Results From Phase III of the Sudbury Neutrino Observatory

Jason Goon Louisiana State University for The Sudbury Neutrino Observatory Collaboration Cosmo 2008, Madison WI, Aug 2008

Outline

- Physics and Reactions
- Motivation
- Detectors and Detections
- Signal Extraction and Analysis

Summary

Solar reactions and spectra

Solar Neutrinos

The Sun is an intense source of MeV neutrinos! $4p + 2e^- \rightarrow {}^4\text{He} + 2\nu_e + 26.731 \text{ MeV}$

slar models let us predict the rates of each neutrino-producing reaction

SNO

6000 mwe overburden

1000 tonnes D₂O

12 m Diameter Acrylic Vessel

1700 tonnes Inner Shield H₂O

Support Structure for 9500 PMTs, 60% coverage

5300 tonnes Outer Shield H₂O

Image courtesy National Geographic

3 Reactions:

 $v_x + e^- \rightarrow v_x + e^-$ ES $v_e + d \rightarrow p + p + e^-$ CC $v_x + d \rightarrow p + n + v_x$ NC

3 neutron detection methods: $n+d \rightarrow t+\gamma+6.25$ MeV $n+^{35}Cl \rightarrow^{36}Cl+\gamma+8.6$ MeV $n+^{3}He \rightarrow p+t+0.76$ MeV

3 Phases:

- Just D_2O
- D₂O + 2 tonnes NaCI
- $D_2O + {}^{3}He$ Proportional Counters ("NCDs")

Motivation

- Separate CC and NC signal paths: neutron capture no longer competes with CC events in Cherenkov light.
 (CC spectrum contamination by 6.25-MeV capture gammas reduced by capture in NCD array, and determined independently)
- Break correlation between CC and NC signals
- Signal extraction of CC, ES, NC analysis employs "Floating systematics"

NCD

Counters 2 - 3m long laser-welded together and deployed by a submersible vehicle. 36 strings of ³He, 4 strings of ⁴He on a 1 x 1 m grid.

Neutron spectrum is obtained from ²⁴Na calibration source

NCD Simulation Physics:

model: alpha energy loss alpha energy straggling alpha multiple scattering electron-ion pair generation electron drift, diffusion electron multiple scattering ion mobility electron avalanche space charge signal generation propagation through electronics

extract from calibration data: Po/bulk ratio energy scale energy resolution alpha depth contributions from different parts of the NCD

Relative Energy

Sigex Extraction

- Joint-fits: 2 data streams (PMT and NCD)
- PMT-NC signal constrained to NCD-NC signal
- •Performed at PMT e^{-} kinetic thres. > 6 MeV.
- Energy spectral shape is unconstrained.
- 3 different and independent sigex codes
- All 3 sigex codes used likelihood functions

$$-logL = \sum_{i}^{M^{PMT}} f_{i}^{PMT} \phi_{i} - \sum_{j}^{N^{PMT}} \log \sum_{i}^{M^{PMT}} f_{i}^{PMT} \phi_{i} g_{i}(p_{j}; p_{j}^{0}, p_{j}^{true}, d, s, r) + logL_{NCD} + logL_{constr}$$

The physics parameters ("fluxes") are fitted allowing nuisance parameters (calibration constants, etc.) to vary weighted by their external uncertainties. The likelihood is maximized via randomized search steps

Blind and Box Analysis

Blind

- First month of open dataset (26.7days) and 359.5 days of blind dataset which consist of hidden fraction of neutrons that follow muons, AND Omit an unknown fraction of candidate events
- Analyze with 3 different sigex codes and blind comparison

Box open on 2nd of May 2008

- Results presented are as found, except...
- Difference between uncertainties from 3 signalextraction codes: "Pilot errors" corrected, no change in central values, uncertainties agree.
- An incorrect algorithm in fitting the peak of the ES posterior distributions replaced

Backgrounds

Source	PMT Events (neutrons)	NCD Events (neutrons)
D ₂ O Radioactivity	7.6 ± 1.2	28.7 ± 4.7
Atmospheric v, ¹⁶ N	24.7 ± 4.6	13.6 ± 2.7
Other backgrounds	0.7 ± 0.1	2.3 ± 0.3
NCD Bulk PD, ^{17,18} O(α,n)	4.6 +2.1 -1.6	27.6 +12.9 -10.3
NCD hotspots	17.7 ± 1.8	64.4 ± 6.4
NCD cables	1.1 ± 1.0	8.0 ± 5.2
External-source neutrons	20.6 ± 10.4	40.9 ± 20.6
TOTAL	77 ⁺¹² ₋₁₀	185 +25 -22

11

NCD neutrons from solar neutrino interactions

PMT Distributions - $cos(\theta_{sun})$, Energy

SNO NC Flux: 3 Phases

NC Flux (corrected to ⁸B spectrum of Winter *et al.*) CC spectrum shape not constrained to ⁸B shape.

SNO CC and ES Fluxes: 3 Phases

Results from SNO NCD Phase & Super-K

 $\phi_{SSM} = 5.69(1\pm0.16) \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ (BSB05-OP: Bahcall, Serenelli, Basu Ap. J. 621, L85, 2005). Super-K: PRD 73, 112001, 2006

2-Neutrino Oscillation Contours

Summary

- Good agreement between NCD and previous SNO phase results and with theory
- Minimal NC and CC correlation
- New precision on θ

Solar + KamLAND fit results

$$\begin{aligned} & \sin^2 \theta_{12} \sim \Phi_{CC} / \Phi_{NC} = 0.301 \pm 0.033 \ (tot) \\ & \Delta m^2 = 7.94^{+0.42}_{-0.26} \times 10^{-5} \ \text{eV}^2 \qquad \tan^2 \theta = 0.447^{+0.047}_{-0.043} \\ & \theta = 33.8^{+1.4}_{-1.3} \ \text{degrees} \qquad \phi_{8B} = 0.873(1 \pm x)\phi_{8B(BSB05-OP)} \end{aligned}$$

2-neutrino mixing model. Marginalized 1- σ uncertainties. All SNO phases. KamLAND: PRL 94, 081801 (2005). x to be published later.

The SNO Collaboration

B. Beltran, S. Habib, A.L. Hallin, C. Howard, C.B. Krauss University of Alberta

B. Jamieson, S.M. Oser, T. Tsui, J. Wendland University of British Columbia

> R.L. Hahn, R. Lange, M. Yeh Brookhaven National Laboratory

A.Bellerive, K. Boudjemline, P.-L. Drouin, K. Graham, R.J. Hemingway, C. Mifflin, E. Rollin, O. Simard, L. Sinclair, G. Tesic, D. Waller, F. Zhang Carleton University

> P. Jagam, J. Law, B.G. Nickel, R.W. Ollerhead, S.D. Reitzner, J.J. Simpson University of Guelph

B. Aharmim, D. Chauhan, J. Farine, F. Fleurot, E.D. Hallman, M. Huang, A. Krueger, M.H. Schwendener, C.J. Virtue Laurentian University

M. Bergevin, Y.D. Chan, C.A. Currat, R. Henning, K.T. Lesko, A.W.P. Poon, G. Prior, N. Tolich Lawrence Berkeley National Laboratory

> N. Barros, J. Maneira LIP, Lisbon

J. Banar, T.J. Bowles, S.R. Elliott, M.M. Fowler, A. Goldschmidt, A. Hime, G.G. Miller, K. Rielage, L.C. Stonehill, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory J. TM. Goon, T. Kutter, K. McBryde Louisiana State University

J.A. Formaggio, M.L. Miller, B. Monreal, J. Monroe, R.A. Ott, T.J. Walker MIT

S.D. Biller, B.T. Cleveland, G. Doucas, H. Fergani, N.A. Jelley, J.C. Loach, S. Majerus, H.M. O'Keeffe, G.D. Orebi Gann, P.M. Thornewell, H. Wan Chan Tseung, N. West, J.R. Wilson, K. Zuber Oxford University

E.W. Beier, H. Deng, M. Dunford, W.J. Heintzelman, C.C.M. Kyba, N. McCauley, J.A. Secrest, R. Van Berg University of Pennsylvania

S.N. Ahmed, B. Cai, M. Chen, X. Dai, M. DiMarco, E.D. Earle, H.C. Evans, G.T. Ewan, E. Guillian, P.J. Harvey, J. Heise, K.J. Keeter, L.L. Kormos, M.S. Kos, C. Kraus, J.R. Leslie,
R. MacLellan, H.B. Mak, R. Martin, A.B. McDonald, A.J. Noble, B.C. Robertson, P. Skensved, A. Wright, Y.Takeuchi Queen's University

F. Duncan, R. Ford, I.T. Lawson, B. Morissette SNOLAB

R.L. Helmer

A.E. Anthony, J.R. Klein, S. Seibert, C.D. Tunnell University of Texas at Austin

J.F. Amsbaugh, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox-Mobrand, J. Detwiler, P.J. Doe, C.A. Duba, N. Gagnon, J.V. Germani, A. Hamian, G.C. Harper, R. Hazama, K.M. Heeger, M.A. Howe, S. McGee, A. Myers, N.S. Oblath, R.G.H. Robertson, M.W.E. Smith, T.D. Steiger, B.A. VanDevender, T. Van Wechel, B.L. Wall, J.F. Wilkerson University of Washington

