Weak Lensing Probes of Modified Gravity

Fabian Schmidt with S. Dodelson, W. Hu, M. Liguori

Dep. of Astronomy / Kavli Institute for Cosmological Physics, University of Chicago

Cosmo 08, Madison, 8/25/08

Kavli Institute for Cosmological Physics At the UNIVERSITY OF CHICAGO

The Force behind the Acceleration

General Relativity

Geometry \longleftrightarrow Energy-momentum

$$G_{\mu
u} + \Lambda \, g_{\mu
u} = 8\pi \, G \, T_{\mu
u}$$

Left-hand side

Gravity (General Relativity) modified

Right-hand side

Energy content of Universe modified – *Dark Energy*.

Modifying Gravity

Gravity is well tested on *many scales*: from Solar System to Big Bang Nucleosynthesis.

- Gravity theory has to reduce to GR locally and in Early Universe.
- GR limit in high curvature regime
- Modifications at late times on large scales

Dark energy can mimic expansion history of modified gravity (or vice versa).

 \Longrightarrow Have to go beyond background universe to probe gravity

Modified Gravity on Large Scales

Cosmological metric:

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(t)(1+2\Phi)d\mathbf{x}^{2}$$

Effects of Modified Gravity:

- Growth of structure
 - Cosmological potentials unequal: $\Phi(k, \eta) \neq -\Psi(k, \eta)$
 - Scale-dependent growth factor
- Poisson equation modified in some models

Caveat: Only *linear evolution of modified gravity* worked out so far.

Modified Gravity Models

Popular models considered here:

- **I.** *f*(*R*) *gravity Carroll et al. 2004*
 - Potential decay reduced / delayed ⇒ stronger lensing
- II. DGP (braneworld) model

Dvali et al. 2000

- Amplified potential decay ⇒ weakened lensing
- III. TeVeS model Bekenstein 2004
 - No dark matter mimicked by vector field perturbations

Weak Lensing

- Growth of lensing potential Φ_− ≡ (Φ − Ψ)/2 observable through *redshift evolution* of weak lensing correlations
- Galaxy-shear correlation tests matter-potential relation
 ⇒ Poisson equation

Compare modified gravity predictions with *GR* + (*smooth*) *DE models with same expansion history*

 \Rightarrow separate growth/gravity from expansion history

Restricting to linear scales: $\ell \lesssim 300$ at $z \gtrsim 1$

See Knox et al. 2006; Jain & Zhang 2007; F.S. 2008

Weak Lensing Correlations

Galaxy-shear correlation

$$C^{g\kappa}(\ell) = \int dz \frac{H(z)}{\chi^2(z)} bW_g(z) W_{\kappa}(z) \left[D_{\Phi_-}(k,z) D_m^2(k,z) k^2 P(k,z_m) \right]$$

$$k = \frac{l+1/2}{\chi(z)}$$

Depends on: Well-constrained observables (SN / CMB).

- Expansion history (geometry) $W_{\kappa}(z) \sim \chi(z)/\chi_s(\chi_s \chi(z))$
- Matter power spectrum at early times

Caveat: galaxy bias $b \rightarrow$ e.g., consider $C^{g\kappa}/\sqrt{C^{gg}}$

 $P(k, z_m)$

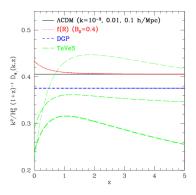
Weak Lensing Correlations

Galaxy-shear correlation

$$C^{g\kappa}(\ell) = \int dz \frac{H(z)}{\chi^2(z)} bW_g(z) W_\kappa(z) \left[\mathcal{D}_{\Phi_-}(k,z) \mathcal{D}_m^2(k,z) k^2 \mathcal{P}(k,z_m) \right]_{k=\frac{l+1/2}{\chi(z)}}$$

... also depends on:

- Linear growth of mode *k* (since z_m) $D_m(k, z) \equiv \frac{\delta(k, z)}{\delta(k, z = z_m)}$
- Poisson equation


$$D_{\Phi_-}(k,z) \equiv rac{\Phi_-(k,z)}{\delta(k,z)}$$

Probes of modified gravity

Weak Lensing in Modified Gravity

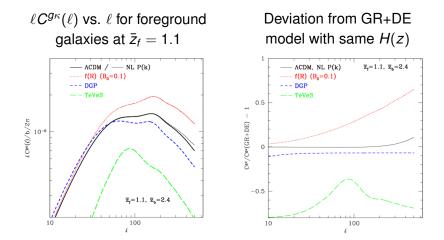
Linear growth: $D_m(k, z)$ $k=10^{-3}, 0.01, 0.1 h/Mpc$ $f(R) (B_0 = 0.4)$ --- DGP $D_m(k,z)/D_m^{DE}(k,z) - 1$ 0.5 0 -0.53 5 z

Poisson equation: $D_{\Phi_{-}}(k, z)$

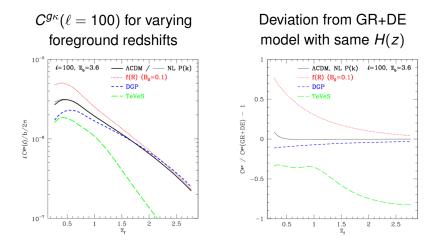
F.S. 2008

Assumed parameters

As expected for *LSST*:

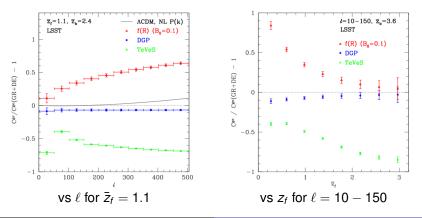

- 50 galaxies / arcmin²
- 20,600 sq. deg. (*f*_{Sky} = 0.5)
- Galaxy z distribution expected for I < 27 mag

Redshift bins:


- 7 foreground bins with $\Delta z \approx 0.4$
- 1 background bin z = 2...3 (median $\overline{z} = 2.4$)

Similar results for SNAP wide survey parameters.

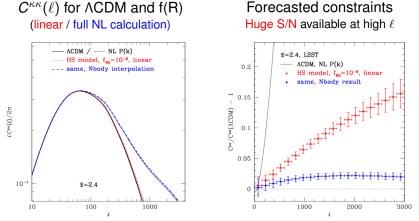
Galaxy-shear correlation: Scale Dependence



Galaxy-shear correlation: Redshift Evolution

Modified Gravity constrainable with future surveys

Constraints on the deviation of galaxy-shear correlation from GR+DE: (similar results for shear-shear correlations)


Modified gravity and local tests

f(R), DGP: how to satisfy Solar System constraints ?

- Non-linear mechanism to restore GR in high-density environments: *Chameleon effect* Khoury & Weltman, 2004
- Not taken into account in linear perturbation theory
- Cannot rely on fitting formulae based on GR simulations
- Have to solve full field equations together with dark matter dynamics

Has now been done: Oyaizu, Lima, Hu, 2008

Modified Gravity: non-linear lensing predictions

Background scalar field value today: $f_{R0} = 10^{-6}$

NL calculation: uses interpolation of Nbody power spectrum; work in progress...

Conclusions

- Modified gravity is a fundamental alternative to Dark Energy – but any expansion history can be produced by either alternative
- *Growth of structure* and *matter-potential relation* are key to probing gravity on cosmological scales.
- **Future surveys** like *SNAP*, *LSST* will be able to place stringent constraints on modified gravity.
- Understanding of non-linear structure formation in modified gravity crucial in order to extend constraints to smaller scales (large S/N!) – work in progress

References

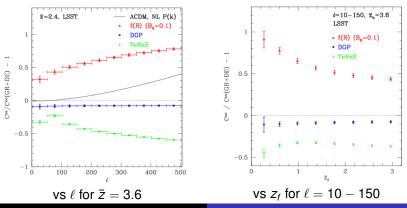
S. M. Carroll et al.,

Phys. Rev. D70:043528 (2004)

G. Dvali, G Gabadadze, M. Porrati,

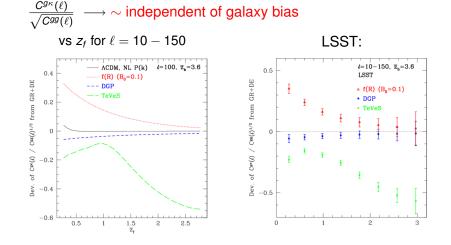
Phys. Lett. B485, 208 (2000)

J. D. Bekenstein, *Phys. Psy.* **D70**:082500 (2)


Phys. Rev. D70:083509 (2004)

B. Jain, P. Zhang, ArXiv:0709.2375 [astro-ph] (2007)
F. Schmidt, Phys. Rev. D78 :043002 (2008), ArXiv:0805.4812
J. Khoury, A. Weltman, Phys. Rev. D69 :044026 (2004)
H. Oyaizu, M. V. Lima, W. Hu, ArXiv:0807.2462 [astro-ph] (2008)

Modified Gravity constrainable with future surveys (II)


Same for shear-shear correlation:

Fabian Schmidt

Weak Lensing Probes of Modified Gravity

Reduced galaxy-shear correlation

Fabian Schmidt Weak Lensing Probes of Modified Gravity