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Introduction

• Presence of renormalizable bulk scalar fields induce a
  Casimir potential for the radion as well as logarithmic
  corrections to both kinetic terms and the potential

• Induced potential is of a form suitable for addressing the
  Dark Energy problem.  No small mass scale needed!

ϕ ≡ log Mbr• Effective 4D action,                    :

SLED =
∫

d4x
√
−g

[
M2

be2ϕ

2

(
ARg + 2B(∂ϕ)2

)
− CM4

bU0e
−4ϕ + Lm(gµν , ψm)

]

A(ϕ) = 1 + aϕ , B(ϕ) = 1 + bϕ , C(ϕ) = 1 + cϕ , U0 ∼ 1 , a, b, c" 1

Albrecht et al
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Burgess et al (SLED)
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• 6D brane-world with large extra dimensions
              ,  true scale of gravity
  Hierarchy problem 

r ∼ µm Mb ∼ 10 TeV



Introduction
• In general somewhat difficult to stabilize extra dimensions
  However if                               Einstein frame potential
  become very steep and easily
  confines the radius:

Sunhede et al
Phys Rev D73 (2006) 083510

A(ϕ) = 1 + aϕ! 1

• Second order terms remain
  small if corrections come not
  from one, but several weakly
  coupled bulk scalar fields

• Cosmological evolution OK,  close to    CDMΛ

χ
V

(χ
)

lo
g

V
(χ

)

−30 −20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1 ×10−102

−300

−290

−280

−270

−260

−250

−240

−230

Figure 4.1: The Einstein frame potential V (χ) as a function of χ, both measured
in units of Planck mass. The dashed line represents logV (χ) which clearly shows
the minimum stabilizing the radius of the extra dimensions. Note that this minimum
arises solely from the A(ϕ) correction and that the correction coming from C(ϕ) in
the potential (4.11) leaves no significant features in the above plot.

dimensions in the SLED model must be very large, which makes the scenario
unusually predictive for future precision tests of gravity and the upcoming high
energy experiments at the Large Hadron Collider (LHC).

4.4 Observational constraints on large extra di-
mensions

Let us finally review the possible ways to constrain the size of large extra di-
mensions. The obvious way is to make precise measurements of gravity at small
distances. Such experiments have improved considerably in recent years and
high precision measurements of Newton’s square law constrains the size of large
extra dimensions to ! 50 µm [207] (see also Ref. [189]).

A complementary way to obtain constraints is via cosmology and astrophys-
ical processes. For each extra dimension, there exist a number of excitations of
the graviton, Kaluza-Klein (KK) modes, corresponding to available phase-space
in the bulk. A physical process involving the possible emission of a graviton could
therefore show significant differences from the standard picture. Nevertheless,
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V (χ) ∝ U(φ)
A2(ϕ)



Solar System constraints
• Scalar field coupling to matter must remain small:

!̂χ = V ′(χ)− α(χ)T̂

α2 ! 10−5

• Almost automatically provided by the new radius
  stabilization mechanism where               , sinceA(ϕ)! 1

α ∝ (2A + a)

• Nevertheless some fine-tuning needed...
  I. Could evolution of the field in the Solar System
  spoil the above prediction?

Sunhede et al
Phys Rev D73 (2006) 083510

Cassini time delay
Bertotti et al
Nature 425 (2003) 374

γPPN = 1− 2α2

1 + α2



Solar System constraints
• Solar System constraints / Post-Newtonian parameter

Cassini time delay
Bertotti et al
Nature 425 (2003) 374

γPPN − 1 ≈ −BA − 1 = (2.1± 2.3)× 10−5

ds2 = −(1− 2GM

r
)dt2 + (1 +

2γPPNGM

r
)dr2 + r2dΩ2

ds2 ≡ gµνxµxν = −eA(r)dt2 + eB(r)dr2 + r2dΩ2

γPPN

• Extended gravity – lack of unique vacuum solution requires
  that we compute the full metric to obtain 

• In GR – exterior vacuum solution is always Schwarzschild
  and                regardless of interior γPPN = 1



       gravity
• Previous work:  Solar System constraints in metric
  gravity –          obtained by deriving and solving generalized
  Tolman-Oppenheimer-
  Volkoff equations

f(R)
γPPN

f(R)

ω = −1/2• LED scenario at tree level corresponds to an
  JBD theory giving                   .  II. Is passing Solar System
  tests really possible?  Difference to metric        ?

γPPN = 1/3

• Metric          gravity is equivalent to an            JBD theory,
  indeed giving                    in the massless limit

ω = 0f(R)
γPPN = 1/2
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FIG. 2: Shown are the functions A (red) and B (blue) for the
metric f(R) = R − µ4/R model (solid) and for GR (dotted).
Also shown is the function d−dvac (dashed green), where dvac

is the asymptotic value of d in vacuum.

to the one suggested in Ref. [18]:

f(R) = R + α
√

R , (31)

as a possible candidate for passing the Solar System con-
straints. We find that all models fail the PPN limit; as
long as the model parameters are set to give the correct
asymptotic cosmological constant and one does not add a
true cosmological constant to the f(R) function, all mod-
els produce results that are essentially indistinguishable
from the f(R) = R − µ4/R model in the Solar System
scale.

C. Solutions with d0 <
∼

10−5

Let us now go back to the class of solutions with very
small boundary values for d0. As explained above, in this
regime the matter induced evolution of d is strong enough
to push the solution to the nonlinear region inside a Sun-
like star. One can argue qualitatively that the resulting
solution will be one where d oscillates around the value of
dρ corresponding to the Palatini limit, Eqn. (8). Indeed,
since R is a real number, d must always remain positive
in the f(R) = R − µ4/R model. However, starting from
d0 # dρ at r = r0, d will first start to decrease. This
evolution is bound to be reversed by the nonlinear term
before d becomes negative, but once d starts to increase,
the nonlinearity shuts off again and the the finite density
effect turns the evolution back towards smaller d. As the
cycle gets repeated, the result is an oscillatory motion
around the Palatini limit, defined as the solution of the
equation (7). We show an example of this behaviour in
Fig. (4). The solid line shows the evolution of d, which
indeed settles to a damping oscillatory pattern around
the Palatini limit, shown by the dotted line. We also

r/r!
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FIG. 3: Shown is γPPN for a metric f(R) gravity (solid) and
the corresponding solution in GR (dashed).

display the metric coefficient A (dashed) which, after a
short interval of “Newtonian f(R) evolution”, settles to a
converging oscillatory track around a path parallel to the
GR solution AGR−A0 ≈ 0. The solution for B turns out
to be numerically indistinguishable from the correspond-
ing GR solution. In summary, A and B turn out to be
very close to the GR solution simply due to the fact that
the Palatini solution is virtually indistinguishable from
the GR metric (see section III).

Note that at the center of the Sun, the oscillations oc-
cur in scale ∼ 10−28r", so it is not numerically feasible to
continue the solution all the way to the surface. We have
nevertheless run the code over thousands of oscillation
periods, verifing that the solution does indeed stabilize
around the Palatini limit. Furthermore, this behaviour
is independent of the boundary value d0. (Of course, if
one sets d0 = dρ, the solution will become flat without
any oscillations.) The above example used a very small
d0, but the qualitative behaviour of the solution should
remain the same for any d0 for which the Newtonian evo-
lution is strong enough to bring d to zero inside the star.
As a result, it is safe to conclude that for sufficiently
small d0 the solution will be such that inside and in par-
ticular outside the star A ≈ AGR and B ≈ BGR, so that
γPPN ≈ 1. In practice, the boundary for this result may
be somewhat less than d <∼ 10−5 since d needs to reach
the nonlinear region already close to the center of the
star. If not, the initial evolution of A and B will have
time to push the metric and eventually γPPN too far from
the GR solution.

1. The Dolgov-Kawasaki instability

The above section explored an attractor solution
around the Palatini limit for small values of the bound-
ary value d0. However, it turns out that this class of
solutions is related to the well known Dolgov-Kawasaki
instability [13] in the f(R) = R− µ4/R model. Perturb-
ing around the static solution, d(r) → d(r)+δd(t, r), and
expanding to first order in the perturbation one obtains

GR

f(R)

Sunhede et al
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f(R)



The scalar-tensor TOV:s
• Scalar-tensor gravity

• For a static, spherically symmetric metric we obtain

• Together with the conservation law and a given equation of
  state, these form a complete generalization of the Tolman
  Oppenheimer-Volkov equations

S =
∫

d4x
√
−g [LG(gµν , ϕ) + Lm(gµν , ψm)]

p′ = −A
′

2
(ρ + p) , p = p(ρ)

LG =
1

2κ∗
[F (ϕ)R− Z(ϕ)gµν∂µϕ∂νϕ− U(ϕ)] κ∗ = M−2

b

B′ =
1− eB

r
+

reB

F
κ∗

(
ρ +

1
2#

F 2
,ϕT

)
+

reB

2F

(
1− 2

#
F 2

,ϕ

)
U +

reB

2#
F,ϕU,ϕ

+
r

2F

(
Z + 2F,ϕϕ −

1
#

F,ϕ#,ϕ

)
ϕ′2 − γA′

A′ =
−1

1 + γ

(
1− eB

r
− reB

F
κ∗p +

reB

2F
U − r

2F
Zϕ′2 +

4γ

r

)

2!!ϕ = F,ϕ(κ∗T − 2U) + FU,ϕ −!,ϕ(∂ϕ)2 2! ≡ 3F 2
,ϕ + 2FZ



The LED model
• Reproducing observed strength of gravity:   M2

be2ϕ ≈M2
Pl

 Potential terms negligible

• Introduce:

U

κ∗ρ
∼ Mbe−4ϕ

κ∗ρ
∼ 10−31

dΦ
dϕ

≡ 2"

F,ϕ

•     eqn in weak field, Newtonian limit simplifies toϕ

(r2Φ′)′ = −κ∗ρr2−
(F,ϕϕ

2!
− F,ϕ!,ϕ

(2!)2
)
(rΦ′)2

Φ(r) = −
∫ r

0
dr′

2G∗m(r′)
r′2

+ Φ0 m(r) ≡
∫ r

0
dr′4πr′2ρ

• Field stays very close to cosmol background value

∆Φ(r)
Φ0

≡ Φ(r)− Φ0

Φ0
∼ 10−35 ⇒ ∆ϕ(r)

ϕ0
% 1



The LED model
• Weak field, Newtonian limit, dropping negligible non-linear terms

• Tree level,                 JBDω = −1/2 ⇒ α2 = 1/2

B ≈ 2GNM

r

B ≈ GNM

r

A ≈ −2GNM

r

A ≈ −GNM

r
− Φ(r)

F
≈ − (1 + 2)GNM

r

A′ ≈ B

r
−2α2

F
Φ′(rB)′ ≈

(
1− α2

) κ∗
F

ρr2 α2 =
F,ϕ

2"

•    small via radius stabilization, for

⇒ γPPN ≈ 1

⇒ γPPN ≈
1
3

κ∗/F ≈ κ∗/F0 = 8πGN

α2 ! 10−6 ⇒ ω(ϕ) " 103α



Summary

• Field remains light in the LED model,
  Solar System tests fulfilled since for           the theory
  no longer corresponds to an                 JBD theory.
  However, metric        gravity is invariably

α! 1
ω ! −1/2

f(R) ω = 0

• Evolution of scalar field in Solar System negligible
  compared to cosmological background value
      remains small and γPPN = 1α

⇒

• Successes of the 6D brane-world (S)LED scenario:
  1.  Addresses the hierarchy problem
  II.  Induced potential naturally yields observed amount of DE
  III. Valid cosmological evolution close to   CDM 
  IV. Radius stabilization mechanism also provides consistency
      with Solar System constraints

Λ

Kainulainen & Sunhede
in preparation                        
[see also Phys Rev D73 (2006) 083510]
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Figure 4: Redshift-magnitude diagram normalized to a flat, ΩΛ = 0.73 cosmology,
with binned simulated SNAP data [?]. The solid line representing the quintessence
scenario corresponds to Ωχ = 0.73 at present.
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Simulated SNAP data:
Phys Rev Lett 86 (2001) 1939

our application of the constraints in Section VA remain
valid. This also tells us that ’ has remained very close to
constant, so that the strength of gravity had the same value
at BBN as at present. Let us now proceed with discussing
the evolution in the Einstein frame in detail.

Because of the relatively large starting value of ’, the
potential is negligible compared to the kinetic energy and
the scalar field ! enters radiation domination in a kinetic-
dominated roll. During early stages, the kinetic energy
scales as _!2 / R!6, and it dominates the energy density
for log10R & !11. This scaling follows from Eq. (26)
when the potential and the "-term are neglected and the
evolution of the scalar field is dominated by the Hubble
friction 3H _!. During this kination phase [40] the field ! is
rolling down its potential and ’, corresponding to the
radius in the LED context, is growing rapidly. The scalar

field dominance ends and the Universe enters radiation
domination right before BBN. At this time ! settles close
to the minimum of the potential, and correspondingly ’
reaches a plateau as shown in Fig. 7(a). The energy of the
scalar field continues to fall rapidly, until kination is halted
by the "-term. The "-term causes _!2 to track matter
density until log10R " !1:5, corresponding to and ob-
served redshift zJ " 30 [41], where the kinetic energy falls
below the potential, and the field ! starts acting like a
cosmological constant.

Although V#!$ now dominates the total energy density,
it is not yet a constant (see the linear scale plot inserted
in Fig. 5). The cause for this final 10% decrease between
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FIG. 5. Different components of the energy density (in Planck
units) as a function of the Einstein frame scale factor R. The
various curves represent matter (dashed black line), radiation
(dotted line), and scalar energy density (solid line). The dashed
gray and dot-dashed curves show the potential and the kinetic
part of the scalar energy density, respectively.
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FIG. 6. The equation-of-state parameters w! (solid line) and
wtot (dashed line) as functions of the Einstein frame scale
factor R.

FIG. 4. The relative difference between the Einstein and the
Jordan frame scale factors !R % #R! RJ$=R (solid line) and
times !t % #t! tJ$=t (dashed line), where we have set R &
RJ & 1 and t & tJ at present.

TABLE I. Initial conditions/starting values and the resulting
values at present, given in Planck units. Note that #tot & #c.

Variable Starting Value Present Value

log10RJ !11:5 0.00
log10R !12:0 0.00
! !31:6 !24:1
@!=@t 2:0' 10!37 2:57' 10!61

’ 33.7 35.8
#! 2:0' 10!74 8:42' 10!121

#m 1:1' 10!84 3:16' 10!121

#r 2:9' 10!76 2:90' 10!124

#tot ( ( ( 1:16' 10!120

"! ( ( ( 0.727
"m ( ( ( 0.272
"r ( ( ( 2:50' 10!4

w! ( ( ( !0:922
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