First events from the OPERA experiment at Gran Sasso

Gabriele Sirri Istituto Nazionale di Fisica Nucleare BOLOGNA, ITALY

on behalf of the OPERA COLLABORATION

OPERA Collaboration L'Aquila **LAPP Annecy IRB Zagreb** Sofia **IHE Brussels** Hamburg Bern Bari **IPNL Lyon** Neuchâtel Münster Bologna IPHC Strasbourg **ETH Zurich** Rostock LNF Frascati LNGS Napoli **OPERA** is an international Padova Roma collaboration of ~ 200 **INR Moscow** Salerno **NPI Moscow ITEP Moscow** physicists from 36 institutions SINP NSU Moscow **JINR Dubna** and 13 countries Obninsk $\textcircled{\blue}{\blue}$ **Tunis** Aichi Toho Kobe Nagoya **METU Ankara** Utsunomiya XX **Technion Haifa** Jinjiu

Outline

- Physics motivations
- CNGS Beam
- OPERA Detector
- Physics potential
- □ First events in the CNGS 2007 run
- CNGS 2008 run
- Conclusions

OPERA Physics Motivation

CNGS CERN Neutrino to Gran Sasso beam

CNGS event rate (nominal beam)

Nominal CNGS beam (running 200 days/year): 4.5 × 10¹⁹ pot/year

The Emulsion Cloud Chamber technique

ECC ≡ sequence of emulsion-lead layers: Lead: target mass Emulsion: tracking device

8.3 kg

Emulsion Resolution: $\delta x = 1 \ \mu m$ $\delta \theta = 2 \ mrad$

High spatial resolution capability and large masses in a modular way. In OPERA, the basic ECC unit is the "BRICK": 56 Pb sheets + 57 emulsion layers (10X₀)

Total # of bricks ~ 155000

2008.08.25 COSMO08

G.Sirri - INFN Bologna

99.8 mm

125.1 mm

Strategy for the ν_τ location

OPERA: an hybrid detector

Target Tracker:

trigger (ε > 99%) localize brick with v interaction ($\varepsilon \approx 70.90\%$)

Spectrometer: μ ID, charge and momentum Up to p ~ 25 GeV : $\Delta p/p < 25\%$; Wrong charge < 0.3%

ECC: measure kink, pID, momentum (via MCS), dE/dX, e/γ separation, general event kinematics

2008.08.25 COSMO08

G.Sirri - INFN Bologna

The OPERA detector

2008.08.25 COSMO08

G.Sirri - INFN Bologna

Target Filling BAM (Brick Assembling Machine) Automatic Automatic lead/emulsion piling in a dark room (~700 bricks/day) (~700 bricks/day)

The BMS (Brick Manipulator System)

one robot on each side of the detector

Insertion and extraction of bricks following complex procedures.

INFN Bologna

Target Filling

OPERA detector filling in 2007 and 2008

2008.08.25 COSMO08

G.Sirri - INFN Bologna

Automatic emulsion scanning

Based on the tomographic acquisition of emulsion layers. The experiment size requires a scanning speed of ~20 cm²/h. ~ 30 bricks will be daily extracted \rightarrow thousands of cm²/day)

> 90%÷95% track finding efficiency 10÷10⁴ fake tracks / cm² (slope < 0.5)

Dedicated hardware Hard coded algorithms

High speed CCD Camera (3 kHz) Synchronization of objective lens and stage 1.5h/brick for 100 predictions Commercial products Software algorithms

Customized commercial optics and mechanics + asynchronous DAQ software Running at ~20 cm²/h

European station

2008.08.25 COSM008

S-UTS in Japan (Nagoya)

G.Sirri - INFN Bologna

Expected number of events

τ identi NOT in	ification	full mixing, 5 yea Ffficiency ε = a	ars run, 4.5x10 ¹⁹ ε _{trigger} x ε _{brick} x ε 99% x 80% x 9	pot/year, 1.35 ktc geom x ε _{primary_vertex} 94% x 90 %	on
	τ decay channel	$\epsilon(\%)$ with τ identification	BR(%)	signal $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$	Backgroun d
	τ→μ	17.5	17.7	2.9	0.17
	τ→e	20.8	17.8	3.5	0.17
	τ→h	5.8	49.5	3.1	0.24
	τ→3h	6.3	15	0.9	0.17
	Total	ε x BR =	10.6 %	10.4	0.76
		Main back - large-angl If no primar - charm pro - hadron re-	ground source e muon scatteri y muon identifie duction and dec interactions in l	es: ng in lead ed: cays lead	

$v_{\mu} \rightarrow v_{e}$ expected signal and background 5 years: 2.25×10²⁰ pot

θ_{13}	$\sin^2 2\theta_{13}$	$v_{\mu} \rightarrow v_{e}$	$V_{\mu} \rightarrow V_{\tau}$,	$\nu_{\mu} CC$	$\nu_{\mu} NC$	$v_e CC$
(deg)		signal	$\tau \rightarrow e v_{\tau} v_{e}$			beam
9	0.095	9.3	4.5	1.0	5.2	18
7	0.058	5.8	4.6	1.0	5.2	18
5	0.030	3.0	4.6	1.0	5.2	18

OPERA sensitivity to θ_{13}

syst. on the ν_e contamination up to 5%

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$, full mixing

	$\sin^2 2\theta_{13}$	θ ₁₃
CHOOZ	<0.14	11 ⁰
OPERA	<0.06	7.1 ⁰

[Komatsu et al. J. Phys. G29 (2003) 443]

First run with CNGS neutrinos (without bricks)

rock and inside the detector (TT and spectrometers)

\rightarrow August 2006: **7.6x10**¹⁷ integrated pot

Proton extractions from SPS with 3 cycles of 6s each 2 extractions of 10.5 ms, separated by 50 ms

First CNGS run with lead-emulsion target (80% SM1 filled = 0.5 kton) \rightarrow Sept-Oct 2007: 8.24x10¹⁷ integrated pot

Neutrino events in OPERA – Event gallery ...

Neutrino events in OPERA – Event gallery ...

Neutrino events in OPERA – Event gallery ...

2008 CNGS Run

2008 CNGS run from June to November (mass 1.26 kton, 95%)

- Start: June 18th
- High intensity beam since June 20^{th} (2x10¹³ pot/extraction)
- Statistics until Sunday, August 24th
 - total number of pot accumulated : 4.5×10^{18} pot
 - $\bullet \sim 400$ candidate interactions in the OPERA bricks
- brick extraction, emulsion development, event location are following on

Statistics expected this year :

- ~ $2x10^{19}$ pot in 123 days of SPS running
- ~ 2200 interactions over the 2008 run

 \rightarrow expected the observation of the 1st v_t event

Conclusions

The OPERA experiment is running

- Electronic detectors fully commissioned
- Target filling at 97% (will be completed in September)
- Scanning labs are ready (~40 microscopes available)

The OPERA 2007 run allowed to test the full operation chain:

- Test electronic detectors and data acquisition
- Test the brick finding algorithm
- Test of brick handling
- Test CS doublet scanning
- Test the target tracker to brick matching and scanning strategy

The concept of the OPERA detector has been experimentally validated by measuring neutrino events in the detector

The first high luminosity OPERA run is running these days. With some luck we will measure the first v_{τ} candidate event by the end of this year!

END

The experimental site

The Gran Sasso Laboratory (Central Italy, 900 m a.s.l.)

Underground Lab: 1400 m of rock shielding: Cosmic Ray flux reduced by a factor 10⁶ wrt surface; very reduced environmental radioactivity.

2008.08.25 COSMO08

G.Sirri - INFN Bologna

Next step: 2008 CNGS neutrino run from June to November ✓ Expect about 2.28x10¹⁹ pot in 123 days of SPS running assuming a nominal intensity of 2x10¹³ pot/extraction

✓ ~20 neutrino interactions / day → observation of the 1st τ event ...

CNGS actual performances:

✓ Started since June 20th : 160 events already in OPERA target and 834 events in surrounding material

$v_{\mu} \rightarrow v_{e}$ expected signal and background 5 years: 2.25×10²⁰ pot

θ_{13}	$\sin^2 2\theta_{13}$	$v_{\mu} \rightarrow v_{e}$	$V_{\mu} \rightarrow V_{\tau}$,	$\nu_{\mu} CC$	$v_{\mu} NC$	v _e CC
(deg)		Signal	$\tau \rightarrow e v_{\tau} v_{e}$			
9	0.095	9.3	4.5	1.0	5.2	18
7	0.058	5.8	4.6	1.0	5.2	18
5	0.030	3.0	4.6	1.0	5.2	18

OPERA sensitivity to θ_{13}

syst. on the ν_e contamination up to 5%

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$, full mixing

	$\sin^2 2\theta_{13}$	θ ₁₃
CHOOZ	<0.14	11 ⁰
OPERA	<0.06	7.1 ⁰

[Komatsu et al. J. Phys. G29 (2003) 443]

τ search : Backgrounds

	т→е	т→µ	τ→h	t→3h	Total
Charm background	.173	.008	.134	.181	.496
Large angle µ scattering		.096			.096
Hadronic background		.077	.095		.172
Total per channel	.173	.181	.229	.181	.764

CNGS DATA/MC comparison

- 2007 Data = 8.24 x 10¹⁷ pot
- MC not corrected for detector and DAQ lifetime estimated to be 95%

	Data	M	C	
		Oscil, spect + rock muon reweight	Non ascil. + ne rock muon reweight	
I Hit	464	660,7	634,5	
Trigger	475	503,1	497,3	
OpRec	332	349.9	354,2	

Base line MC: Oscillated spectrum + "rock events" re-weighted

Atmospheric muon charge ratio

- Points are median values, intervals contain 90% of the distributions
- 17.2 days of effective live-time
- Data contain events with all multiplicities
- Possibility to select high multiplicity events \rightarrow higher primary energies (work in progress)

Emulsion scanning in OPERA

The European Scanning System

Z stage (Micos) 0.05 μm nominal precision

CMOS camera 1280×1024 pixel 256 gray levels 376 frames/sec (Mikrotron MC1310)

Emulsion Plate

XY stage (Micos) 0.1 µm nominal precision

Illumination system, objective (Oil 50× NA 0.85) and optical tube (Nikon) 6

 Scanning speed: 20 cm²/h/side (40 GB/day/microscope of raw data)
 Purity: 10 fake tracks / cm² (slope < 0.5)
 Efficiency: up to 95% using tracks, ~100% using microtracks
 0.3÷0.7 μm precision for recons. tracks State-of-art automated microscopes fast bi-dimensional image analysis real-time high precision 3D tracking

 Scanning speed: 50 cm²/h/side average (72 cm²/h/side peak) custom parallel processing (FPGAs)
 Purity: 10 fake tracks / cm² (slope < 0.4)
 Efficiency: 95% using tracks

The S-UTS (Japan)

Custom CMOS camera 512×512 pixel 3000 frames/sec

Piezoelectric fine drive for Z motion of lens

X axis is driven with continuous motion

Oil objective 35× NA 0.85

Mechanics based on Nikon microscope stages X/Y/Z nominal precision = 0.1mm

OPERA an hybrid detector

What the nuclear emulsion cannot do:

- trigger for a neutrino interaction
- approximate location of the interaction vertex
- muon identification and momentum/charge measurement
 - ➔ need a hybrid detector

At work with passing-through μ (2007) - *Intercalibration* issues

JINST3 (2008) P07005, arXiv:0804.1985

