

Calculation of $\frac{dR}{dE_R}$ for O₁ and O₄

Shaun Alsum

The basic equation

- $$\frac{dR}{dE_R} = \frac{\rho_0}{32\pi m_x^3 m_N^2} \int_{v>v_{min}} \frac{f(\vec{v})}{v} \sum_{i,j} \sum_{N,N'=n,p} c_i^N c_j^{N'} \sum_k a_{ijk} F_k^{(N,N')} d^3 v$$
 - k runs over $M, \Sigma'', \Sigma', \Delta, \Phi'', \Phi'$
- $f(\vec{v})$ is the distribution of incident WIMP velocities on target nuclei.
- $F_k^{(N,N')}$ are nuclear form factors
- F_k are functions of q (momentum transferred), and v .
- To look at just the O_1 or O_4 operators, take $i=j=1$ or $i=j=4$.
- Goal is to find (or set limits on) c_i^N

Find a_{ijk}

- Detailed in [arXiv:1203.3542](https://arxiv.org/abs/1203.3542)
- $F_{1,1}^{(N,N')} = F_M^{(N,N')}$ so $a_{11k} = 1$ for $k=M$, $=0$ for $k \neq M$
- $F_{4,4}^{(N,N')} = \frac{1}{16} C(j_x) \left(F_{\Sigma''}^{(N,N')} + F_{\Sigma'}^{(N,N')} \right)$ so $a_{44k} = 1/16$ for $k = \Sigma'', \Sigma'$ and $= 0$ for other k s.
- $C(j_x)$ is a constant that depends on the dark matter spin j_x . $C = (4j_x(j_x + 1)/3)$
- Note that a_{ijk} can depend on v .

Find F_k

- F_k are approximated in tables in, again,
[arXiv:1203.3542](https://arxiv.org/abs/1203.3542)
- Depend on q , which I don't yet know how to deal with since only integral in the governing equation is over incoming velocity v .
- One is, for instance for Xe 128

$$- F_M^{(p,p)} = e^{-2y} (2900 - 11000y - 15000y^2 = \\ 11000y^3 + 4200y^4 - 950y^5 - 7.8y^7 + 0.20y^8)$$

$$- \text{Where } y = \left(\frac{qb}{2}\right)^2, b \approx \sqrt{41.467/(45A^{-\frac{1}{3}} - 25A^{-\frac{2}{3}})}$$

q

- $\frac{dR}{dE_R}$ depends of F_k , F_k depends on y , y depends on $|q|$, $q = p - p'$.
- $q = -p_{xe}' = \sqrt{2m_{xe}E_R}$ (in the non-relativistic limit)

f(v)

- $f\left(\frac{\rightarrow}{v}\right) d^3v = v^2 f(v) dv = v^2 e^{-(v+v_{earth})^2/v_0^2} dv$
 - $v_{earth} \approx 244 \frac{km}{s}$
 - $v_0 \approx 230 \frac{km}{s}$
- v_{min} is the slowest speed that could result in a recoil of energy E_R . Given by $v_{min} = \left(\frac{m_X + m_{Xe}}{m_X m_{Xe}}\right) \sqrt{\frac{m_{Xe} E_R}{2}}$ in the non-relativistic limit

Back to the integral

- $\frac{dR}{dE_R} =$
$$\frac{\rho_0}{32\pi m_x^3 m_N^2} \int_{v>v_{min}} \frac{f(\vec{v})}{v} \sum_{i,j} \sum_{N,N'=n,p} c_i^N c_j^{N'} \sum_k a_{ijk} F_k^{(N,N')} d^3v$$
- For O_1 , a_{11k} independent of v , so
- $\frac{dR}{dE_R} =$
$$\frac{\rho_0}{32\pi m_x^3 m_N^2} \sum_{N,N'=n,p} c_1^N c_1^{N'} F_M^{(N,N')} \int_{v_{min}}^{v_{esc}} v e^{-(v+v_{earth})^2/v_0^2} dv$$
- In the 0 momentum transfer limit $\mathbf{q} \rightarrow \mathbf{0}$ this should replicate the result from Lewin and Smith
(http://particleastro.brown.edu/articles/Lewin_Smith_DM_Review.pdf) and does so at least up to a constant factor(I haven't checked the full math yet).