhorizon perturbation: ¥(Z,t) = Ugy(t)sinfk - £ + ]

: . distance to last FH-Y <« 1
Temperature anisotropy: oo .
AT - - * 1 —
—(7) = Usu [(k  Tq)01 cosww — (k- 2q)200 s — (K - 74)35 COZ“
Observed CMB Dipole Quadrupole Octupole
lemperature
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The Dipole Cancels!

Superhorizon perturbation: ¥(Z,t) = Ugy(t)sinfk - £ + ]
Temperature anisotropy:

AT ) ! . ]
_(ﬁ) = Wam [(k : fdosw - (k . fd)25281nw B (k . a_j,d)353cosw

T

0.4 - 1 1 1 1 1 1 1 | | | | | | - . . .
02 F ! ! ! 'SW+DOP E includes radiation
‘0‘-' o; —-—:::::::::::::::===—==_-_-_H_-_-_-'—_i_ ______ no radiation
-0.2 - ISW E
_0‘4 - 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 -
0.2 0.4 0.6 0.8 | .
0O The dipole cancels
oa for all flat ACDM
. 1 1 1 llllll 1 1 1 llllll I | | lllll:II o o
E E sw+Dop 4 UNiverses, even if
O T Ty —————— JAPIC SRR P
'O‘ZE <4 radiation is included.
~0.4 . Ll Lo d
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The Quadrupole and Octupole

Superhorizon perturbation: ¥(#,t) = Usy(t)sinfk - 7 + ]
Temperature anisotropy:

AVA _—_ - sin o - COS 0

T — () = ¥sw [(’6 Faydreosew — (k- Za)* 02 — (k- 4)°03 :
Observed CMB Dipole Quadrupole Octupole
lemperature

The supermode generates a CMB quadrupole and octupole.
AV ~ (kxq)WPsn| cos o

\ distance to last

g scattering surface

< >
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The Quadrupole and Octupole

Superhorizon perturbation: ¥(#,t) = Usy(t)sinfk - 7 + ]

Temperature anisotropy:

AVA -

. —(n) = ¥gm [{—k—:ﬁ—}é—l—ees-ﬁ—
Observed CMB Dipole
lemperature

The supermode generates a CMB quadrupole and octupole.
AV ~ (kxq)¥Psm|cos o] Quadrupole Constraint:

distance to last A\I}(kxd)‘ taan| S 5. SQ

g scattering surface

(k- Zq)° 52 5

Quadrupole Octupole

vanishes if
w =10

Q <3¢/Cy~1.8x107°

\azo!

< >
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The Quadrupole and Octupole

Superhorizon perturbation: V(Z,t) = ¥sn(t)sin[k - ¥ + w]
Temperature anisotropy:

AV A o =

) = Vo |(Rrforeoow — (F-20) "
Observed CMB Dipole Quadrupole Octupole
lemperature

The supermode generates a CMB quadrupole and octupole.
AV ~ (kxq)¥Psm|cos o] Octupole Constraint:

distance to last 2 -
v scattering surface A\Ij(kxd) S 320 asol
O <$3/C3 ~2.7x107°

< >
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The Quadrupole and Octupole

Superhorizon perturbation: ¥(#,t) = Usy(t)sinfk - 7 + ]
Temperature anisotropy:

AVA _—_ - Smw
i —(n) = ¥gm [{—k—:ﬁ—}é—l—ees-ﬁ—(k-azd) 09 5
Observed CMB Dipole Quadrupole Octupole
lemperature
The supermode generates a CMB quadrupole and octupole.
AV =~ (kxq)WPsm| cos @ Octupole Constraint:

i Akra)” £ 820
‘ O $3y/C3~27%x107°
% V| < 1= AV < kx4
AV < [320]Y3 = 0.095
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The Quadrupole and Octupole

Superhorizon perturbation: V(Z,t) = ¥sn(t)sin[k - ¥ + w]
Temperature anisotropy:

AT _—_ - sin o
T(n) = Uqn [{—k—:@—}é—l—ees-ﬁ — (k- 24)%02 5
Observed CMB Dipole Quadrupole Octupole
lemperature
The supermode generates a CMB quadrupole and octupole.
AV =~ (kxq)WPsm| cos @ Octupole Constraint:

distance to last - AW < [320]1/3 = 0.095

g scattering surface AP
‘ Recall: 2 Y x Ad x AT

0

| AV

< >
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The Quadrupole and Octupole

Superhorizon perturbation: V(Z,t) = ¥sn(t)sin[k - ¥ + w]
Temperature anisotropy:

T () iz — (k- #a)?03——
Obse Quadrupole

adrupole and octupole.
upole Constraint:

b < (32013 = 0.095
xX Ap x AW
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The Curvaton to the Rescue!

The problem with the inflaton model is two-fold:

® The fluctuation power is only weakly dependent on the background value.
® The inflaton dominates the energy density of the universe, so a
“supermode” in the inflaton field generates a huge potential perturbation.
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The Curvaton to the Rescue!

The solution: the primordial fluctuations could be
generated by a subdominant scalar field, the curvaton.
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The Curvaton to the Rescue!

The solution: the primordial fluctuations could be

generated by a subdominant scalar field, the curvaton.

The Curvaton Model of Inflation
Mollerach 1990; Linde, Mukhanov | 997; Lyth, Wands 2002; Moroi, lakahashi 200 |

@ The inflaton still dominates the energy density and drives inflation.

® The curvaton (U) is a light scalar field during inflation: m, < Hine ()
Hinf

1
2 2 qucjﬂtum (50_)rms _ 5 <G
74

tentia V(o) = =mio |
potential: V(o) o fluctuations:

2
® After inflation, when m, >~ H ,the curvaton oscillates in its potential.

® Then the curvaton decays into radiation; its quantum fluctuations produce
a spectrum of adiabatic perturbations.
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The Curvaton to the Rescue!

The solution: the primordial fluctuations could be

generated by a subdominant scalar field, the curvaton.

The Curvaton Model of Inflation
Mollerach 1990; Linde, Mukhanov | 997; Lyth, Wands 2002; Moroi, lakahashi 200 |

@ The inflaton still dominates the energy density and drives inflation.

® The curvaton (0) is a light scalar field during inflation: m, < Hine ()
Hinf

1
2 2 QUGﬂtum (50_)rms _ 5 <G
74

tentia V(o) = =mio |
potential: V(o) o fluctuations:
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® Then the curvaton decays into radiation; its quantum fluctuations produce
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The Curvaton to the Rescue!

The solution: the primordial fluctuations could be

generated by a subdominant scalar field, the curvaton.

The Curvaton Model of Inflation
Mollerach 1990; Linde, Mukhanov | 997; Lyth, Wands 2002; Moroi, lakahashi 200 |

@ The inflaton still dominates the energy density and drives inflation.

® The curvaton (0) is a light scalar field during inflation: m, < Hine ()
Hinf

. 1 2 9 quantum N _
potential: V (o) = §m00 fuctuations (60)rms = o L0

® After inflation, when m, >~ H ,the curvaton oscillates in its potential.
® Then the curvaton decays into radiation; its quantum fluctuations produce
a spectrum of adiabatic perturbations. ;-
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Curvaton Supermodes in the CMB

Curvaton supermode:
00 (Z,t) = osm(t) sinlk - & + w|

The curvaton supermode
generates a superhorizon potential . g

fluctuation, but it is suppressed.
R = ps/p just prior to decay

_ _\ 2]
- Ap(E) ()]
5 o2 ; Po
The potential perturbation is not sinusoidal!

® The CMB quadrupole and octupole have complicated @ dependences.
® There is still a quadrupole if @ = 0.
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Curvaton Supermodes in the CMB

The CMB quadrupole implies an upper bound:

N
R<£> S 5(5.8Q) for @w =20

o 2 Most other phases

give similar bounds.

R = ps/p just prior to decay

_ N\ 2]
- Ap(E) ()]
5) o) ; Po
The potential perturbation is not sinusoidal!

® The CMB quadrupole and octupole have complicated @ dependences.
® There is still a quadrupole if @ = 0.
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Constraining the Curvaton Model

The curvaton and inflaton 10-!
both contribute to Py (k): &b ome
¢ = Py o fractional power
- Py from curvaton Il 10-8

APy AT power o

Py — _26? asymmetry 10~4
Ao | AN 27

— S 1=& =

o S 2 Py

0 0.2 0.4 0.6 0.8 1
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Constraining the Curvaton Model

The curvaton and inflaton 10-1

both contribute to Py (k): &b me

¢ = Py o fractional power
- Py _from curvaton Il 10-3
AVE ¢ AT power 0
o

asymmetry 10~4

Ao | AN 27
_ ] — 2 _
o S S 2 Py

CMB Quadrupole:

R (%)2 < 2(5.8@

APy ) —2

2
R 5 58Q¢ ( Py
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Constraining the Curvaton Model

Non-Gaussianity Constraints  10-

27] Q

U — _E 9 6_0 i 5_0 Eﬂo'2

5 o o
T | - T T 4l 10-3
plelicialile] Gaussian  Gaussian ~ pe
fluctuation  fluctuation fluctuation 10-4

squared 0 0.2 0.4 0.6 0.8 1

5 52 Lyth, Ungarelli, Wands 2003, §= P\If,a/ P\IJ

fNL ~ 2 Ichikawa, Suyama,

_ 4R Takahashi,Yamaguchi 2008 QIO" T [ T T T [ T 11
Upperbound from WMAP: ™ 10-

Q.
Komatsu et al. 2008
fnL S 100 Yadav, Wandelt 2008 Il 10-2

e
10-4

0] 0.2 0.4 0.6 0.8 |
g = P\I/,a/ P\I!

Cosmo ‘08: August 25,2008 13



Constraining the Curvaton Model

The Allowed Region 10~

Q
: < E < 58 Q) \:>1o-2

4 fNLomax €2 ™ (APg/Py)? ”
Non-Gaussianity T CMB Quadrupole 10-2
=

Allowed window

104

0] 0.2 0.4 0.6 0.8 |
g = P\Il,a/ P\I!
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Constraining the Curvaton Model

The Allowed Region 10~

Q
bR 58Q -

4 fNLomax €2 ™ (APg/Py)? ”
Non-Gaussianity T CMB Quadrupole 10-2
=

Allowed window

104

The window for

: - <
disappears if /NL,max < 90 04 06

gzzl?ﬂha//IJW
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Summary: How to Generate the Power Asymmetry

. . AP
There is a power asymmetry in the CMB. = 2 —0.20
® present at the 99% confidence level

® detected on large scales
Hansen, Banday, Gorski, 2004

Eriksen, Hansen, Banday, Gorski, Lilie 2004
Eriksen, Banday, Gorski, Hansen, Lilie 2007

—175 uK i 175 uK
A superhorizon perturbation during inflation
generates a power asymmetry.

© also generates large-scale CMB temperature perturbations

® no dipole; quadrupole and octupole set limits.
Erickcek, Carroll, Kamionkowski arXiv:0808.1570 oo

® an inflaton perturbation is ruled out

® a curvaton perturbation is a viable source of the L~ 00

observed asymmetry
Erickcek, Kamionkowski, Carroll arXiv:0806.037/7
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Summary: How to Generate the Power Asymmetry

APy

There is a power asymmetry in the CMB. =
4

® present at the 99% confidence level
® detected on large scales
Hansen, Banday, Gorski, 2004

Eriksen, Hansen, Banday, Gorski, Lilie 2004
Eriksen, Banday, Gorski, Hansen, Lilie 2007

= 0.20

Features of the Curvaton-Generated Power Asymmetry
® the superhorizon curvaton perturbation is

not a quantum fluctuation
® the produced asymmetry is scale-invariant, 27

but it may be possible to modify that

® suppressed tensor-scalar ratio: r o« (1 — &) ™~ 0o
® high non-Gaussianity: fxr, < 50

Cosmo ‘08: August 25,2008 14



Cosmo ‘08: August 25,2008



