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The LUX experiment is a dual phase liquid xenon time projection chamber whose primary purpose
is the detection of WIMP dark matter. To distinguish between background interactions and WIMP
interactions both electron and nuclear recoil responses need to be calibrated. LUX uses 2.45 MeV
neutrons from deuterium-deuterium fusion to carry out the nuclear calibration. A simple Monte
Carlo simulation of this calibration was carried out. Many different interaction scenarios were
considered, and discussed. These were classified into pristine, false-pristine, or vetoable events,
depending on whether they perfectly fulfilled the requirements of the calibration method, did not
but were indistinguishable from those that did, or were distinguishable respectively. The probability
of an event being pristine was found to be ≈ 1.4% and the probability that a pristine-looking event
was actually false-pristine was found to be ≈ 30%.

I. INTRODUCTION

The Large Underground Xenon (LUX) experiment is
a two-phase Time Projection Chamber (TPC) that uses
xenon as its active volume. Its primary purpose is to
attempt to detect the recoil of Weakly Interacting Mas-
sive Particles (WIMPs) off of nuclei in its active volume,
and thus discover the existence (or non-existence) of the
WIMP dark-matter candidate. (citation)

A. The LUX Detector

The LUX TPC is a nearly-cylindrical dodecagonal
prism 50 cm in diameter with an active vertical length of
49 cm. The TPC encloses nearly 300 kg of xenon.

The TPC works by comparing the yield of two signals.
The first is a prompt scintillation signal emitted when
energy is first deposited a particle into the Xenon (S1).
Electrons freed by the initial interaction are drifted by
an electric field to a surface between gaseous and liquid
Xenon maintained between two wire grids. Upon en-
countering the surface these electrons are extracted from
the liquid by means of a stronger magnetic field created
by these two grids. Extracted electrons, being no longer
encumbered by a dense liquid, accelerate in the field pro-
ducing a secondary scintillation signal in the Xenon gas
(S2). Both the S1 and S2 signals are detected by an array
of photomultiplier tubes (PMTs) located at both the top
and the bottom of the detector.

The location of the S2 signal (reconstructed by tem-
plate matching the hit-pattern of the signal on the up-
per PMT array) is used to determine the xy (parallel to
liquid surface) position of a given recoil, while the time-
delay between the S1 (prompt) and S2 (electrolumines-
cent) scintillation signals gives a precise measurement of
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FIG. 1. A particle interaction creates prompt S1 light. Ion-
ization electrons created in this interaction drift to the surface
and create S2 light. Light is detected by an array of PMTs on
the top and bottom. More red corresponds to a higher num-
ber of photons seen by they PMT where deeper blue indicates
fewer. The curves on the right indicate the total amount of
light observed in all PMTs as a function of time. In princi-
ple a particle may continue on after scattering but this is not
shown.

a the z position. The total amount of light measured by
either signal, or more commonly a combination of both,
can be used to determine the amount of energy deposited
during the course of a recoil. Figure 1 illustrates this pro-
cess.

Because the WIMP-nucleon cross-section is very small
(if it exists at all), interactions are expected to be
rare, and backgrounds must therefore be minimized.
Background minimization is accomplished in three ways.
First, the experiment is located 1,478 meters (4850 feet)
underground in the Sanford Underground Research Fa-
cility (SURF) in Lead, South Dakota. This protects the
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detector from all but a small number of cosmic rays (ci-
tation). Second, a tank of water (need number) is placed
around the detector to shield radiation emanated from
heavy metals in the cavern rock wall. Third, only data
from the innermost portion of Xe is used for WIMP
search, the outer shell being used as a shield against ra-
diation produced by the detector walls themselves. A
more complete description detailing the physical design
of LUX can be found in (citation).

Despite all of this shielding, background events are still
present in small amounts. Therefore, any differences be-
tween the signals arising from backgrounds, and signals
arising from possible WIMP interactions must be well
understood. There are two primary types of signals in
the LUX detector. Electron recoils, in which an inci-
dent particle interacts with the coulomb field created by a
xenon atom’s surrounding electrons, and nuclear recoils,
in which a particle interacts directly with the nucleus, or
one of its nucleons, typically, via either the strong or the
weak nuclear force.

Particles which have the capability of interacting via
the electromagnetic force nearly always interact via elec-
tronic recoils. This includes electrons, positrons, pro-
tons, alphas, and photons. Particles which cannot in-
teract via the electromagnetic force, interact via nuclear
recoils. The list of particles which interact in this manner
includes neutrons, neutrinos, and, if they exist, WIMPs.
The interaction rate of neutrons and neutrinos outside
of calibration runs are both estimated at less than one
event for the duration of the experiment, so a distinction
between electron recoil events and nuclear recoil events is
effectively a distinction between signal and background.
(citation)

Given the importance of distinguishing between elec-
tronic, and nuclear recoil events, both must be calibrated
carefully in order to construct a model for classifying
each event (or, depending on statistical methodology con-
structing an overall model of expected outcome based on
various WIMP signal strengths). Models usually differ-
entiate between electron and nuclear recoils based on the
ratio of light detected via the S2 signal vs the S1 signal.
Electron recoil calibration is done using gamma rays from
the de-excitation of the krypton metastable state 83mKr,
and using betas from the beta decay of tritium bound
into methane CH3T. Nuclear recoil calibration utilizes
neutrons created via deuterium-deuterium fusion. (Cita-
tion)

B. Using Neutrons to Calibrate for WIMP
Deposited Energy

Neutrons, being neutral, interact with atomic nuclei
and thus neutron recoils can be used to precisely cali-
brate nuclear recoils. The long mean free path of fast
neutrons also lends itself well to calibration of a single
scatter event, simulating the single hit that would oc-
cur if a WIMP (very small cross-section) were to interact

with the detector.
The frequency of spin-independent WIMP interactions

is expected to decrease exponentially as a function of the
interaction’s deposited energy in the detector. (citation)
The LUX detector has an energy detection threshold that
ranges from 0% at 1.1 keV of energy deposited increasing
to nearly 100% at a deposition energy of 8.3. (cita-
tion) Thus, the desired range of energy depositions from
a neutron calibration source is the tens-of-keV range.

Deuterium-deuterium fusion has two possible out-
comes, the fusion can produce either a tritium and pro-
ton, or a helium-3 (3He) and a neutron, both with a
nearly 50% branching ratio at all energies. (citation) We
are only concerned with the neutron-producing reaction
which has a Q-value of 2mD2−(m3He+mn) = 3.268 MeV.
(citation) Deuterium only needs to be accelerated to
80 keV in order to stimulate the reaction, this is in-
significant compared to the 3.268 MeV and leaves us
squarely in the non-relativistic regime, where kinetic en-

ergy T = p2

2m where p is momentum. This implies that

since p3He ≈ pn the neutron always recieves 3
4 of the

3.268 MeV, or 2.45 MeV since m3He ≈ 3mn.
A straightforward application of kinematics shows that

the maximum possible xenon recoil energy from a single
scatter is

T ′Xe =
4mnmXe

(mn +mXe)2
Tn

which, for a 2.45 MeV neutron is 74 keV. This fits well
into the desired range for recoil energies.

Though the recoil track of a Xe nucleus cannot be ob-
served directly in the LUX detector, the amount of en-
ergy deposited in an elastic collision can be precisely de-
termined in the non-relativistic limit if the initial energy
and scattering angle of the neutron are well-known. In

the non-relativistic limit, T = p2

2m , or p =
√

2mT , the
elastic collision of a neutron with a stationary (or nearly
stationary) nucleus can be written as follows:

p2n
2mn

=
p′2n

2mn
+

p′2Xe
2mXe

pn = p′n cos θ + p′Xe cosφ

0 = p′n sin θ + p′Xe sinφ

solving this system for T ′Xe in terms of the incident energy

Tn =
p2n
2mn

and the neutron scattering angle θ gives

T ′Xe = Tn
4mnmXe

(mn +mXe)2
1− cos θ

2
.

Therefore, as long as the incident energy Tn and scat-
tering angle of the neutron θ are known, the energy de-
posited by a given scatter can be determined. (citation)
Of course, this result does not hold if the collision is in-
elastic.

The monoenergetic nature of neutrons resulting from
deuterium-deuterium fusion provides further motivation
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for its use, because the incident energy of the first scatter
is always known. The primary remaining concern, then,
is the determination of the neutron scattering angle θ.

C. The LUX Neutron Calibration Scheme

LUX uses an Adelphi Technology, Inc. DD108 neu-
tron generator to create the neutrons for use in calibra-
tion. The generator is placed outside the water tank, and
emits nearly isotropically into 4π. Shielding is placed
around the majority of the generator and an air-filled
tube 4.9 cm in diameter (inner-diameter) was placed in
the water tank to allow passage of neutrons into the de-
tector. The tube is centered along the side of the detector
and placed at 16.1 cm below the liquid surface. The tube
is leveled so as to be nearly (but unfortunately not quite)
horizontal. This tube serves to allow passage for neutrons
into the detector, but also serves to collimate the neutron
flux. The generator is typically placed ≈ 45 cm from the
water tank, the tube is 377 cm long, and there is ≈ 3 cm
of water before the tube begins inside the tank. (Cita-
tion) So the neutrons must emerge from a disk 2.45 cm in
radius at a distance of 425 cm. This yields an acceptance

of π∗2.452
4∗π∗4252 = 8.6× 10−6 and a maximum incident angle

of 0.0058 rad (0.33 deg) from parallel to the tube. In this
way, we know the kinetic energy and incident angle of
incident neutrons to a high degree of precision.

The LUX detector only detects the position, time, and
magnitude of energy depositions. Because we with to
know the angle at which the neutron scattered, we must
select only events that scatter multiple times (preferably
exactly two) in the active region of the detector. This
allows us to measure the position of the two events, and
thus, the angle at which the neutron scattered off of the
Xe. Knowing this, the energy of the first scatter can be
determined and compared against its S2 signal, assum-
ing the S2 signals from the two events can be resolved
separately. An illustration of this process is displayed in
figure 2.

The scheme described above works very well. However,
there are many scattering scenarios that can either fool
us, or render it very difficult, if not impossible, to use
a given event. Determining what fraction of events are
tricking us, how many we can reject as not useful, and
how many we can actually use is the focus of the rest of
this paper.

II. METHODS

The existence of many of these subtleties in the scatters
of individual events, as well as the high density of reso-
nances in the neutron-Xe scattering cross section near
(but thankfully not at) 2.45 MeV makes analytical anal-
ysis of this multiple scattering process intractable. In-
stead, monte carlo simulation is used to get a handle on

FIG. 2. Diagram of an ideal event in the LUX nuclear cali-
bration setup. 2.45 MeV neutrons produced by the generator
emerge from the collimator and scatter in the liquid Xe por-
tion of the TPC. Two scatters take place in the active region
and the surviving neutron exits the detector. Two distinct
S2 signals originating from the two scatters can be resolved.
Note that they y′ axis in this figure corresponds to the z axis
in the simulation described in section II B

.

these events, with a brief analytical analysis used only to
cross-check simulation results.

A. Expected Simulation Results for the First
Scatter

According to the National Nuclear Data Center cu-
rated by Brookhaven National Laboratory, the neutron-
Xe total cross section at 2.45 MeV is ≈ 5.95 b. (citation)
The narrow-beam attenuation coefficient is therefore

µ =
ρNA
A

σ ≈ 3.1 g cm−3 · 6.022× 1023

131.1 g mol−1
· 5.95× 10−24 cm2

= 0.085 cm−1

where µ is the narrow-beam attenuation coefficient, ρ is
the density of the medium, NA is Avogadro’s Number,
A is the atomic weight of the element, and σ is the to-
tal cross section. This means that the distribution of
penetration depth for a neutron first-scatter should be
a decaying exponential d(x) = ke−µx where k is a con-
stant and µ = 0.085 cm−1 as determined above. (cita-
tion) µ = 0.085 cm−1 corresponds to a mean free path of
11.8 cm. We expect to see this reproduced in our simu-
lation.
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Due to excess radiation from the wall of the detector,
and possible contamination from slower neutrons that
escaped from the tube have scattered in from the water
tank, only first scatters that occur more than 15 cm from
the point the beam enters the detector. (citation) The
probability of interaction within the first chunk of length
x in a medium is given by

P (x) = 1− e−µx.

Therefore the probability of first interaction occurring
after between 15 cm and 50 cm (the back of the detector)
should be

P (15 cm, 50 cm) = P (50 cm)− P (15 cm)

= 1− e−0.085 cm−1·50 cm − (1− e−0.085 cm−1·15 cm)

= 0.279− .014 = 0.265.

Furthermore, recall that our energy reconstruction
method only works for elastic scattering. We can de-
termine the number of elastic scatters in our region of
interest by replacing our previous P (x) by

Pes(x) =
µes
µ
e−µx

where µ is still the total thin-beam attenuation coeffi-
cient, but µes is the elastic scatter only attenuation co-
efficient. (citation) The National Nuclear Data Center
gives σes a value of ≈ 5.72 b which corresponds to a µes
of 0.81 cm−1. Therefore, the fraction of first scatters that
are actually elastic is ≈ .81

.85 · .265 = .253 or ≈ 95% of the
total interactions. We also expect to see this approximate
result reproduced in our simulation.

B. The Monte Carlo Simulation

The simulations were done using an application built
from the Geant4 simulation toolkit. Geant4 version
10.02.p02, the most recent version as of the date of this
publication, was used. Geant4 requires user-definition of
all physics processes that are allowed to take place dur-
ing a simulation. A number collections of processes are
included with Geant4 and are called ”reference physics
lists.” (citation) One of these called ”QGSP BIC HP”
that, among other things, specializes in the correct han-
dling of neutron interactions below 20 MeV (citation) was
chosen.

The geometry used in this study was simply a cube of
liquid Xe 12 m on a side embedded at the center of the
world defined as a vacuum cube 14 m on a side. The
liquid xenon was created in the simulation by telling
Geant4 its atomic number, atomic weight, and mass den-
sity. Neutrons are fired in the +Z direction from a disk
2.45 cm in radius centered at the origin with extent in
the xy plane. Initial particle positions are chosen ran-
domly from a uniform probability distribution on this

disk. All neutrons are fired with a kinetic energy of ex-
actly 2.45 MeV. These particles and any secondaries cre-
ated via particle interaction are simulated until all par-
ticle kinetic energies reach 0, or the particle in question
leaves the 14 m world. In practice, the particles in this
particular simulation do not reach the edge, but come to
a stop within the liquid Xe.

Each event (a single firing of a neutron) is made up
of a number of ”tracks,” each representing a particle as
it travels through the medium (In fact, some particles
are split into multiple tracks, a fact that caused no end
of headaches in performing the analysis). Each track is
made up of ”steps,” each representing an interaction, or
transition from one material to another. After an event is
simulated, this information is contained in class objects
called ”Trajectory” and ”Point” respectively, which can
be used for analysis until the next event is simulated.
(citation)

1.5 million events were simulated in total.

C. Analysis of the Monte Carlo

After each event was simulated, it was analyzed to de-
termine whether it is a pristine event, or a non-pristine
event. A so-called pristine event is one that fully satisfies
the assumptions made in our calculation of the energy de-
posited by the first scatter, and in which the first and sec-
ond events can be uniquely identified and resolved. The
non-pristine events come in two flavors, vetoable, which
leave some hint that we don’t want to, or can’t, use them,
and non-vetoable, which would pass as pristine events in
the detector. The process of working through the various
scenarios that result in classification into these categories
is what follows.

Unfortunately, despite being non-relativistic, the neu-
trons are still traveling fast enough that time-of-
interaction alone is not a very reliable indicator of what
order scatters occurred in. Therefore, we must deter-
mine this via some other method. The method we use is
event selection from inspection of geometry. As long as
one, and only one, scatter occurs in the cylindrical region
x2+y2 < 2.452 cm2 (the projection of the collimator tube
into the detector), that scatter must be (barring possi-
ble unusual circumstance we will get to later) the first
scatter. Further, if there are more than two scatters de-
tected, it is difficult to determine which is the second,
even if the first is known, since scattering can occur at
any angle. Because of these reasons we make the require-
ments that there be only one detected interaction in the
aforementioned cylindrical region, and that there must
be exactly two detected interactions total.

1. The IsDetected Method

The above requirements themselves require that we
know whether a given scatter will be detected or not.
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FIG. 3. A diagram of the simulation layout. Although no ac-
tual geometry apart from liquid xenon has been constructed,
several regions are defined in analysis. The green box illus-
trates where neutrons from the generator would come from, if
the generator was simulated. Instead, The red line centered
at the origin indicates the disk on which neutrons were ac-
tually created. The blue region marks out the boundaries of
the detector. Any interaction occurring outside the blue re-
gion (which contains the pink hashed region) was declared to
have not been detected. The pink hashed region indicates the
so-called ”first scatter” region. Any event whose first scat-
ter does no occur in this region, was rejected. Note that the
neutrons are fired along the z-axis, and the x-axis indicates
the vertical direction in the TPC. Also note that no actual
structure was simulated, these are simply regions defined in
the analysis.

This brings us to the algorithm that is the workhorse of
this analysis, a method named ”IsDetected.” IsDetected
does just what its name implies, it predicts whether a
given simulated scattering interaction would be, or would
not be detected by the LUX detector. IsDetected has two
primary conditions that must be met to return an affir-
mative; the given event must be within the geometrical
confines of the LUX detector, were it to be simulated, and
it must be above the energy threshold of the detector.

The first check is fairly straightforward, the method
pulls the position of the interaction from the point in
question, and checks that −32.9 cm < x < 16.1 cm (the
vertical direction), and that y2 + (z − 25 cm)2 < 25 cm2

(the horizontal plane). This approximates the detector as
a right cylinder, instead of using its actual dodecagonal
shape. This region is shaded in blue in figure 3. Note
that this is only an analysis cut, no actual physical walls
were simulated.

The second criterion is slightly more complicated. As
mentioned in section I B, the energy detection threshold
of LUX is not a single value, but ranges from 0% accep-
tance at 1.1 keV, to 100% at ≈ 8.3 keV. The Acceptance
probability can be viewed in figure 4. This covers a signif-
icant range of expected energy depositions, and so must
be simulated instead of simply accepted above a certain

FIG. 4. The probability of accepting a nuclear recoil with
given energy. There is a hard cutoff at 1.1 keV. Red is the
probability of S2 detection, green is S1, blue is the probability
of some detection in both, and black is the probability of both
being above threshold for analysis. The dashed line is the
predicted black curve using an alternate model. I use the
Black line as the probability of detection in this work.

energy. To determine whether an event was accepted or
not, the energy of the interaction had to be extracted. In
most cases, this extraction was done by simply subtract-
ing the kinetic energy of a point post-interaction from
the kinetic energy of the point pre-interaction. However,
on occasion a track was split into two, which results in
the post-interaction energy of the last point on the first
track having a value of 0. In cases where this is the
point in question, the daughter track was found and the
energy that it was initialized with was used instead of
the post-interaction energy. Once the energy deposition
was determined, the acceptance probability for this en-
ergy was found via linear interpolation of a data table
loaded in from a file if the energy deposition was found
to be between 1.1 keV and 8.3 keV. Otherwise the accep-
tance probability was taken to be 0, if the energy was
below 1.1 keV, and 1 if above 8.3 keV. Finally, a random
number between 0 and 1 was generated and compared to
the obtained acceptance probability; if the number was
less than the acceptance probability, the energy thresh-
old criterion was determined to be met, if the number
was greater, the criterion was not met.

Note that if an interaction is an inelastic scatter, it
is possible for the energy from an excited nucleus to be
released in the form of a gamma ray that would be de-
tected elsewhere, thus causing the initial interaction site
to have low enough local energy deposited that it was not
detected. This case is not considered.

2. Multiple Scatters

Once we have a method for determining if a given in-
teraction is detected or not, one of the easiest things to
do, is to make sure that an event consists only of ex-
actly two detectable scatters. Recall that this is one of
the criteria for being a pristine event. We simply look
at every single track, determine if any given track is a
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neutron, and if it is, run the IsDetected Method on every
single point in that track. If IsDetected determines that
exactly two interactions were detected, the event may be
pristine. I call this the ”DS criterion.” If any number of
interactions other than two were detected, the event is
classified as Non-pristine, but vetoable.

The rest of the analyses are still run on events not
passing this cut because they are interesting, but they
will not be classified as pristine events.

3. First Scatters

We now look at what is required of the first scatter so
that the overall event can be considered pristine. Recall
from section I B that our energy measurement only works
if the incident neutron is at 2.45 MeV and is coming in
straight from the direction of the collimator. This re-
quires that the first detected scatter is the first scatter to
occur. So for now, we shall ignore everything except the
second point of the first track, which must be the first
interaction of the incident neutron. The first criterion
that we must meet is that the event must take place at
least 15 cm into the detector. For future reference, we will
call this the ”A15 criterion.” The reasons for this were
discussed in section II A. The status of the A15 crite-
rion is easily determined through use of the ”IsInBeam”
method.

The, perhaps poorly named, IsInBeam method sim-
ply checks whether a given interaction takes place in the
cylindrical region defined at the top of this subsection
(Analysis of the Monte Carlo) at a distance of between
15 cm and 50 cm (the opposite end of the detector) from
the particle generation point. If the interaction is indeed
in this region, it returns true, otherwise it returns false.

The second criterion we consider is that the second
point must be detected. If it is low enough in energy de-
position, as previously discussed, it may not be. This is
easily determined through the employment of the IsDe-
tected method discussed earlier. We call this the ”secDet
criterion.”

Thirdly, we recall that our energy measurement is only
valid in the case of elastic scatters. The only processes
that occur with a non-negligible cross section for neutrons
in Xe around 2.45 MeV is elastic and inelastic scattering
(citation), so to deal with this ”elastic criterion” we sim-
ply ask the interaction point for what process it was using
and reject the event if it is an inelastic process.

4. Foolers

As alluded to in the previous section, it is possible that
the first interaction detected, was not the first interac-
tion that occurred. In this case, if the first interaction
detected meets all the criteria that make the first scatter
pristine, it will fool us into thinking we can use it for

calibration, despite the fact that it probably satisfies nei-
ther the initial energy, nor the incident angle conditions
necessary for us to use our energy deposition equation.
For this reason, I have dubbed such events ”foolers.” An
example of a fooler is illustrated in figure 6 on page 7.

If an event doesn’t meet the secDet criterion, each
point in the initial neutron track is investigated in turn,
starting with the next. If the point in question was de-
tected, it is determined to be a fooler if IsInBeam con-
firms it is in the acceptable first scatter region. If it was
detected but was not in this region, it is determined that
the point is not a fooler. If no points in the initial neu-
tron track were detected, any daughter neutron tracks
are treated in the same manner. If the point was not
detected at all, the investigation moves on to the next
point. If no points at all were detected, the event is, of
course, not a fooler as it would be vetoed for not having
2 detected interactions.

5. Second Scatters

We now look at what is required of the second scat-
ter to make the event pristine. I considered only events
that had passed the criteria discussed for the first scatter
(A15, secDet, and elastic). Because the neutron must
have come directly from the point of first scatter, I cur-
rently consider only the third point in the initial neutron
track, or if the initial neutron track ended after the sec-
ond point, I consider the second point of the daughter
neutron track (the first is the initialization) if it exists.

The first criterion for the second scatter is that it must
have occurred outside the first scatter region. If it did
not, the first and second scatters may be confused. This
was easily determined by again utilizing the IsInBeam
method. The difference from previous uses being that it
must this time return false. I name this criterion ”GDS.”
The second criterion for acceptance concerning the sec-
ond scatter is that the scatter be detected (DGDS). This
is readily determined through another call to IsDetected.

The third criterion (RGDS) is that the second inter-
action must be far enough from the first that the spatial
resolution of the two interactions does not significantly
impede the reconstruction of the scattering angle. This
is the case if the two events are closer than ≈ 5 cm. I
simply locate the two events and exclude the event if
this is the case. This has the added benefit of excluding
the case where the two events are close enough together
that, while each would be detected individually, and so
IsDetected would return true, the actual LUX detector
would detect only a single, larger, event.

Note that it does not matter whether the second event
is elastic or inelastic, it only needs to be detected and be
in the correct location.
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FIG. 5. Example of a pristine event. One scatter detected
inside the first scatter region, one detected outside. The green
arrows represent the neutrons, and the yellow stars depict
scatters. The following two figures are scenarios that may
masquerade as pristine events.

FIG. 6. Example of a fooler. The first detected scatter hap-
pens in the first scatter region, but was preceded by another
scatter that was not detected.

FIG. 7. Example of a Trickster. The scatter occurring imme-
diately after the first detected scatter was not detected, but
a future one was.

6. Tricksters

I have named the analog to foolers from the first scat-
ter case ”tricksters.” An event is said to be a trickster if
an event meets all the criteria concerning the first scatter,
the second interaction was not detected, and the first in-
teraction detected after the second interaction meets the
GDS, DGDS, and RGDS criteria. An event is determined
to be a trickster using the same method as a fooler, ex-
cept that the hunt begins after the second event, and, of
course, that the detected event follow the rules for a sec-
ond scatter rather than a first. An example of a trickster
is shown in figure 7.

7. Pristine and Non-Pristine Events

If an event has only two detected scatters and meets all
6 discussed criteria (A15, secDet, elastic, GDS, DGDS,
and RGDS), it is classified as a pristine event. See figure
5 for an example. Nearly all other events can be vetoed
unless they are either a fooler or a trickster. The number
of tricksters can be determined from the results of the
simulation, however I, unfortunately, only analyzed sec-
ond scatters if all three of the first scatter criteria were
met. Because of this, I don’t have a direct measure of
how many foolers there were that would be indistinguish-
able from pristine events. I expect the second scatter to
depend minimally on whether the first detected scatter
was a fooler or not, so multiplying the ratio of foolers to
total events by the ratio of pristine events to events meet-
ing the first scatter criteria should give a good estimate
of the fraction of total events that would be pristine if
there hadn’t been a fooler.

III. RESULTS

A. Validation

In section II A we determined that the mean free path
of 2.45 MeV neutrons in liquid Xe should be ≈ 11.8 cm.
We find that the simulation reproduces this result with
good agreement. After determining the distance from
initialization to first scatter, we find that the mean free
path coming from the simulation is 12.05 cm. This can
be seen in figure 8. Further, we predicted the fraction of
events interacting for the first time between 15 cm and
50 cm would be .265, with the number that are first in-
teracting in that region and are also elastic collisions to
be about 95% of that number. Our results for overall at-
tenuation match quite well. we measure 408,985 events
matching the first criterion which yields a fraction of
0.27265 ± 3.6× 10−4 (error quoted is the standard er-
ror of the mean obtained using binomial statistics) (cita-
tion). These agreements with the predicted results give
me confidence that the simulation is behaving in a man-
ner consistent with reality. However, our result for the
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FIG. 8. This plot shows the agreement in fit between the
simulated distance to first scatter in black and an exponen-
tial fit with µ = 0.083 in red. The curve corresponding to
the looked-up value of µ = 0.085 is displayed in blue but is
difficult to see because much of it lies under the red curve.

FIG. 9. This displays the fraction of events that occured with
a given number of detected scatters. The plot is truncated af-
ter 29, but there are still a non-zero number of events that fall
into this category. For reference 133 events had 29 detected
scatters.

number of inelastic collisions is quite far off, we obtain
a fraction of 0.31610± 3.8× 10−4; nevertheless, we press
on.

(maybe something about usual accuracy of neutron
simulations with citation)

B. Multiple Scatters

The distribution of number of scatters detected fortu-
nately peaks at 2 interactions detected with a fraction of
0.1513. The distribution is displayed in figure 9 We can
veto all but this fraction.

C. First Scatters

After considering only the subset of events with two
detectable scatters, the fraction of first scatters occurring
in the first scatter region remains nearly unchanged with
60,854 occurring out of 226,884 double scatter events. I
also report that 56,495 events were both detected, and in
this region, while 41,478 of the events in this region were
elastic. The number of events meeting all three criteria
(GFS) while being the first of only two detected scatters,
was 37,121, giving a fraction of 0.02475± 1.3× 10−4.

The number of foolers simulated was 31,717 out of the
full simulated 1.5 million. Subsequent detected scatters
should not influence, nor be influenced by, the fooler frac-
tion, so all events, not only double scatters, were consid-
ered. This implies that a fraction of 0.02114± 0.00012 of
all events detected to be meeting the criteria for a good
first scatter are misleading.

D. Second Scatters

The number of events that met the pristine event cri-
teria for the first scatter and have only two detected scat-
ters is 37,121. Out of these, 29,600 of the second scatters
meet the GDS criterion (located outside of the first scat-
ter region), 24,837 meet DGDS (are detected) and 21,253
meet RGDS (enough distance between first and second
scatters) in addition to the others. This makes the frac-
tion of events that meet all criteria (and are therefore
pristine events) 0.014168±0.000096 of all 2.45 MeV neu-
trons making it into the detector from the calibration
source produce pristine events.

The number of tricksters was simulated to be 2,086,
giving a fraction of 1.390× 10−3 ± 3.0× 10−5.

All of these results are summarized in table I.

IV. DISCUSSION

A. Pristine Event Rate

The simulation implies that ≈ 1.4% of neutrons mak-
ing it into the detector at the correct incident angle and
energy will be pristine. This is an appreciable fraction of
the total. For a given LUX calibration run, at least 1,000
pristine events are desired. The LUX neutron generator
is reported to emit ≈ 2.5× 106 neutrons/s into 4π (ci-
tation). An acceptance fraction of 8.6× 10−6 was calcu-
lated in section I C, this yields a rate of 21.5 neutrons/s.
However, recall that ≈ 6 cm of water is located along the
neutron path before it reaches the detector. According to
the NNDC, the neutron-hydrogen total cross section at
2.45 MeV is 19.2 b while the neutron-oxygen cross section
is 3.5 b. (citation) This yields an attenuation coefficient
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Criteria Met # Events Probability

A15 408,985 0.273
DS 226,884 0.151
DS, A15 60,854 0.041
DS, A15, secDet 56,495 0.038
DS, A15, elastic 41,478 0.028
DS, GFS 37,121 0.025
DS, GFS, GDS 29,600 0.020
DS, GFS, DGDS 24,837 0.017
pristine 21,253 0.014
inelastic 1st scatter 474,155 0.316
fooler 31,717 0.021
DS, trickster 2,086 0.0014

pristine 21,253 0.014
false-pristine 0.0061

TABLE I. This table displays the number of events meeting
the criteria defined in section II C, as well as the associated
probability derived from these numbers. All probabilities are
displayed to their third decimal points with the exception of
those with relevance to false-pristine events since their main
value is in being compared to pristine events, which them-
selves have a small probability. Also note that inelastic and
fooler events are defined for all events, whereas tricksters are
only defined for those meeting the GFS criterion. The false-
pristine event probability is calculated (see section IV B) and
so there is no associated # Events entry.

of

µ = µH + µO

=
2ρwaterNA
Awater

σH +
ρwaterNA
Awater

σO

=
2 · 1 g cm−3 · 6.022× 1023

18.0 g mol−1
· 19.2× 10−24 cm2

+
1 g cm−3 · 6.022× 1023

18.0 g mol−1
· 3.5× 10−24 cm2

= 1.39 cm−1.

Applying the attenuation equation with this number
gives a survival fraction of

I

I0
= e−µx = e−1.39 cm−1·6 cm = 2.4× 10−4.

Given the fraction of events that are pristine, this gives an
estimate for the pristine event rate of 21.5 s−1·2.4× 10−4·
0.014 = 7.2× 10−5 s−1. This is about 6 events per day
and was not what was observed. This leads the author to
believe there was an error in one of the numbers reported
in (citation). Factoring in events that forward scatter and
so are still detected and also events that are not pristine
but are only minimally scattered don’t seem enough to
bridge the gap between this rate and the observed rate
(1031 used events in 107.2 live-hours during the 2013
calibration (citation)). At this rate one calibration run
would take ≈ 160 days which would be devastating. On
the other hand, if the detection efficiency of the Bonner
sphere (≈ 5% (citation)) were neglected in the determi-
nation of the neutron flux, the resulting error would lead

to a result similar to the one obtained here. Regardless,
the results of this study reveal that the length of a cal-
ibration run must consist of at least ≈ 71,400 neutrons
entering the detector, at whatever rate they arrive.

A number of improvements could be made to this study
in order to obtain a better estimate for the length of time
needed for calibration. Most obviously, the study could
benefit greatly from full simulation of all detector com-
ponents, instead of just the Xe. A more complete inclu-
sion of the air-filled neutron tube, water tank, titanium
cryostats, and teflon TPC could reveal with more clarity
how many neutrons successfully make it into the active
region of the detector. Additionally, this would include
forward-scattering effects, not simply use assumptions
based on the narrow-beam attenuation coefficient. A
further improvement would be to include interactions of
long-ranged secondary particles. Some additional events
may be vetoable due to this effect, or some events clas-
sified by this analysis as single scatter may masquerade
as pristine events due to these secondaries. A third im-
provement would be to check the energy distribution of
the pristine events to ensure the whole range is well rep-
resented. If there were deficiencies in any region, the
exposure time may have to be increased.

B. False Events

The class of events which are not pristine, and yet will
appear so in the detector, consists of events with inelas-
tic first scatters, foolers, and tricksters. The probabil-
ity of an event having its first scatter be inelastic, but
being otherwise pristine, was not simulated. However
if we assume that the probability of an event’s second
scatter is unaffected by the first being inelastic (a dubi-
ous assumption, given the proximity to resonances), the
probability of being fooled by this is simply pinelastic =
finelastic · fpristine = 0.316 · 0.014 = 4.4× 10−3. The
calculation for number of foolers is similar: pfoolers =
ffooler · fpristine = 0.021 · 0.014 = 2.9× 10−4. The num-
ber of tricksters was recorded for the entire simulation,
and was 1.4× 10−3. The probability of having a false-
pristine event, is then the sum of these three probabili-
ties, minus the chance that an event could fall into mul-
tiple of these categories. The probability of this happen-
ing, however, is negligible. This gives pfalse−pristine =
pinelastic + pfooler + ptrickster = 6.1× 10−3. This means
that since the probability of being a pristine event was
0.0142, about 30% of all events accepted as pristine are
actually flawed in some way.

Although I did not address it in this analysis, it may
be possible to veto a large number of inelastic collisions,
either because they tend to deposit more energy, and so
a population may therefore be identified and cut despite
the lack of calibration, or because they may emit a γ-ray
that could be detected and vetoed upon. If the majority
of these events could be vetoed, or if the cross section
in Geant4 is wrong and the inelastic fraction were much
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smaller, it could bring the probability of a false-pristine
event to just those contributed by foolers or tricksters,
1.7× 10−3. Which would make only 11% of accepted
events false-pristines.

There are also many ways to improve this part of
the study. Again a more complete simulation geometry
would be useful. This would allow the study of events
in-scattering from components external to the liquid Xe,
which may also fool us. It would also be prudent to take
secondaries, like the γs mentioned above, into account for
the purposes both of veto, and false signal. It may also
be possible to study both the energy and position distri-
butions of these false-pristine events to see if there are
any differences between them and real pristine events. If
there are, regions corresponding to false-pristines can be
de-weighted relative to the rest of the calibration.

Even once we know how many false-pristine events
there are in our calibration data, we still don’t know
their affects on its results. To determine the affects on
our results, the simulation could be extended to include
the actual S1 and S2 signal yields for every given event,
and the whole calibration analysis done with this data.
We could then compare this model directly to the data,
varying the signal yields to match the whole simulation,
false-pristines and all, in order to obtain calibrated values

for nuclear recoils.

V. CONCLUSION

Monte Carlo results show that ≈ 1.4% of calibration
neutrons entering the detector are perfect candidates for
use in the calibration for the nuclear recoil response in
LUX. Although 1.4% seems like a reasonable probabil-
ity for acquiring useful events, a brief analysis of neutron
production rate and propagation reveal a prohibitively
long calibration period, or an error in either the infor-
mation reported in (citation), or in the analysis method.
Further results show that as many as 30% of perfect-
looking results may not satisfy assumptions made in the
calibration analysis, though the impact of these results
need further study. Ways of exploring this impact, or
minimizing its effects have been proposed.
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Appendix A: Analysis Code

The following is a code dump of the file in which the bulk of the analysis was done. It is the ”EventAction.cc”
file which is executed once per Geant4 event. Any references to ”HistoManager” are references to another file not
included, but this is simply used for filling histograms for analysis.

//
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// ∗ License and Disc la imer ∗
// ∗ ∗
// ∗ The Geant4 so f tware i s copy r i g h t o f the Copyright Holders o f ∗
// ∗ the Geant4 Co l l a bo ra t i on . I t i s prov ided under the terms and ∗
// ∗ cond i t i on s o f the Geant4 Sof tware License , inc luded in the f i l e ∗
// ∗ LICENSE and a v a i l a b l e a t h t t p :// cern . ch/ geant4 / l i c e n s e . These ∗
// ∗ i n c l ude a l i s t o f c opy r i g h t ho l d e r s . ∗
// ∗ ∗
// ∗ Nei ther the authors o f t h i s so f tware system , nor t h e i r employing ∗
// ∗ i n s t i t u t e s , nor the agenc i e s p rov id ing f i n a n c i a l suppor t f o r t h i s ∗
// ∗ work make any r ep r e s en t a t i on or warranty , e xpre s s or impl ied , ∗
// ∗ regard ing t h i s so f tware system or assume any l i a b i l i t y f o r i t s ∗
// ∗ use . Please see the l i c e n s e in the f i l e LICENSE and URL above ∗
// ∗ f o r the f u l l d i s c l a imer and the l im i t a t i o n o f l i a b i l i t y . ∗
// ∗ ∗
// ∗ This code implementat ion i s the r e s u l t o f the s c i e n t i f i c and ∗
// ∗ t e c h n i c a l work o f the GEANT4 co l l a b o r a t i o n . ∗
// ∗ By using , copying , modi fy ing or d i s t r i b u t i n g the so f tware ( or ∗
// ∗ any work based on the so f tware ) you agree to acknowledge i t s ∗
// ∗ use in r e s u l t i n g s c i e n t i f i c pu b l i c a t i on s , and i n d i c a t e your ∗
// ∗ acceptance o f a l l terms o f the Geant4 Sof tware l i c e n s e . ∗
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
//
/// \ f i l e runAndEvent/RE01/ src /RE01EventAction . cc
/// \ b r i e f Implementation o f the RE01EventAction c l a s s
//
// $Id : RE01EventAction . cc 66379 2012−12−18 09 :46 :33Z gcosmo $
//

#include ” EventAction . hh”
#include ” Tra jec tory . hh”
#include ”HistoManager . hh”
#include ” TrackInformation . hh”
#include ” Tra jec toryPo int . hh”
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <c s t r i ng>
#include <type in fo>
#include <regex>
#include <l i b g e n . h>
#include <s t r i ng>
#include <cmath>

#include ”G4Event . hh”
#include ”G4EventManager . hh”
#include ”G4HCofThisEvent . hh”
#include ” G4VHitsCol lect ion . hh”
#include ” G4TrajectoryContainer . hh”
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#include ”G4VVisManager . hh”
#include ”G4SDManager . hh”
#include ”G4UImanager . hh”
#include ” G4ios . hh”
#include ”G4PrimaryVertex . hh”
#include ” G4PrimaryPart ic le . hh”
#include ”G4SystemOfUnits . hh”
#include ”G4NistManager . hh”
#include ”Randomize . hh”

// . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . .
EventAction : : EventAction ( )

: G4UserEventAction ( )
{

f H i s t o = new HistoManager ( ) ;
fDeadLengthX = 3.0∗cm; // 3.0∗cm;
fDeadLengthY = 4.0∗cm; // 4.0∗cm;
fDeadLengthZ = 6.0∗cm; // 6.0∗cm;

}

// . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . .
EventAction : : ˜ EventAction ( )
{

delete f H i s t o ;
}

// . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . .
void EventAction : : BeginOfEventAction ( const G4Event∗ evt )
{

G4int eventID = evt−>GetEventID ( ) ;
i f ( eventID % 1000 == 0 )
{ G4cout << ” Execution ” << double ( eventID )/10000 << ”% Complete . ” << G4endl ; }

// G4cout << ”Event Number ” << eventID << G4endl ;

}

// . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . . . . oooOO0OOooo . . . . . .
void EventAction : : EndOfEventAction ( const G4Event∗ evt )
{

///////////////////// MuRS ANALYSIS /////////////////////
// ge t number o f s t o r ed t r a j e c t o r i e s
G4TrajectoryContainer ∗ t r a j e c t o r y C o n t a i n e r = evt−>GetTrajectoryConta iner ( ) ;

// e x t r a c t the t r a j e c t o r i e s and p r i n t them out
doTheMuRSAnalysis ( t r a j e c t o r y C o n t a i n e r ) ;

}

void EventAction : : doTheMuRSAnalysis ( G4TrajectoryContainer ∗ t r a j e c t o r y C o n t a i n e r )
{

// Load in acceptance data
std : : vector<double> aEnergy ;
std : : vector<double> aProb ;
std : : i f s t r e a m f i n ( ”/home/shaun/G4/userMade/userMade/LUX acceptance . csv ” ) ;
s td : : s t r i n g l i n e = ”” ;



13

// i n t count = 0;
while ( std : : g e t l i n e ( f i n , l i n e ) )
{

std : : s t r i ng s t r eam s t r s t r ( l i n e ) ;
s td : : s t r i n g word = ”” ;
bool xyState = 0 ;
while ( std : : g e t l i n e ( s t r s t r , word , ’ ’ ) )
{

i f ( xyState == 0)
{

aEnergy . push back ( ( G4double ) a t o f ( word . c s t r ( ) ) ) ;
//G4cout << aEnergy [ count ] << ” KeV” << G4endl ;
xyState = 1 ;

}
else i f ( xyState == 1)
{

aProb . push back ( ( G4double ) a t o f ( word . c s t r ( ) ) ) ;
//G4cout << aProb [ count ] << ” p r o b a b i l i t y ” << G4endl ;
xyState = 0 ;

}
}
// count++;

}

// Incriment counter h i s t f o r t o t a l e ven t s
fH i s to−>Fi l lCounte r ( 1 ) ; // 1 i s the code as s i gned to t o t a l event #

G4int n t r a j e c t o r i e s = 0 ;
i f ( t r a j e c t o r y C o n t a i n e r ) n t r a j e c t o r i e s = t ra j e c to ryConta ine r−>e n t r i e s ( ) ;

for ( int aaTraj = 0 ; aaTraj < n t r a j e c t o r i e s ; aaTraj++ )
{

/∗ G4VTrajectory∗ Traj = t ra j e c t o r yCon ta ine r [ aaTraj ] ) ;
G4int parentID = Traj−>GetParentID ( ) ;
i f ( parentID == 0){

i n t numPoints = Traj−>GetPointEntr ies ( ) ;
f o r ( i n t bbPoint = 0; bbPoint < numPoints ; bbPoint++){

i f ( bbPoint == 0){
G4VTrajectoryPoint∗ Point = Traj−>GetPoint ( bbPoint ) ;
G4ThreeVector po in tPos i t i on = Point−>GetPos i t ion ( ) ;
fHis to−>Fil lEndofEventTotalNum ( po in tPos i t i on . getX ( ) ) ;

}
}

}
∗/
// Make the Tra jec tory
Trajec tory ∗ Traj = ( Tra jec tory ∗ ) ( (∗ ( t r a j e c t o r y C o n t a i n e r ) ) [ aaTraj ] ) ;
G4int parentID = Traj−>GetParentID ( ) ;
G4int trackID = Traj−>GetTrackID ( ) ;
// Look at pr imar ies
i f ( parentID == 0)
{

//Create f l a g t ha t w i l l determine i f the event i s kep t a t var ious s t a g e s
G4bool keep = true ;
// Look at i n i t i a l i z a t i o n data
G4double P i n i t i a l = Traj−>GetInitialMomentum ( ) . mag ( ) ;
fH i s to−>Fi l l In it ia lMomentum ( P i n i t i a l ) ;
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Tra jec toryPo int ∗ i n iTra jPt = Traj−>GetPoint ( 0 ) ;
G4ThreeVector in iPos = in iTrajPt−>GetPos i t ion ( ) ;
G4double iniPosX = in iPos . x ( ) ;
G4double iniPosY = in iPos . y ( ) ;
G4double in iPosZ = in iPos . z ( ) ;
fH i s to−>F i l l I n i t i a l P o s X ( iniPosX ) ;
fHi s to−>F i l l I n i t i a l P o s Y ( iniPosY ) ;
fHi s to−>F i l l I n i t i a l P o s Z ( in iPosZ ) ;

G4double secPosX = 0 ;
G4double secPosY = 0 ;
G4double secPosZ = 0 ;

Traj−>SetNumPoints ( ) ;
G4int numPoints = Traj−>GetNumPoints ( ) ;
i f ( numPoints > 1) // shou ld always be t rue
{

// compare second po in t to f i r s t
Trajec toryPo int ∗ secTrajPt = Traj−>GetPoint ( 1 ) ;
G4ThreeVector secPos = secTrajPt−>GetPos i t ion ( ) ;
secPosX = secPos . x ( ) ;
secPosY = secPos . y ( ) ;
secPosZ = secPos . z ( ) ;
fH i s to−>Fi l lSecPosX ( secPosX ) ;
fHi s to−>Fi l lSecPosY ( secPosY ) ;
fHi s to−>Fi l lSecPosZ ( secPosZ ) ;

G4double d i s t 1 2 = EventAction : : Distance ( in iPos , secPos ) ;
fH i s to−>F i l l D i s t F i r s t S c a t t e r ( d i s t 1 2 ) ; // p l o t o f f i r s t i n t e r a c t i o n d i s t ance

// count even t s t ha t have f i r s t s c a t t e r a f t e r 15 cm
G4bool A15 = fa l se ;
i f ( EventAction : : IsInBeam ( secTrajPt ) ){A15 = true ;}
i f (A15 == true ){ fH i s to−>Fi l lCounte r ( 2 ) ; }

// count DETECTED even t s t ha t have f i r s t s c a t t e r a f t e r 15 cm
// energy depo s i t e d not so s imple because new neutron i s c rea t ed i f i t
// i s i n e l a s t i c
G4bool secDet = EventAction : : I sDetected ( secTrajPt , trackID , t ra j e c to ryConta ine r , aEnergy , aProb ) ;

// check to see i f the f i r s t s c a t t e r was i n e l a s t i c
G4bool i n e l a s t i c F i r s t S c a t t e r = fa l se ;
i f ( secTrajPt−>GetProcessName ( ) == ” n e u t r o n I n e l a s t i c ” )
{ i n e l a s t i c F i r s t S c a t t e r=true ;}

G4bool goodF i r s tSca t t e r = fa l se ;
i f (A15 and secDet and ! i n e l a s t i c F i r s t S c a t t e r ){ goodF i r s tSca t t e r=true ;}
i f ( goodF i r s tSca t t e r ){ fH i s to−>Fi l lCounte r ( 3 ) ; }

// count how many t r a c k s are DETECTED for the f i r s t time in
// the beam ( f o o l e r s )
G4bool f o o l e r = fa l se ;
G4int tmpTrackID = trackID ;
Tra jec tory ∗ tmpTraj = Traj ;
G4int tmpNumPoints = numPoints ;
// i f ( ! A15 and ! secDet )
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i f ( ! secDet )
{

G4int bbPt ;
// i f ( secTrajPt−>GetProcessName () == ” neu t r on In e l a s t i c ”){ bbPt = 1;}
i f ( numPoints == 2){bbPt = 1 ;}
else {bbPt = 2 ;}
while ( true )
{

Trajec toryPo int ∗ bbTrajPt = tmpTraj−>GetPoint ( bbPt ) ; ;
// I f de t ec t ed , check i f i t was in the beam
i f ( EventAction : : I sDetected ( bbTrajPt , tmpTrackID ,

t ra j e c to ryConta ine r , aEnergy , aProb ) )
{

i f ( EventAction : : IsInBeam ( bbTrajPt ) ){ f o o l e r = true ;}
else { f o o l e r = fa l se ;}
break ;

}
// I f not de tec ted , check i f l a s t po in t in t rack
// i f so , check i f a daughter neutron e x i s t s and s t a r t down
// t ha t t rack
else i f ( bbPt == tmpNumPoints−1)
{

i f ( bbTrajPt−>GetProcessName ( ) == ” n e u t r o n I n e l a s t i c ” )
{

for ( int ccTraj = 0 ; ccTraj < n t r a j e c t o r i e s ; ccTraj++)
{

Trajec tory ∗ t tTra j = ( Tra jec tory ∗)
( (∗ ( t r a j e c t o r y C o n t a i n e r ) ) [ ccTraj ] ) ;

G4int ttParentID = ttTraj−>GetParentID ( ) ;
i f ( ttParentID == tmpTrackID ){

tmpTraj = ttTra j ; ;
break ;

}
}

tmpTrackID = tmpTraj−>GetTrackID ( ) ;
tmpTraj−>SetNumPoints ( ) ; //seemed to be working
// wi thout t h i s , h o p e f u l l y doesn ’ t s top working wi th
tmpNumPoints = tmpTraj−>GetNumPoints ( ) ;
bbPt = 1 ;

}
else { f o o l e r=fa l se ; break ;}

}
// I f not d e t e c t e d and not l a s t po in t in track , cont inue
else {bbPt++;}

}
} // end o f f o o l e r checks
i f ( f o o l e r ){ fH i s to−>Fi l lCounte r ( 4 ) ; }

G4bool goodDoubleScatter = fa l se ; //1 s t s ca t de t in beam 2nd out
G4bool detGoodDoubleScatter = fa l se ; //gDS tha t i s d e t e c t e d
G4bool t r i c k s t e r = fa l se ; // gDS not d e t e c t e d then de t e c t e d l a t e r
G4bool outAct ive = fa l se ; // second s c a t t e r f a r t h e r than x away in

//one d i r e c t i o n ( s imu la t e going above g r i d )
G4bool reso lvedGoodDoubleScatter = fa l se ;
G4bool doub l eScat t e r = fa l se ;
G4bool useableEvent = fa l se ;
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G4double thiPosX = 0 ;
G4double thiPosY = 0 ;
G4double thiPosZ = 0 ;

// only cons ider good in−beam even t s from here on
i f (A15 and secDet and ! i n e l a s t i c F i r s t S c a t t e r )
{

i f ( numPoints > 2)
{

// Find good even t s (1 s t s c a t t e r d e t e c t a b l e in−beam ,
// 2nd d e t e c t a b l e out−of−beam)
Trajec toryPo int ∗ th iTra jPt = Traj−>GetPoint ( 2 ) ;
G4ThreeVector th iPos = thiTrajPt−>GetPos i t ion ( ) ;
thiPosX = thiPos . x ( ) ;
thiPosY = thiPos . y ( ) ;
thiPosZ = thiPos . z ( ) ;
fH i s to−>Fil lThiPosX ( thiPosX ) ;
fHi s to−>Fil lThiPosY ( thiPosY ) ;
fHi s to−>Fi l lThiPosZ ( thiPosZ ) ;

i f ( ! EventAction : : IsInBeam ( th iTra jPt ) ){ goodDoubleScatter=true ;}
i f ( goodDoubleScatter and

EventAction : : I sDetected ( thiTrajPt , trackID ,
t ra j e c to ryConta ine r , aEnergy ,
aProb ) ){ detGoodDoubleScatter=true ;}

// f i nd t r i c k s t e r s , assume w i l l d e t e c t any I n e l a s t i c s
i f ( goodDoubleScatter and ! detGoodDoubleScatter )
{

i f ( numPoints>3)
{

for ( G4int eePt = 3 ; eePt < numPoints ; eePt++)
{

Trajec toryPo int ∗ eeTrajPt = Traj−>GetPoint ( eePt ) ;
i f ( EventAction : : I sDetected ( eeTrajPt , trackID ,

t ra j e c to ryConta ine r ,
aEnergy , aProb ) )

{
i f ( ! EventAction : : IsInBeam ( eeTrajPt ) )
{ t r i c k s t e r = true ; break ;}

else { t r i c k s t e r = fa l se ; break ;}
}

// i f not d e t e c t e d move on , i f not d e t e c t e d on
// l a s t round , e i t h e r i n e l a s t i c and de t e c t e d
// next , or d i e s o f f , e i t h e r way not t r i c k s t e r

}
}

// i f numPoints <= 3 , i n e l a s t i c and so de t e c t e d
}

// determine i f the second s c a t t e r i s maybe ranged out
i f ( detGoodDoubleScatter )
{ i f ( thiPosX > 20∗cm){ outAct ive = true ;}} // p l a c eho l d e r

// determine whether event would have been r e s o l v a b l e
i f ( detGoodDoubleScatter )
{

i f ( EventAction : : Distance ( secPos , th iPos ) > 5∗cm)
{ reso lvedGoodDoubleScatter=true ;}

}
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}
else i f ( secTrajPt−>GetProcessName ( ) == ” n e u t r o n I n e l a s t i c ” )
{

G4int n t r a j = t ra j e c to ryConta ine r−>e n t r i e s ( ) ;
for ( int ddTraj = 0 ; ddTraj< n t r a j ; ddTraj++)
{

// Make a Tra jec tory to zero in on the daughter
Trajec tory ∗ dTraj = ( Tra jec tory ∗ ) ( (∗ ( t r a j e c t o r y C o n t a i n e r ) ) [ ddTraj ] ) ;
G4int dParentID = dTraj−>GetParentID ( ) ;
G4String dParticleName = dTraj−>GetParticleName ( ) ;
i f ( dParentID == trackID and dParticleName == ” neutron ” )
{

Trajec toryPo int ∗ dIniPt = dTraj−>GetPoint ( 1 ) ;
G4ThreeVector th iPos = dIniPt−>GetPos i t ion ( ) ;
thiPosX = thiPos . x ( ) ;
thiPosY = thiPos . y ( ) ;
thiPosZ = thiPos . z ( ) ;
fH i s to−>Fil lThiPosX ( thiPosX ) ;
fHi s to−>Fil lThiPosY ( thiPosY ) ;
fHi s to−>Fi l lThiPosZ ( thiPosZ ) ;

i f ( ! EventAction : : IsInBeam ( dIniPt ) ){ goodDoubleScatter=true ;}
G4int dTrackID = dTraj−>GetTrackID ( ) ;
i f ( goodDoubleScatter and

EventAction : : I sDetected ( dIniPt , dTrackID ,
t ra j e c to ryConta ine r , aEnergy ,
aProb ) ){ detGoodDoubleScatter=true ;}

dTraj−>SetNumPoints ( ) ;
G4int dNumPoints = dTraj−>GetNumPoints ( ) ;
// f i nd t r i c k s t e r s , assume w i l l d e t e c t any I n e l a s t i c s
i f ( goodF i r s tSca t t e r and ! detGoodDoubleScatter )
{

for ( G4int eePt = 2 ; eePt < dNumPoints ; eePt++)
{

Trajec toryPo int ∗ eeTrajPt = dTraj−>GetPoint ( eePt ) ;
i f ( EventAction : : I sDetected ( eeTrajPt , trackID ,

t ra j e c to ryConta ine r ,
aEnergy , aProb ) )

{
i f ( ! EventAction : : IsInBeam ( eeTrajPt ) )
{ t r i c k s t e r = true ; break ;}

else { t r i c k s t e r = fa l se ; break ;}
}

// i f not d e t e c t e d move on , i f not d e t e c t e d on
// l a s t round , e i t h e r i n e l a s t i c and de t e c t e d
// next , or d i e s o f f , e i t h e r way not t r i c k s t e r

}

// determine i f the second s c a t t e r i s maybe ranged out
i f ( detGoodDoubleScatter )
{ i f ( thiPosX > 20∗cm){ outAct ive = true ;}} // p l a c eho l d e r

// determine whether event would have been r e s o l v a b l e
i f ( detGoodDoubleScatter )
{

i f ( EventAction : : Distance ( secPos , th iPos ) > 5∗cm)
{ reso lvedGoodDoubleScatter=true ;}

}
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}
}

break ;
}

}
else
{

G4cout << ”Only One Sca t t e r ? ! ” << G4endl ;
}

}

// check to see i f on ly two s c a t t e r s were d e t e c t e d
G4int numDetected = 0 ;
for ( G4int f f T r a j = 0 ; f f T r a j < n t r a j e c t o r i e s ; f f T r a j++)
{

Trajec tory ∗ fTra j =(Tra jec tory ∗ ) ( (∗ ( t r a j e c t o r y C o n t a i n e r ) ) [ f f T r a j ] ) ;
i f ( fTraj−>GetParticleName ( ) == ” neutron ” )
{

G4int fTrackID = fTraj−>GetTrackID ( ) ;
fTraj−>SetNumPoints ( ) ;
G4int fNumPoints = fTraj−>GetNumPoints ( ) ;
i f ( fNumPoints > 1)
{

for ( G4int hhPt = 1 ; hhPt < fNumPoints ; hhPt++)
{

Trajec toryPo int ∗ hTrajPt = fTraj−>GetPoint ( hhPt ) ;
i f ( EventAction : : I sDetected ( hTrajPt , fTrackID ,

t ra j e c to ryConta ine r ,
aEnergy , aProb ) )

{
numDetected++;

}
}

}
}

}
fH i s to−>Fi l lNumScatters ( numDetected ) ;

i f ( reso lvedGoodDoubleScatter and ! outAct ive
and ! i n e l a s t i c F i r s t S c a t t e r and numDetected==2){useableEvent=true ;}

i f ( goodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 5 ) ; }
i f ( detGoodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 6 ) ; }
i f ( reso lvedGoodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 7 ) ; }
i f ( useableEvent ){ fH i s to−>Fi l lCounte r ( 8 ) ; }
i f ( t r i c k s t e r ){ fH i s to−>Fi l lCounte r ( 9 ) ; }
i f ( outAct ive ){ fH i s to−>Fi l lCounte r ( 1 0 ) ;}
i f ( i n e l a s t i c F i r s t S c a t t e r ){ fH i s to−>Fi l lCounte r ( 1 1 ) ;}
i f ( i n e l a s t i c F i r s t S c a t t e r and A15){ fH i s to−>Fi l lCounte r ( 2 0 ) ;}

i f ( numDetected==2)
{

i f ( goodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 1 2 ) ;}
i f ( detGoodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 1 3 ) ;}
i f ( reso lvedGoodDoubleScatter ){ fH i s to−>Fi l lCounte r ( 1 4 ) ;}
i f ( useableEvent ){ fH i s to−>Fi l lCounte r ( 1 5 ) ;}
i f ( t r i c k s t e r ){ fH i s to−>Fi l lCounte r ( 1 6 ) ;}
i f ( outAct ive ){ fH i s to−>Fi l lCounte r ( 1 7 ) ;}



19

i f ( i n e l a s t i c F i r s t S c a t t e r ){ fH i s to−>Fi l lCounte r ( 1 8 ) ;}
i f ( goodF i r s tSca t t e r ){ fH i s to−>Fi l lCounte r ( 1 9 ) ;}
i f ( f o o l e r ){ fH i s to−>Fi l lCounte r ( 2 1 ) ;}
i f (A15){ fH i s to−>Fi l lCounte r ( 2 2 ) ;}
i f (A15 and i n e l a s t i c F i r s t S c a t t e r ){ fH i s to−>Fi l lCounte r ( 2 3 ) ;}
i f (A15 and secDet ){ fH i s to−>Fi l lCounte r ( 2 4 ) ;}

}

// p l o t the R and Z po s i t i o n s f o r the p r i s t i n e even t s
i f ( useableEvent )
{

G4double secPosR = std : : s q r t ( secPosY∗ secPosY + secPosX∗ secPosX ) ;
G4double thiPosR = std : : s q r t ( thiPosX∗ thiPosX + thiPosY∗ thiPosY ) ;
fHi s to−>Fi l lP r i s t i n eSecPosR ( secPosR ) ;
fHi s to−>F i l l P r i s t i n e S e c P o s Z ( secPosZ ) ;
fHi s to−>Fi l lPr i s t ineTh iPosR ( thiPosR ) ;
fHi s to−>Fi l lP r i s t i n e Th iPosZ ( thiPosZ ) ;

}

// Where does the f i r s t p a r t i c l e d i e ?
Trajec toryPo int ∗ fn lTra jPt = Traj−>GetPoint ( numPoints−1);
G4double fnlPosX = fnlTrajPt−>GetPos i t ion ( ) . x ( ) ;
G4double fnlPosY = fnlTrajPt−>GetPos i t ion ( ) . y ( ) ;
G4double fnlPosZ = fnlTrajPt−>GetPos i t ion ( ) . z ( ) ;
fH i s to−>Fi l lF ina lPosX ( fnlPosX ) ;
fHi s to−>Fi l lF ina lPosY ( fnlPosY ) ;
fHi s to−>Fi l lF ina lPosZ ( fnlPosZ ) ;

}
}

}

}

// Determines the d i s t ance between two 3 v e c t o r s
G4double EventAction : : Distance ( G4ThreeVector V1 , G4ThreeVector V2)
{

return std : : s q r t ( (V1 . x ( ) − V2 . x ( ) ) ∗ ( V1 . x ( ) − V2 . x ( ) ) +
(V1 . y ( ) − V2 . y ( ) ) ∗ ( V1 . y ( ) − V2 . y ( ) ) +
(V1 . z ( ) − V2 . z ( ) ) ∗ ( V1 . z ( ) − V2 . z ( ) ) ) ;

}

// Ro l l s the d i c e to see whether an i n t e r a c t i o n wi th a g iven energy cou ld be d e t e c t e d
G4bool EventAction : : Detected ( std : : vector<double> aEnergy , std : : vector<double> aProb , G4double rawenergy )
{

G4double energy = rawenergy /keV ;
i f ( energy <= aEnergy [ 0 ] ) { return fa l se ;}
else i f ( energy >= aEnergy [−1]){ return true ;}
else
{

G4int nEntr i e s = aEnergy . s i z e ( ) ;
for ( G4int aaEntry = 1 ; aaEntry < nEntr i e s ; aaEntry++)
{
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// i n t e r p o l a t e to g e t the p r o b a b i l i t y o f acceptance f o r t h i s energy
i f ( energy < aEnergy [ aaEntry ] )
{

G4double prob = ( ( aProb [ aaEntry ] − aProb [ aaEntry −1])/
( aEnergy [ aaEntry ] − aEnergy [ aaEntry −1])) ∗

( energy − aEnergy [ aaEntry −1]) +
aProb [ aaEntry −1] ;

G4double randomNum = G4UniformRand ( ) ;
i f (randomNum < prob ){ return true ;}
else {return fa l se ;}

}
}

G4cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << G4endl ;
G4cout << ”Turn Back , T r a v e l l e r . You should not venture here ! ” << G4endl ;
G4cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << G4endl ;
return true ;

}
}

// Determines whether an i n t e r a c t i o n i s g e ome t r i c a l l y l o c a t e d in acceptance reg ion
G4bool EventAction : : IsInBeam ( Tra jec toryPo int ∗ TrajPt )
{

G4ThreeVector pos = TrajPt−>GetPos i t ion ( ) ;
G4double posX = pos . x ( ) ;
G4double posY = pos . y ( ) ;
G4double posZ = pos . z ( ) ;

i f ( posX∗posX + posY∗posY < 6.0025∗cm∗cm and posZ > 15∗cm and posZ < 50∗cm)
{return true ;}

else {return fa l se ;}
}

// Determines i n t e r a c t i o n ’ s energy then uses ”Detected ” to determine i f an event
// would be d e t e c t e d in LUX
G4bool EventAction : : I sDetected ( Tra jec toryPo int ∗ TrajPt , G4int TrackID ,

G4TrajectoryContainer ∗ trajCont , std : : vector<double> aEnergy ,
std : : vector<double> aProb )

{
// f i nd the energy depo s i t e d . T r i v i a l in the case o f non−i n e l a s t i c s c a t t e r i n g .
G4double preE = TrajPt−>GetPreKineticEnergy ( ) ;
G4double postE = 0 ; // i n i t i a l i z i n g
// look f o r the daughter neutron i f i n e l a s t i c

try{ TrajPt−>GetProcessName ( ) ;
} catch ( const std : : l e n g t h e r r o r& e ) {

G4cout << ” caught except ion ” << G4endl ;
return fa l se ;

}

i f ( TrajPt−>GetProcessName ( ) == ” n e u t r o n I n e l a s t i c ” )
{

G4int n t r a j e c t o r i e s = trajCont−>e n t r i e s ( ) ;
for ( int aaTraj = 0 ; aaTraj< n t r a j e c t o r i e s ; aaTraj++)
{

// Make a Tra jec tory to zero in on the daughter
Trajec tory ∗ dTraj = ( Tra jec tory ∗ ) ( (∗ ( tra jCont ) ) [ aaTraj ] ) ;
G4int dParentID = dTraj−>GetParentID ( ) ;
G4String dParticleName = dTraj−>GetParticleName ( ) ;
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i f ( dParentID == TrackID and dParticleName == ” neutron ” )
{postE = dTraj−>GetKinEnergy ( ) ; } // g e t s k in energy when i n i t i a l i z e d , same as pt (1)−>GetPreKin . . .

}
}

else {postE = TrajPt−>GetPostKineticEnergy ( ) ; }
G4double depE = preE − postE ;

G4ThreeVector pos = TrajPt−>GetPos i t ion ( ) ;
G4double posX = pos . x ( ) ;
G4double posY = pos . y ( ) ;
G4double posZ = pos . z ( ) ;

i f (−32.9∗cm < posX and posX < 16 .1∗cm and
posY∗posY + ( posZ−25∗cm)∗ ( posZ−25∗cm) < 25∗cm∗25∗cm)
{return EventAction : : Detected ( aEnergy , aProb , depE ) ; }

else {return fa l se ;}
}
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Appendix B: Second Scatter Positions

FIG. 10. This figure displays the radial positions (xy plane) of second scatters for all of the pristine events simulated. The
peak value is 4085 out of a total 21253 pristine events.

FIG. 11. This figure displays the axial positions (z direction) of second scatters for all of the pristine events simulated. The
peak value is 1480 counts. Interestingly, there seems to be two peaks; perhaps corresponding to events that leave the active
region more vertically out of the liquid surface (16.1 cm from the beam) and those that leave horizontally out of the sides (25 cm
radius, distance from the beam varies.


