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Abstract

We present a systematic derivation and discussion of the practical formulae needed to design and interpret direct searches
for nuclear recoil events caused by hypothetical weakly interacting dark matter particles. Modifications to the differential
energy spectrum arise from the Earth’s motion, recoil detection efficiency, instrumental resolution and threshold, multiple
target elements, spin-dependent and coherent factors, and nuclear form factor. We discuss the normalization and presentation
of results to allow comparison between different target elements and with theoretical predictions. Equations relating to future
directional detectors are also included.

1. Introduction

A number of experiments are underway or planned to investigate the hypothesis that the unidentified non-
luminous component of our Galaxy might consist of new heavy weakly interacting particles. The experiments
aim to detect, or set limits on, nuclear recoils arising from collisions between the new heavy particles and target
nuclei.

The majority of experiments are based on ionization, scintillation, low temperature phonon techniques, or
some combination of these. They have in common the same basic theoretical interpretation. The differential
energy spectrum of such nuclear recoils is expected to be featureless and smoothly decreasing, with (for the
simplest case of a detector stationary in the Galaxy) the typical form:

dR R0 _gyry
dEp  Eor (LD

where Ey is the recoil energy, Ey is the most probable incident kinetic energy of a dark matter particle of mass
Mp, r is a kinematic factor 4MpMr/(Mp + M7)? for a target nucleus of mass Mr, R is the event rate per unit
mass, and Ry the total event rate. Since Galactic velocities are of order 10~3¢, values of Mp in the 10-1000
GeVc~? range would give typical recoil energies in the range 1-100 keV.
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Fig. 1. Typical shape of limit curves; ———— small A, - - - - - large A, each for three values of E; increasing from left to right.

All the experimental efforts lie on the left-hand side of (1.1)—the aim being to progressively reduce or reject
background events to allow a spectrum of rare nuclear recoil events to be observed. In particular, underground
operation is preferred, to eliminate nuclear recoils from neutrons produced by cosmic ray muons; and methods
of discriminating between nuclear and electron recoils are being developed, to reject gamma and beta-decay
background in the target and detector components.

When an experiment has set an upper limit to the differential rate at any particular value of Eg, the right-hand
side of (1.1) allows a corresponding limit for Ry, the dark matter signal, to be calculated for each assumed
value of particle mass Mp. Since the Galactic dark matter density and flux are approximately known, the
limit on Rp can be converted to a limit on the particle interaction strength or cross-section. Alternatively, an
experiment may determine a limit to the event rate above a specified energy E; or in an energy span E; to
E>, in which case the integral of (1.1) above or between these energies again determines a limit to Rp as a
function of Mp. The typical shape of these limits, and their variation with target mass My and instrumental
energy threshold E, is illustrated in Fig. 1.

In practice, the right-hand side of (1.1) is considerably more complicated, owing to the following corrections:

(a) The detector is located on the Earth, in orbit around the Sun, with the solar system moving through the
Galaxy.

(b) The detection efficiency for nuclear recoils will in general be different from that for the background
electron recoils. Thus the ‘true recoil energy’ will differ from the ‘observed recoil energy’ by that relative
efficiency factor.

(c) The target may consist of more than one element, with separate limits resulting from each.

(d) There may be instrumental resolution and threshold effects, for example when photomultipliers are used
to observe events yielding small numbers of photoelectrons.
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(e) The limits set will in general be different for spin-dependent and spin-independent (scalar) interactions,
the latter being, in addition, coherently enhanced in amplitude at low energies by the number of interacting
target nucleons.

(f) There is a form factor correction < 1 which is due to the finite size of the nucleus and dependent
principally on nuclear radius and recoil energy. This also differs for spin-dependent and spin-independent
interactions.

To take account of these we rewrite (1.1) as
dR = RyS(E)F*(E)1 (1.2)
observed

where S is the modified spectral function taking into account the factors (a-d), F is the form factor correction

(f), and 7 is an interaction function for (e) involving spin-dependent and/or spin-independent factors.

This review concerns the elaboration of (1.1) to include these corrections and to provide convenient practical
forms for S and F in (1.2). The quantity Ry, which remains defined as the unmodified rate for a stationary
Earth, can then be estimated from the observed differential spectrum.

These corrections have been discussed in various dark matter papers and reviews [1-12], but not fully covered
in any one place; and varying definitions and presentations still give rise to some confusion. As experimental
programmes begin to yield new limits, there is now a need to collect the various formulae together in a
consistent notation and in a way which facilitates evaluation of proposed new experiments. We also discuss
the preferred methods of normalizing results to allow comparison of different experiments and target elements.
For future experiments which may incorporate sensitivity to the nuclear recoil direction, we append directional
versions of the recoil spectra.

We find it convenient to use an abbreviated notation for the units for event and background rates. It has
become conventional to express the unit differential rate as 1 event keV~'kg~!d~!, and we refer to this simply
as the ‘differential rate unit’ (dru). Integrated over energy, the unit for total rate Ry is 1 event kg~ 'd~!, which
we refer to as a ‘total rate unit’ (tru). In some experiments it is necessary to utilize the partial integral of the
differential spectrum between two selected values of Eg. This is also in events kg~!d~! but we refer to it as
an ‘integrated rate unit’ (iru) to distinguish it from the total integral Ry (tru).

2. Particle density and velocity distribution
Differential particle density is given by:
dn = ';(—"f(v, vg) d°v

where k is a normalization constant such that

Vesc

dn = ny,
0
ie.,
2ar +1 Vesc
k=/d¢/d(cos())/f(u,vg)vzdv.
0 -1 0

Here ng is the mean dark matter particle number density (= pp/Mp for dark matter particle mass Mp, density
pp), v is velocity onto the (Earth-borne) target, vg is Earth (target) velocity relative to the dark matter
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distribution, and ves is the local Galactic escape velocity; dn is then the particle density of dark matter particles
with relative velocities within d*v about v.
We assume a Maxwellian dark matter velocity distribution:

Fo,vp) = e~ +ep)’ 11
then, for vee = 00,
k= ko = (m03)*?; (2.1)

whereas the same distribution truncated! at | v + vg |= vee Would give
g

k =k = ko [erf (”—) L2 e | (2.2)
[24) m 12 2]

s0 ky — ko as vese — 00. Derivations of these and subsequent results are given in Appendix A. For vp =

230kms™!, vee = 600kms™' (see Appendix B), we obtain ko/k; = 0.9965.

Estimates for pp for a spherical halo have been in the range 0.2 GeVe~?cm™3 < pp <04 GeVe~2em™3,
leading to the adoption of pp = 0.3 GeVc~2cm™3 as the central value. However, it has always been recognized
that some flattening of the halo is likely, which would increase pp in the vicinity of the Galactic plane. The
most recent estimate is that of Gates et al. [13] who obtain 0.3GeVc=2cm™ < pp < 0.7GeVe=2cm™3 for
the total (local) dark matter density in the flattened halos which best model observations, together with an
estimated (1995) observational limit of 5-30% for dark matter in the form of non-luminous stars (‘MACHOs’).
This suggests a value of pp= 0.4 GeVc~2cm™3 for the non-baryonic component at the position of the solar
system, subject to any further changes in the estimated MACHO fraction.

3. Basic event rates and energy spectra

The event rate per unit mass on a target of atomic mass A AMU, with cross-section per nucleus ¢ is

Ny
dR = — dn,
Aoun

where N is the Avogadro number (6.02- 102 kg™'). In this section, we give the total event rates and energy
spectra in the absence of the practical corrections discussed in Section 5 and of the form factor corrections
discussed in Section 4—i.e., rates for the ‘zero momentum transfer’ cross-section o = constant = gg. Then:

No No
= —0 vdn = — ogno{v).
2o | 2 (o)
We define Ry as the event rate per unit mass for vg = 0 and veg = 00; i.€.:

RO=-2~59"—20000 (3.1)

(substituting for ng); so that

77.1/2 (U)
R=Ro %

1 Strictly, the Maxwellian distribution should be modified by a gravitational potential appropriate to vesc; however, since k; above differs
from kp by less than 0.5%, the errors are not likely to be significant.
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ko 1 3
=Ry P 27rv(",' /vf(v,vg)d v.
We shall use this result later in differential form:
ko 1 3
dR = R()? 71)8 Uf(l/', VE) d’v. (32)
Then:

R(0, vesc) ko Ugsc _o2 2
A ese) 20y [ 4 ese Vesc/vp | - .

Re T 1 + 2 e ; (3.3)
Rwpoo) L[ i (ve | Loo) (e | i),

Ry =3 ['n' % + 208 erf ” +e ; (3.4)
R(ve, Vesc) ko | R(vg, o0) Ufsc 1 Ué‘ v

= = — £k - = 1 “esc/v() . 35
Ro k,[ Ro (ug+3u3+ ¢ (3

Again taking vg = 230kms™!, vee = 600kms™!, we obtain: R(0,vesc)/Ro = 0.9948. The Earth velocity
vE ~ vg, but varies during the year as the Earth moves round the Sun (Appendix B). For practical purposes,

vg ~ 244 + 15sin(2my) kms~!, (3.6)

where y is the elapsed time from (approximately) March 2nd, in years.

Note that, while the mean level is uncertain by ~ 20kms™! (from galactic motion uncertainty), the mod-
ulation amplitude has negligible uncertainty; however, use of the above expression gives rise to small errors
since the modulation is not exactly sinusoidal. The ~ 6% velocity modulation in (3.6) gives rise to a ~ 3%
modulation in rate (this can be seen by differentiating (3.4), yielding

d (R 1 [R 7Y%y UE
— (= )=—|=- erff { = )|,
dvg \ Ry ve | Ro 2vg 4

~— — for vg ~ vg.

Physically, mean velocity onto target, < R, is both larger than the mean of vg and varies less than vg).
However, because the modulation in dR/dEg changes sign with energy (see Fig. 2), modulation of the sum
of the absolute differences in binned data is significantly larger (dependent on energy threshold)—see also
Table 1. The effect would be further enhanced by a statistical analysis with respect to energy.

Ry is conventionally expressed in units kg='d~!, or ‘trw’ (see Section 1). Normalized to pp =
0.4GeVe2cem™? and vp =230kms™!, (3.1) becomes:

540 [ oo pD o
Ro = o t
% AMp (lpb) <0.4Gch”2cm‘3> <230kms") o

503 oo PD )
= 22 (% ¢ 3.7
MpMy (lpb> <0.4Gevc—2cm-3) (23Okms“1> u (3.7)

with Mp, M7 in GeVe™2 (Mr,=0.932 A, is the mass of the target nucleus).
The recoil energy of a nucleus struck by a dark matter particle of kinetic energy E, = Mpv? = 1Mpc?(v/c)?,
scattered at angle 6 (in centre-of-mass) is:

Er = Er(1 —cos8)/2
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1

(E0 r /RO) dR/dt

E/E0r)
Fig. 2. Seasonal variation of rate spectrum; ———— annual average, - - - - - June, - - - - - December. Inset: enlargement of cross-over
region, annual average subtracted. - - -« .- monthly averages.
where
r=4MpMr/(Mp + Mp)>. (3.8)

We assume the scattering is isotropic, i.e. uniform in cos @, so that recoils are uniformly distributed in Eg, over
the range 0 < Ex < Er; hence
iR T
1
—_— — dR(E
dEg _/ Er (E)
Emin
Umax 2
1 v
=— — dR(v),
Eor 1)2 (U)
where Epin = Eg/r, the smallest particle energy which can give a recoil energy of Eg; Eo = $Mpvd = (v3/v*)E;
and v, is the dark matter particle velocity corresponding to Emip, i.€.,
Umin = (2Emin/Mp)'/* = (Eg/Eor)'/*vo.

So, using (3.2), we have:

dR Ro ko 1 1 3
- == it , d’v, 39
dEx ~Eor k 22 | oI R4V (39
Umin
from which we obtain:
dR(0, 00) _ _R_O_e—ER/EOr, (3.10)

dEg Eor

which is the basic unmodified nuclear recoil spectrum for vg = 0 already referred to in Section 1.
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With non-zero vg and finite veg, (3.9) gives:

M = _}i(l & (e“ER/Eﬂ’ _ e""gsc/”rz))

dER k] E()r
ko [dR(0, 0) Ry _.2 Jod
= — |77 2 Yesc : 1
k; |: dER E()re ) (3 )
dR(vg,00) Ry 7'/% vy Umin + VE Vmin ~ VE
= = 2T e (MR E ) erf | 22 3.12
dER E()r 4 VE © 120 er Uo ( )
dR(VE, Vesc) - @ dR(vg, o0) _ &e"ugsc/vé ) (3.13)
dER k] dER E()r

June, December, and annual averages of (3.13) are shown in Fig. 2 for vy = 230kms~!, v = 600kms™!,
with vg from (3.6). The inset is an enlargement of the cross-over region—Eg ~ 0.78 Egr—for these velocities,
showing differences between mean monthly rates and the annual average.

For practical purposes, dR(vg, 00) /dEg is well approximated by:

dR(vg,0)  Ro

- ~c ER/Epr 3.14
dEx Eor € : (3.14)

where ¢, c; are fitting constants, of order unity. Values of ¢, ¢, for different months and energy thresholds are
discussed in Appendix C. Note that c|, c; are not independent: by integration,

¢1 _ R(vg,o0)
Cc2 B R() ’

For most purposes it is sufficient to take fixed average values ¢; = 0.751, c; = 0.561.

dR/dEy is conventionally expressed in units keV~'kg~'d~!, or ‘dru’ (see Section 1).

For some types of experiment, the data may yield a limit on the total number of events in a finite energy
range, or the total above some minimum energy. For these cases we need the integrated form of (3.14):

R(E,.E)) = Roz—l [e"“zEl/Eof - e—czEz/EO’] (3.15)
2

giving the integrated rate over a recoil energy range Egx = E; to Egp = E;. In practice, (3.14) and (3.15) are
modified to take account of a form factor, as discussed in the next section.

As observed in Section 1, it is helpful to refer to the units of (3.15) (kg~'d™') as ‘integrated rate units’
(iru), reserving ‘tru’ specifically for the total integral E; = 0, E; = oo. Note that the total rate from (3.15)
is (c1/c2) x Ry ~ 1.3 x Ry, varying with time of year as discussed above. Ry remains defined as the time-
independent rate corresponding to zero Galactic velocity (vg = 0).

Spergel [14] has derived the differential angular spectrum (ves, = 00) with respect to laboratory recoil angle
r; in our notation:

d*R(vg,00) 1 Ry

i —(vgCosy — tmin) /13 3.16
dEgrd(cosy) 2E0re : (3.16)

In Appendix A we show that integration of this with respect to cosy correctly yields our result for
dR(vg,o0) /dER; carrying out the integration separately over the forward (0 < cos¢ < 1) and backward
hemispheres yields:
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dR(vg,00) ) [ (Umin) (Umin —w)}

— =— — — letf | — | —erf{ ———— }|;
dERg forward Eyr 4 vg Vg vg

dR(vg, 00) Ry 7'/% vy [ (Unﬂn+UE> <Umin>]

—_— =— — — |eif | ——— | —erf .
dEgr backward Eor 4 ug Uo Uo

Clearly, these sum to (3.12). Rates in the energy bin E; < Eg < Ej, R(E}, Ey) |f0mard, backward> €an be obtained
by numerical integration.

Table 1 illustrates both seasonal and directional variation in binned rates, all obtained by numerical integration
of the exact differential formulae.

Some ‘directional’ detection ideas would only give directional information modulo 7—i.e. would give the
angle between recoil path and target trajectory but not the direction of recoil along that path. In such cases, it
may only be possible to look for the smaller asymmetry between rates resolved parallel and perpendicular to
the target trajectory:

1
dR(vg, 00) / d*R(vg, 00)
— - —-"‘-"““—d >
’u 3 |COS¢IdERd(COS¢//) (cos¢)
dR(l)E, 1/2 d? R(vg,00)
/(1 dERd(cosqj)d(cos./l)'

Though the integral for the parallel component can be evaluated analytically, it will usually be more appropriate
to integrate (3.16) with respect to Er over an energy bin, obtaining:

1 dR(vg,0) _1 [e—m = vpcosy)? /e _ ,—(i —vscosw)z/v%]
Ro d(cosyr) 2

/2 yo—
+ 5 EEcos¢// [erf (U—ECOS(’//> erf (w-ﬂ 5 (3.17)

Vo Vo Vg

with Ui = (El,z/E()r)l/ZU().
R(E\,Ey) |, R(E, E;) | are then obtained by numerical integration of (3.17); Table 2 gives values for the
same binnings as in Table 1.

4. Nuclear form factor correction

When the momentum transfer ¢, = (2M7Eg)"/2, is such that the wavelength %/q is no longer large compared
to the nuclear radius, the effective cross-section begins to fall with increasing g, even in the case of spin-
dependent scattering which effectively involves a single nucleon (for a particularly clear statement, see [15]).
It is convenient, and usually adequate, to represent this by a ‘form factor’, F, which is a function of the
dimensionless quantity gr,/h where r, is an effective nuclear radius. In the following we use units in which
k=1, so that ‘gr,’ is this dimensionless quantity.

With r, approximated by r, = a,A'® + b,, and with

g(MeVe™") = [2 x 0.932(GeVe2) AEg(keV)]'/?,
we have, since i =197.3 MeV fm:
grn (dimensionless) = 6.921072AY2Ez"2(a,A'* + b,) (4.1)
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Table 1
Energy dependence of annual modulation and forward/back ratios
energy normalized total rate R/Rp directional components of R/Rg
range Jun abs (Jun June December

J De

ERr/Eor un ¢ — Dec — Dec) forward back ratio forward back ratio
0.0-0.1 0.069 0.073 —0.0043 0.0043 0.041 0.028 1.46 0.043 0.030 1.42
0.1-0.2 0.066 0.069 —0.0035 0.0035 0.044 0.022 2.02 0.046 0.024 1.92
0.2-0.3 0.063 0.066 —0.0028 0.0028 0.045 0.018 2.48 0.046 0.020 233
0.3-0.5 0.118 0.122 —~0.0037 0.0037 0.090 0.028 3.16 0.091 0.031 291
0.5-0.7 0.108 0.110 —0.0016 0.0016 0.087 0.021 4.12 0.086 0.023 371
0.7-1.0 0.144 0.144 0.0007 0.0007 0.122 0.022 541 0.119 0.025 4.77
1-2 0.352 0.335 0.0166 0.0166 0317 0.035 9.09 0.297 0.039 7.67
2-3 0.206 0.184 0.0220 0.0220 0.195 0.011 18.5 0.173 0.012 14.6
3-5 0.179 0.148 0.0308 0.0308 0.174 0.005 38.5 0.144 0.005 28.5
5-7 0.051 0.038 0.0127 0.0127 0.050 0.0005 99.0 0.038 0.0006 66.7
7-10 0.016 0.011 0.0050 0.0050 0.016 0.00007 237. 0.011 0.00007 146.
total 1.374 1.302 0.0727 0.1046 1.183 0.191 6.20 1.094 0.209 523
Table 2
Energy dependence of parallel/ perpendicular ratios
energy resolved components of R/Rp
range June December Annual average
Eg/Egr parallel 1 ratio parallel 1 ratio parallel R ratio
0.0-0.1 0.028 0.058 0.49 0.031 0.061 0.51 0.030 0.060 0.50
0.1-0.2 0.028 0.055 0.51 0.031 0.057 0.54 0.030 0.056 0.52
0.2-03 0.028 0.052 0.54 0.030 0.054 0.56 0.029 0.053 0.55
0.3-0.5 0.055 0.096 0.57 0.058 0.098 0.59 0.056 0.097 058
0.5-0.7 0.053 0.086 0.62 0.054 0.087 0.63 0.054 0.086 0.62
0.7-1.0 0.075 0.112 0.67 0.075 0.111 0.67 0.075 0.112 0.67
1-2 0.20t 0258 0.78 0.191 0.246 0.77 0.196 0.252 0.78
2-3 0.131 0.140 0.94 0.116 0.126 0.92 0.124 0.133 093
3-5 0.124 0.112 1.11 0.102 0.095 1.08 0.113 0.103 1.10
5-7 0.038 0.029 1.32 0.028 0.022 126 0.033 0.026 1.29
7-10 0.012 0.0082 1.50 0.0084 0.0058 143 0.010 0.0070 1.47
total 0.777 1.007 0.77 0.725 0.965 0.75 0.751 0.987 0.76

with Er in keV and a, b in fm.
Cross-sections then behave as:

a(qry) = ooF*(qry),

where o is the cross-section at zero momentum transfer. Separation into one term (o) containing all depen-
dence on the specific interaction and a second (F(gr,)) dependent only on momentum transfer is convenient
in allowing results to be presented in an almost model-independent fashion. It must be noted, however, that, in
the case of spin-dependent interactions, this corresponds to considering contributions from only the unpaired
nucleon (the ‘single-particle’ model) or nucleons of the same type as the unpaired nucleon (the ‘odd-group’
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model), and is likely to be substantially in error for large mass nuclei [11].

In the first Born (plane wave) approximation, the form factor is the Fourier transform of p(r), the density
distribution of the ‘scattering centres’:

F(q):/p(r)e[q"d3r

27 +1

=/d¢/r2p(r) /e"‘"“’”d(cosa)dr

0 r -1
4 oo
= ?W /rsinqrp(r)dr.
0

A useful starting point is to consider the form factors obtained by Fourier transform of (a) a thin shell,
approximating a single outer shell nucleon for the case of spin-dependent interactions 2, and (b) a solid sphere,
approximating spin-independent interaction with the whole nucleus. The results are:

(a) thin shell:

F(qrn) = jo(qra) =sin(qry) /qra; (4.2)
(b) solid sphere:

F(qra) =3j1(qrs)/qrs =3[sin(qr,) — qracos(qra)1/(gra)>. (4.3)

A commonly used approximation is:

F2(gra) = e, (4.4)

with @ = 1/3, this is the exact form factor for a Gaussian scatterer of rims = 7, (see [11,24]); for small qrn,
this is an adequate approximation to (4.2). & = 1/5 gives a comparable fit to (4.3) (see Figs. 3 and 4), but
clearly poor fits result for gr, much beyond 3-4.

In the spin-dependent case, the more exact computations of Engel et al. [ 11] show that, when coupling to all
‘odd-group’ nucleons is taken into account, the (early) zeros of the Bessel function (4.2) are at least partially
filled (see Fig. 3). For the experimentally useful range 0 < gr, < 6, these results are adequately approximated
by (4.2) with F? replaced across the first dip by its value at the second maximum:

F(qry) = Jé(gra) (grn < 2.55,qr, > 4.5),
" constant ~ 0.047 (2.55 < gr, < 4.5);
rn =~ 1.0A'> fm. (4.5)

For the spin-independent case the distribution of WIMP scatterers is assumed to be the same as the charge
distribution derived from experimental data for electron [17] and muon scattering (the latter is comprehensively
reviewed in [18]). The essential change from the uniform distribution yielding (4.3) is the appearance of a
‘soft edge’—charge density falling to zero over a finite skin thickness, resulting in an effective damping of the
form factor. In electron and muon scattering, the Bessel function zeros are again partially filled (increasingly
so as A increases); but, as this is essentially due to multiple photon exchange in the nucleus, it is not expected
in the WIMP case [19].

2 But note that this may be a poor approximation if the odd nucleon is not in an s-state [16].
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100 "y T g 10° — e
101 L E -t b E
F’ L B Fz L 4
10-2 b E 10-2 | B
10-3 L = 10-3 | 4
R 2 ‘ 5 8 10 s 2 ; s ] 10

ar, ar,
Fig. 3. Form factor, thin shell approximation; - -« --- .- - exp[—(grn)?3/3),- - - - - [sin(grn)/qra)? (thin shell), ———— approximate

fit, 0 0 0 0 0 31Xe (Engel et al., single-particle model), * * * * * Nb (Engel et al., single-particle model).

Fig. 4. Form factor, solid sphere approximation; - -« .- - .- exp[—(qrn)?3/5],
sphere).

{3[sin(gra) — grncos(grn) 1/ (gra)?}?* (solid

Numerous multi-parameter fits to charge density have been proposed [17,20]; form factors are not particularly
sensitive to the details of the fit, but the most realistic is generally considered to be the Fermi distribution:

-1
p(r) = po [1 + exp (%)] . (4.6)

The distribution proposed by Helm [21], however, has the advantage of yielding an analytic form factor
expression:

F(gra) =3 -J-'—E;’—) « e—@92, (47)

n
where s is a measure of the nuclear skin thickness. Numerical integration of the Fermi distribution yields very
similar results.

The parameters in (4.6), (4.7) are determined from experimental estimates of rys in conjunction with the
observation that skin thickness is essentially constant. For a uniform sphere of radius 7,

2 3 2

Tems = grn ’

for (4.6) [22],

3 7
rfms=§cz+g772“23 (4.8)

and for (4.7),

r2.= %r,,2 + 357, 4.9
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¢ 50 100 150 200 250
A

Fig. 5. Nuclear rms charge radii; 00000 muondata [18]), -———— least-squaresfittoc, --------: Engel [15] fit,
————— Eder [23] fit.

For thickness parameter, Engel [15] takes s ~ 1 fm in (4.7) while Fricke et al. [ 18] use a 10-90% thickness
0f 2.30 fm (a ~ 0.52 fm) in fitting muon scattering data to (4.6); and, for r;ms, commonly used approximations
are rems ~ A'/3 fm or, with rather greater precision, rems ~ 0.89A4'/3 4+ 0.30 fm [23]. Such approximations
have the slight disadvantage of resulting in significant errors at small A; we prefer to use a two-parameter
least-squares fit to the Fricke et al. compilation of ¢ in (4.6):

c~1.23A'% - 0.60 fm; (4.10)
then, from (4.8) and (4.9), r, for (4.7) is obtained from:

ral=c+ %wzaz - 5%, (4.11)

Data from [18], and the various fits to r,s are shown in Fig. 5.

We find s ~ 0.9 fm improves the match between Helm and numerically integrated Fermi distributions (see
Figs. 6, 7); and, for most A, (4.11) is well fitted by r, ~ 1.14A'/3, Figs. 8 and 9 show the Na and I form
factor dependence on Eg, illustrating the limitation of large A materials. Moreover, as discussed in Section 5.1
below, in detectors based on scintillation or ionization the observed apparent energy E, is less than Er by an
A-dependent ‘relative efficiency’ f,; the range of Er shown corresponds to E, ~ 0-310 keV for Na, but only
~ (0-90 keV for 1.

More precise calculations have been carried out in the spin-dependent case for a small number of nuclei
[11,12]. In these calculations, which include contributions from all the nucleons, the form factor has three
parts, which can be represented as due to proton, neutron, and interference terms or to isoscalar (p + n),
isovector (p — n), and interference terms. In the latter representation, F2(gr,) = S(q)/S(0), where:

S(q) = a3Soo(q) + aS11(q) + apa1 S (q);

the §;; are computed using the shell model of the specific nucleus; and the isoscalar (ap) and isovector (a;)
coefficients are related to the WIMP-nucleon spin factors discussed in Section 6 below: ap x Cwp + Cwa;
a) X pr — CWn-
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Fig. 6. Form factor versus g for Na. — Fermi density, data from [18].----.....
fm, - - - - - Helm density, Engel [15] fit: ryys = 0.934!3;5=1.0 fm.
Fig. 7. Form factor versus g for I. Figure legend: same as Fig. 6.
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Fig. 8. Form factor versus Eg for Na. — Fermi density, data from [18}. - - - - - Helm density: ry = 1.1441/3; 5 = 0.9 fm.

Fig. 9. Form factor versus Ey for I. Figure legend: same as Fig. 8.

Such calculations, where available, should be used to set limits on specific WIMPs.
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5. Detector response corrections

The form factor corrected spectra (4.5), (4.7) apply to an ideal detector consisting of a single element, with
100% detection efficiency. In this section we discuss additional corrections which are intrinsic to the detection
process and independent of the precise nature of the dark matter interaction.

5.1. Energy detection efficiency

For scintillation and ionization detectors calibrated with y sources, the apparent observed nuclear recoil
energy is less than the true value; the ratio, the ‘relative efficiency’ f,, is determined by neutron scattering
measurements. While this additional calibration factor could, of course, be incorporated to yield observed spectra
directly in terms of Eg, experimenters prefer to work with the y-calibrated energies for easy identification of
background ys. Consequently, Ex in the above rates and spectra should be replaced by the ‘visible’ energy E,,
using Eg = E,/ f,—and, allowing for possible variation of f, with Eg,

dR Ex dfs\ dR
R s a 1
dEx f<+ﬂdh>ML D

For ionization detectors, Lindhard et al. [25] represent f, by

fo= kg(e)

"1+ kg(e) (52)

where, for a nucleus of atomic no. Z,
e=115Er(keV)Z773,  k=0.1332%34'2,
and g(&) is well fitted by:
g(e) =325+ 076 + e

While f, for scintillation detectors might be expected to behave in a similar fashion, measurements so far show
no evidence of significant energy dependence. Neutron scattering measurements give f, ~ 0.3,0.09 respectively
for Na and T in Nal(Tl) [26] and 0.08, 0.12 respectively for Ca and F in CaF,(Eu) [27], over substantial
energy ranges.

One expects a rapid drop in ionization or scintillation efficiency when nuclear recoil energies fall below a
threshold value at which the maximum energy transfer to target electrons is less than the necessary excitation
energy E,[28]. This threshold region is expected kinematically at an energy of order

Mt
4m,

2
Eo= T [(B+E)'? - EM] (53)

for electrons (mass m,) of characteristic kinetic energy E.(typically ~ 10 eV). For E, <« E, this approximates
to E.(keV) ~ O.lAEgz/Ee (E,, E, in eV). The threshold region can be parameterized by multiplying the
relative efficiency by [1 — exp(—Egr/E;)]. E, is expected to be ~ 0.3 keV for Ge and Si, but above 1 keV
for other crystalline targets. However, it should be emphasized that as yet the only evidence confirming low
energy threshold effects comes from plastic scintillator [29], and it may become important to investigate this
as practical energy thresholds are improved. Examples of predicted threshold curves are shown in an earlier
review [3].
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5.2. Energy resolution and threshold cut-off

Finite detector energy resolution means that N recoils at a single energy E’ would be observed as a spectrum
distributed in approximately Gaussian fashion:
dN(E) _ N —E-E)uf
dE (2m)1/2AE ’

resulting in the transformation:

dR 1 1 dR /.2 2
_ —(E, — E})?/24E
i =@ | srim e, ey

AE is energy dependent: for detectors with linear response, statistical fluctuations alone would give AE(E')
(E')Y/2; additional terms occur in practical detectors [30].

Energy resolution is conventionally expressed as the ratio of peak full width at half maximum to mean
energy, A Epyua/E’', where AEpu = (81n2)'/2AE = 2.35 x AE.

In general the detector signal may consist of a discrete number of counts n = E'/¢ (e.g. from a photo-
multiplier) and at low energy this number may be sufficiently small that the Gaussian in (5.4) would lead
to erroneous loss of counts to unphysical negative energy. The statistical component of the resolution can be
correctly represented by use of Poisson instead of Gaussian statistics:

dR 1 dR E:J n —(E,/E?)
LR S O dE!,
dE, nle | dE ( c ) ¢ v

E, = ne. (5.5)

In such detectors the need to set a threshold to reduce intrinsic rates, often in conjunction with coincidence
counting, results in reduced detection efficiency at low energies, dropping to zero at the set threshold.

We illustrate this effect by considering the case of two PMTs run in coincidence, each with the same
threshold. If the two PMTs are balanced so that an event produces the same mean number of photoelectrons in
each, then, for an event producing n photoelectrons in total, the best estimate of the probability that m(< n)
arrive at one PMT (and hence n — m at the other) is

Pna(m) = Ke™2(nj2)™ /m!
where K is a normalization factor such that Z:'nd) Pn2(m) = 1; thus:

(n/2)™/m!

Pn2(m) = —

> (n/2)4/kt
k=0

Then, for coincidence counting with a threshold of > n, photoelectrons in each PMT, only those events for
which n, < m < n— n, (in each PMT) are accepted. Hence the counting efficiency is

n—n;

> (n/2)" /m!
n(nn) =" (5.6)

> (nj2)" /m!
m=0
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An approximate analytic fit to this is:

(5.7)

—2(n—2n)'?
n

n(n,n) =1 —exp [

Depending on particular experimental circumstances, one of two possible approaches may be adopted in
compensating for these effects:

(a) The intrinsic dark matter spectrum (3.13) is transformed using (5.4) or (5.5) and the result multiplied by
(5.6), to give (together with the other corrections discussed in Section 4 and Section 6) a corresponding
observable spectrum. Standard statistical procedures can then be used to determine limits on Ry consistent
with the actual observed spectrum [32,31].

(b) An approximation to the original spectrum is obtained by an iterative search for a spectrum which, when
subject to the transformation (5.4) or (5.5), yields a good fit to the observed spectrum (divided by
(5.6)). Since low data rates mean that it is normally both necessary and desirable to work with fairly
coarsely binned data, it is reasonable to represent the original spectrum by a suitable smooth function
with 2-3 variable parameters which are adjusted for best fit [33].

5.3. Target mass fractions

For compound targets, it is usual to extract a limit on Ro separately for each element. The differential rate
in equations of the form (1.2) is defined per kg of the whole target. If the counts are attributed to element A
which contributes a fraction f4of the target mass, then Ry per kg of A is obtained by rewriting (1.2) as

1 dR
—_—— = RoSpF214,
fA dE observed
ie.
dR
— = faRoSaF314. (5.8)
observed

If the elemental dependence of the interaction is understood theoretically, then the more accurate procedure
can be adopted of retaining Ry as the total rate and writing (1.2) as the sum of n terms for the n constituent
elements:

dR
dE

=Ro)  faSaFils (5.9)
A

observed

allowing the total Ry to be calculated from the observed spectrum. The A-dependence of the form factor F
(via the nuclear radius) has been discussed in Section 4. The A-dependence of the spectral function § arises
through the kinematic factor » (Section 3) and also through the nuclear recoil efficiency f,(Section 5.1). The
final factor, I, representing the spin-dependence and/or coherence of the interaction, is discussed in the next
section, and used to convert Ry to a basic ‘WIMP-nucleon’ cross-section awy. Note that if such a cross-section
limit is determined separately from (5.8) for each element, an improved combined limit can be obtained using
(5.9) together with 3 fa=1:

__1_=Z__1__
- own(A)’

OwWN

(5.10)
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6. Interaction factor—spin-dependence
6.1. Spin-independent (‘coherent’) interactions

For the simplest case of interactions which are independent of spin and the same for neutrons and protons,
there will be A scattering amplitudes which, for sufficiently low momentum transfer (gr, < 1), would add in
phase to give a coherent cross-section oc A2,

In this situation we can define Ry as the rate corresponding to a single nucleon, multiplied by a coherent
interaction factor 7, = A2 in (1.2). Rates or cross-sections for different target elements should thus be divided
by the corresponding A% to normalize each to the case A = 1.

In practice the situation can be more complicated, as illustrated by the known example of heavy (non-
relativistic) Dirac neutrinos, for which the coherent cross-section is [2]

Gk

Oyp(coh.) = Wﬂzlc (6.1)

i.e., with fic = 0.197 GeV fm and Gr/(kc)? = 1.166 GeV~2,
Tupicony (Pb) = 2.11 107321,

where u(GeVc~?) is the reduced mass of neutrino + target nucleus and I = Nf, N =(A-2)+€Z,
€ = (1 — 4sin®y) ~ 0.08. Thus the Weinberg-Salam factor results in a proportionality to approximately the
square of the number of neutrons, I, ~ (A — Z)2, rather than I, = A%. Nevertheless, normalization of rates by
either (A — Z)?2 or A? will always provide a reasonable method of comparing results from different targets.
This is of particular importance in the planning of new experiments, to give a realistic assessment of the lighter
elements for spin-independent interactions.

Note that the coherence is lost as the momentum transfer increases (gr, = 1) since the scattering amplitudes
no longer add in phase. This is taken account of by the form factor correction F in (1.2), already discussed in
Section 4.

The hypothetical neutrino superpartner (sneutrino) would have a cross-section four times that of (6.1) [2].

6.2. Spin-dependent interactions

For spin-dependent interactions the scattering amplitude changes sign with spin direction so that, although
the interaction with a nucleus is still ‘coherent’, in the sense that the scattering amplitudes are summed, paired
nucleons contribute zero scattering amplitude and only the residual unpaired nucleons contribute. Thus only
nuclei with an odd number of protons and/or an odd number of neutrons can detect spin-dependent interactions.

The form of the spin dependence is typified by the cross-section for a hypothetical Majorana neutrino given

by [2]

2G%
T = — W1 (6.2)

where I, is conventionally written in the form I, = C2A%J(J +1). C is a factor related to the quark spin
content of the nucleon:

C = ZTS’Aq, (g=u,d,s)
q

where A, is the fraction of the nucleon spin contributed by quark species g and T,f,d,s, = %, -—%, —'5, is the third
component of isotopic spin for the respective quarks. In the single unpaired nucleon approximation,
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[(JUJ+ D) +s(s+1)—2(£+1))?

AJJ+1) = YOS ,

but a more realistic value is obtained by assuming all nucleons of the same type as the unpaired nucleon
contribute, with the net spin of these ‘odd-group’ nucleons estimated from the nuclear magnetic moment

(,u'mag) [11]:

J+1
NI +1) = sgdd%,
where
_ Pmag ~ gy
Sodd = — 5 —
g — &y

with g5 = 1, g =0, g5 = 5.586, g5 = —3.826.

In addition to the spin-independent cross-section (6.1), a Dirac neutrino has a spin-dependent contribution
one-quarter that given by (6.2) [2].

Interaction with the photino of supersymmetry theories [34] takes a similar form to (6.2):

2
eQ, 2
ZE(m—qc) Aq] ’

where Q, 4 = %, —’5, —% is the charge value for the respective quarks and my; is the mass of an exchanged
squark 3 ; in the case of squark mass degeneracy, this reduces to:

4
oy =2 (—"-) W, (63)

T \Mzc

1
o5 = ;MZAZJ(J' +1)

with C now given by C =3_, 0lAq.
The ‘e’ in (6.3) arises from the substitution

e’ =4mahc (a=1/137),
=4\/§ % GFM%V Sill2 0w,

which is correct apart from radiative correction terms of a few percent. Alternatively, (6.3) could be written:

. 4 a4
26} (\/§Mw51nt9w) 21, = 25 (109Gch 2) 20

v ’lTﬁ4 mq 7Th4 mq

In general the lightest (and hence most stable) supersymmetric particle (LSP) will be a mixture (a ‘neu-
tralino’) of photino, Higgsino, Bino, and its cross-section for elastic scattering off nuclei will contain both
spin-dependent and spin-independent terms [5,7,8,35]. In the approximation used above, the spin-independent
term vanishes for pure gaugino or pure Higgsino states; the more general case is discussed in [6] and
[9]—typically, the spin-independent term increases relative to the spin-dependant with increasing A, becoming
dominant for A 2 30 [12].

3 This assumes mg > my, Mr, where m 7 is the neutralino mass. More generally, m should be replaced throughout by [ (mg + Mp)?—
(mg + Mr)?)/2 [35].
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In the ‘full’ treatment of Engel et al. [11], I; has contributions from both proton and neutron couplings:
2 J+1
J ’

where (S, (x)) is the expectation value of the nuclear spin content due to the proton (neutron) group, calculated
from the shell model.

Iy = [CWp<Sp> + CWn<Sn>

6.3. Normalization of results

The need to normalize rate or cross-section when comparing results from different targets is seen by writing
the generic low energy elastic cross-section as [2]

2,2
8D 8N 2
o9 X ( M, )u (64)

where gp, gy are the dimensionless coupling strengths to WIMP and nucleus, respectively, of a heavy exchanged
particle of mass Mg. From (6.3) and (3.7), remembering that u?> = MpMrr/4,

ve2\?
&)-5126 2 <1Ge < ) ,002 3 ( - .) tru
r 1pb M 0.4GeVce™“cm™ 230kms™

2,.2
o gLM? (6.5)

Thus the quantities proportional to the fundamental interaction are either Ro/r or ap/u?, and it is the limits
on these* (versus Mp) which should be shown, to remove the additional A-dependence in u and r. Note that
Ro and o are defined as the values for zero momentum transfer, so the nuclear form factor has already been
included in converting from observed rate to Ry and oyp.
The coupling gy to the target nucleus also contains an A-dependent coherent or spin factor, as discussed in
Sections 6.1, 6.2, and where this is known theoretically it should also be included in the normalization:
(a) In the case of nuclear coherence it is sufficient to divide by A? or alternatively normalize to a specific
nucleus, such as Ge. The plotted quantity is then

(P )| () o (i)
—or — | x or ;
r M~ Atarget Atarget

in normalizations for interactions such as that with a Dirac neutrino, A should be replaced by Nj,~ A—2Z
(to give the “WIMP-neutron’ cross-section oryy,).

(b) For the spin-dependent case, it is convenient to normalize from element A to the “WIMP-proton’ cross-
section by the conversion

2 2 2
o E AU+D), (CWP)
Twoloin = 00X E X T D1 \ G )

(6.6)

Values of the spin factor AZJ(J + 1) for some typical target elements are given in Table 3, for both the single
particle and the odd group models.

Values of the WIMP-nucleon spin factor C}, depend on the values assumed for the quark spin fractions Au,
Ad, As; and, while the nonrelativistic/naive quark model (NQM) yields no strange quark content, European

4 Note that limits on Ro/r and og/u? are not ‘alternative presentations’—they are, from (6.5), identical curves, differing only in the
labelling of the vertical axis.
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Table 3
Values of A2J(J + 1) for various isotopes
2
Isotope 7 AU+ D
single particle odd group
'H 1/2 0.75 0.75
g 1/2 0.75 0.647
23Na 3/2 0.15 0.041
Al 5/2 0.35 0.087
43Ca 7/2 0.321 0.152
BGe 9/2 0.306 0.065
93Nb 9/2 0.306 0.162
1277 5/2 0.35 0.007
129Xe 1/2 0.75 0.124
Blixe 3/2 0.15 0.055
Table 4
Values of WIMP-nucleon spin factors; Mg = V8 My sin 8y ~ 109 GeVc™2
WN CVZVN OWN Ispin OWN lspin
2
NQM EMC [36] EMC [4] Kl TN
#p 0.14 % 0.01 0.096 £ 0.009 0.06 + 0.02 4/ ¢ \* Mp 4
¥n 0.002 + 0.001 0.012 & 0.003 0.03 £ 0.01 7\ e e
q q
Ap 0.40 + 0.02 0.46 % 0.04 0.55 + 0.10 8GE 2o 5 4cos?2B
Hn 0.40 £ 0.02 0.34 £ 0.03 0.26 + 0.07 whi
Bp 0.16 + 0.01 0.10 + 0.01 0.06 + 0.02 L/ e ' M\t 1
> 4 ey Mry 1
Bn (7%5) x 10 0.010 + 0.003 0.03 £ 001 7 \mge | cos?bw mg ) 4cos? oy
Zp 19 + 0.1 09 + 0.1 03+ 02 sl e\ ., M\,
Zn 0.21 + 0.04 0.002 £ 0.006 0.1+ 0.1 il Wl B Pl B
q q

Muon Collaboration (EMC) measurements indicate that strange quarks make a significant contribution to
nucleon spin [4,10].

Ellis and Karliner [36] estimate Ax = 0.83 £ 0.03, Ad = —0.43 £ 0.03, As = —0.10 £+ 0.03 for EMC;
comparable estimates for NQM are Au = 0.93 £+ 0.02,Ad = —0.33 £ 0.02 (and As = 0). Both these estimates
are for protons; for neutrons, the numerical values of Au, Ad are exchanged. C@y resulting from these Ag are
tabulated in Table 4 for various WIMP interactions; values for a Majorana neutrino are the same as those for a
Higgsino.

A number of experimental papers use C3Z, values from the earlier [4], based on Au = 0.74 + 0.08,
Ad = —0.51 £ 0.08, As = —0.23 £ 0.08; since the photino values in particular are quite different, these earlier
values are also shown in Table 4. From the experimentalist’s point of view, the important thing is the relative
sensitivity of odd-N (Ge, Xe, Ca) and odd-Z (Na, I, F) targets—i.e. the ratio ow, /own; the ‘old’ values [4]
conveniently gave ~ 2 for this ratio whatever the neutralino, whereas the revised values [36] yield a ratio
which is close to unity for A but 2> 10 otherwise. Within the estimated errors, similar conclusions result from
the Ag values derived in [37] for both the ‘standard’ treatment and a ‘valence’ treatment in which As =0 is
possible.

The final column of Table 4 compares cross-sections with that for a Majorana neutrino, from (6.1);
MF = /8 My sin 6y ~ 109 GeVc 2.
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6.4. Combining results

Following application of the various factors discussed above, experimental results are typically in the form of
estimates of rate (or cross-section) and its standard deviation, derived for each of a number of energy bins. In
the absence of systematic errors and of any correlation effects such results, and comparable results from other
detectors, can be combined using the standard expressions:

N
— 1 ~
Rg = ; ‘—El W,-R(),‘, S= 1/\/ w, (67)

where w; = 1 /Sf,w = Zfil w;, for N independent rate estimates Ry with corresponding estimated standard
deviation S;.

Appendix A. Derivation of results in Sections 2-3
(A slightly more detailed version of this appendix appears in the preprint RAL-TR-95-024.)

The results quoted in Section 2 can be derived as follows: for ve,c = 00 we have, for a ‘stationary’ Earth
(vg=0),

27 +1 o) &S]
ko = / d¢ [ d(cos6) / e~ 1% p2dy = 4mr f e/ 2y = (mod)¥2.
0 - 0 0

Since particle density is clearly independent of vg, & must also be independent of vg; this can be used as a
check on formulae for a ‘moving’ Earth, for which (v + vg)? = v? + vk + 20vgcos :

2w +1 %)
k=/d¢/d(cos0)/e‘”*"’f)z/“%uzdu
0 1 0

oo +1
=27T/e—(1?2+0§)/u(2) U2/e—-2qucos0/ug d(cos 8) dv

~1

o0
2
0

(=

VE

2 " oo o0
=7~:)~° / (x+05)e”‘2/"3 dx——/(x—uE)e"‘z/”gdx
g A
2 - v o0
=% /xe"‘2/”<2’ d)c+21)E'/e""2/”g dx
VE
L—VE
27 1/2
- ™% o+2UELUO} = k.
Ur | 2

For vese # 00,0 =0,
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27 +1 Vesc Vesc
ky =/d¢/d(cos€) /e‘”z/"g uzdv=47r/e_"2/”g vidu;
0 -1 0 0
then, since

Vesc

Vesc
—p2 /2 2 22 _,2 2
e U/Uodl)=—2 ./e v /L'°U2dU+Uesce Vgsc/ Vg
12
0
0 0

Vesc

2,2 2 42 v 2 v 2,2
ki =20} eV dy — peg Ve | = kg |erf [ =2 ) — —7 = g tese/ U |
vo /2 vy

The differential and total rates (Section 3) require evaluation of similar integrals, differing only by factors
v?/v3 and Epr in the integrand, and in the lower limit of integration ( v, for the former, O for the latter).
Thus

Vesc

2 +1

dR(0,v0es.) Ro ko 1 / / / 2.2

— d v*/vg

dEx Eor Ky 27rv(2, do (cosf) | e vdv
0 =1

Ymin
v

Rk 2 [
_Eor & vg /e vdy

Umin

2 2
Vesc /Uy

Ro ko / —x

=22 d

Eor k1 ¢ *
Eg/Eyr

= .ﬁo_ @ (e"ER/EOr — e_Ugsc/Ug)
Eor k]

while
e/
R(O, Uesc) = 50_ / xe-—xdx

Ry ky
0

k 2
- k_? [1 - (1 + %e;ﬁ) e-véc/vé] .
0

For vg # 0, evaluations are similar to that of k above:

Vesc + VE Vesc — VE Vesc + VE
Ll = Ro ko 1 / e =)/ gy / e 0D I g gvEsclvh / dv
dER Eor k 205

Umin Vmin Vesc — UE

Vesc Vesc
_Rok) 1 / 1% g — / 1% g | — o=t2elt?
Eor k ) 2ug
'min " VE Vmin + VE

_Roko [ w0 [ o (vmntoe _ o Vmin=vE)] _ -2
Eor k 4 vg Uo Vo
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which leads to (3.12) or (3.13) according to the value of vesc.

Similarly,
R k 1 Vesc + VE Vesc — VE vesc + Vg
2,2 2,2 2,2
ek S ) vie~ —ve) /v gy — ple=WHUEY W gy — g esc/ Vo vdv
Ro &k 2ujug
Desc — VR

2 2
Lkl pfoe Lo f0EN -t o (Ve LOE ) el
2 k vo  2ug Vo v 343
giving (3.4) and (3.5).
Finally, integration of the angular distribution (3.16) is achieved by making the substitution w = (v, —

vgcos ) [vg:

+1
dR(vEg,00) 1 Ry / —(VECOS ¥ — Ui )2/U2
- 2 min 0 d
s S ¢ (costh)
-1
| R (Umin + vE) /10
=_ fo Yo e~ dx
2 Eor VE

(vmin — vE) /v
=_{22. _7"[/2 90 | apf [ Ymin + Vg _erf [ Pmin ZVEN |
Eor 4 vug ) Vo
Appendix B. Velocities

Drukier et al. [38] argue that vp = 4, (the galactic rotation velocity) for a galaxy with a flat rotation curve.
Reported values for u, are: 243 & 20kms~! [39]; 222 + 20kms~! [40]; and 228 £ 19kms~ [41]. We use
vo =u, =230kms™.

According to Drukier et al. [38], 580kms™! < veee < 625kms™!; we take vee = 600kms~!. However,
Cudworth [42] finds an appreciably smaller lower limit: vese > 475kms™!.

The target velocity relative to the dark matter halo, vg, is the sum of three motions:

VE=U, +us—+ug,

in galactic co-ordinates, these are:
o the galactic rotation,

u, = (0,230,0) kms™!;

e the Sun’s ‘proper motion’, i.e. its mean motion relative to nearby stars> [43],
us = (9,12,7) kms™;

e and the Earth’s orbital velocity relative to the Sun:
ug, = ug(A) cos By sin(A — Ay),

ug, = ug(A) cos Bysin(A — Ay),
ug, =ug(A) cos B, sin(A — A;)

5 Standard deviations appear to be ~ 0.3kms~!.
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Table C.1
Seasonal variation of velocity, rates, and parameters ¢y, ¢3

Period year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ve(kms™!) 2440 2334 2400 2474 2537 2572 2574 2543 2485 2414 2346 2300 2295

R(vg, o0)
Ro 1.339 1.313 1.329 1.347 1.364 1.373 1.373 1.365 1.350 1.332 1.315 1.304 1.303
R(VE, Vesc)
Ro 1.334 1.308 1.324 1.343 1.359 1.368 1.369 1.361 1.346 1.328 1.311 1.300 1.299
(4] 0.751 0.766 0.757 0.747 0.738 0.734 0.734 0.738 0.745 0.755 0.764 0.770 0.771
2 0.561 0.583 0.569 0.554 0.542 0.535 0.534 0.540 0.552 0.567 0.581 0.590 0.592

where A is the ecliptic longitude, ~ 0 at the vernal equinox and increasing by ~ 1° per day;
Bx = —5°.5303, By =59°.575, B, =29°.812,
Ay =266°.141, Ay = —13°.3485, A, =179°.3212,

are the ecliptic latitudes () and longitudes (A) of the x, y,z axes in galactic coordinates; and
ug(A) = (ug)[1 — esin(A — A) 1,

where (ug) = 29.79kms™! is the Earth’s mean orbital velocity, e = 0.016722 is the ellipticity of the Earth’s
orbit, and A, = 13° & 1° is the longitude of the orbit’s minor axis.
A is estimated from the formula [44]

A=L+1°915 sing + 0°.020 sin 2g,

where L = 280°.460 + 0°.9856474 n, and g = 357°.528 + 0°.9856003 n, (both modulo 360°), where »n is the
(fractional) day number relative to noon (UT) on 31 December 1999 (referred to in [44] as “J2000.0”).

Errors in A from this formula in the 4-year period 1987-90 reached a minimum of —45” in June 1987
and a maximum of 3" in April 1989 (i.e. a time error between —18 and +1 minutes), with a mean of
—18" £ 11”(~ 7 £+ 4 minutes).

Appendix C. Annual modulation of coefficients ¢, ¢,
Rate dependence on vg is given in Table C.1, as mean annual and monthly values. Maxima occur on June
Ist or 2nd:
(VE) max = 258 kms ™!, [R(vg,00) /Ro]max = 1.374, [R(VE, Vesc) / Ro)max = 1.370;
and minima on December 3rd or 4th:
(VE) min = 229kms™!, [R(vg, 00)/Ro)min = 1.302, [R(VE, Vesc) / Rolmin = 1.298.

Values determined by a one-parameter least squares fit to (3.14) over the energy range® 0 < Eg <20 x Eyr
are also given in Table C.1. The dependence of ¢; on vk is strongly linear, with ¢; = 1.077 — 0.001336 X vg
accurate to better than 0.1% over the range of Table C.1.

In practical situations, noise and background result in a minimum effective detectable energy. Consequently,
the energy range used in determining c;,c; should be the usable energy range; the dependence of Eyr on

6 For vese = 600kms™!, Ex/Eyr < 14.
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Table C.2

Energy threshold dependence of ¢; coefficients a, b

X1 <1073 0002 0005 001 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0
a 1.077 1.077 1.077 1.077 1.076 1.075 1.073 1.069 1.053 1.015 1.064 1.055 1.005
:g;)_( l’;) 1.333 1332 1.331 1329 1325 1312 1292 1251 1125 0965 1220 0952 0.480

Mp, M7 and the dependence of detection efficiency on My then mean that ¢, c; vary with Mp, Mr. Expressed
in terms of the dimensionless variable x,= Ex / Eyr,

c1(x1, x2,0g) = a(xy, x2) — b(x1,x2) X vE,
for the energy range given by x; < x < xy, with ¢; determined from:

¢ _ R(vg,00)
2 R

Dependence on x; is slight; values of a, b for various x; are given in Table C.2 (with x; ~ 14, the limiting
value when vege = 600kms™}).
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