Averaging Robertson-Walker Cosmologies

Iain A. Brown

Institut für Theoretische Physik, Universität Heidelberg "Backreaction from Perturbations", J. Behrend, IB and G. Robbers, JCAP 0801 013 'Averaging Robertson-Walker Cosmologies", IB, G. Robbers and J. Behrend, in preperation

Cosmo 08, Madison, 25th August 2008

Motivation Standard Cosmology Averaging in Cosmology	
Backreaction Numerical Study Summary	Motivation

Standard Cosmology

Motivation

Standard Cosmology Averaging in Cosmology

Backreaction

Numerical Study

Summary

Copernican Principle + CMB observations \Rightarrow Universe homogeneous and isotropic.

Standard Cosmology

Motivation Standard Cosmology

Averaging in Cosmology

Backreaction

Numerical Study

Summary

Copernican Principle + CMB observations \Rightarrow Universe homogeneous and isotropic.

Robertson-Walker cosmology: foliate spacetime with maximally-symmetric three-spaces

- Line element: $ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$
- Friedmann equation: $(\dot{a}/a)^2 = (8\pi G/3)\overline{\rho} + \Lambda/3$
- Raychaudhuri equation: $\ddot{a}/a = -(4\pi G/3)(\overline{\rho} + \overline{p}) + \Lambda/3$
- Perturb metric with $\mathcal{O}(\epsilon) \approx 10^{-5}$

Standard Cosmology

Motivation

Standard Cosmology Averaging in Cosmology

Backreaction

Numerical Study

Summary

- Copernican Principle + CMB observations \Rightarrow Universe homogeneous and isotropic.
- Robertson-Walker cosmology: foliate spacetime with maximally-symmetric three-spaces
 - Line element: $ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$
 - Friedmann equation: $(\dot{a}/a)^2 = (8\pi G/3)\overline{\rho} + \Lambda/3$
 - Raychaudhuri equation: $\ddot{a}/a = -(4\pi G/3)(\overline{\rho} + \overline{p}) + \Lambda/3$
 - Perturb metric with $\mathcal{O}(\epsilon) \approx 10^{-5}$
- We have assumed the existence of an average and added perturbations

Averaging in Cosmology

Motivation Standard Cosmology Averaging in Cosmology

Backreaction

Numerical Study

Summary

An implicit averaging in cosmology transfers local equations to global cosmology; should be made explicit

 $\forall \langle \partial_t \rho \rangle \neq \partial_t \langle \rho \rangle \Rightarrow \text{Naïve EFE for assumed averages does not reflect a true average of small-scale physics. }$

Averaging in Cosmology

Motivation Standard Cosmology Averaging in Cosmology

Backreaction

Numerical Study

Summary

- An implicit averaging in cosmology transfers local equations to global cosmology; should be made explicit
- $\langle \partial_t \rho \rangle \neq \partial_t \langle \rho \rangle \Rightarrow$ Naïve EFE for assumed averages does not reflect a true average of small-scale physics.

We should be using

$$\langle G_{\mu\nu}(g_{\mu\nu})\rangle = 8\pi G \langle T_{\mu\nu}\rangle + \Lambda \langle g_{\mu\nu}\rangle$$

instead of

$$G_{\mu\nu}(\langle g_{\mu\nu}\rangle) = 8\pi G \langle T_{\mu\nu}\rangle + \Lambda \langle g_{\mu\nu}\rangle.$$

- "Backreaction" may not be dark energy, but all cosmological models should be properly averaged
- Aim: Express Buchert equations in general form, apply to range of perturbed Robertson-Walker models from radiation domination to present day.

M	oti	vati	ion	
V	oti	vat	ion	

Backreaction

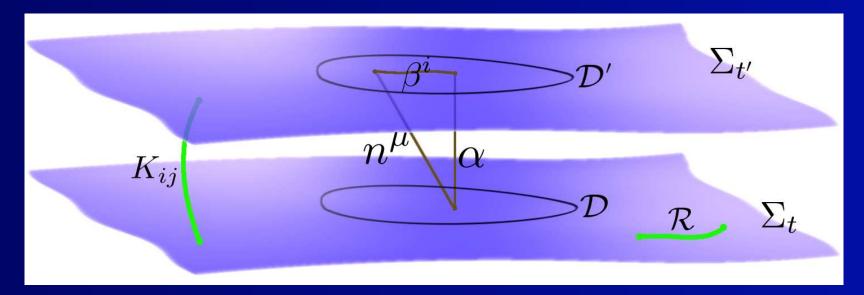
Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

Backreaction

Formalism: 3+1 Split


Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

Formalism: Buchert Averaging

Motivation

Backreaction

Formalism: 3+1 Split

Formalism: Buchert Averaging

Formalism:

Modifications to

Standard Cosmology Link to Perturbation

Theory

Theory

Terms

Link to Perturbation Theory: Backreaction

Numerical Study

Summary

Select average

$$\langle A \rangle = \frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^3 \mathbf{x},$$

Define averaged "scale factor" and Hubble rate by

$$3H_{\mathcal{D}} = 3\frac{\dot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = \frac{\dot{V}}{V} = -\frac{1}{V}\int_{\mathcal{D}}\alpha K\sqrt{h}d^3\mathbf{x} = -\langle\alpha K\rangle = \langle\mathcal{H}\rangle,$$

Buchert equations:

$$\begin{pmatrix} \dot{a}_{\mathcal{D}} \\ a_{\mathcal{D}} \end{pmatrix}^{2} = \frac{8\pi G}{3} \langle \alpha^{2} \varrho \rangle + \frac{\Lambda}{3} \langle \alpha^{2} \rangle - \frac{1}{6} (\mathcal{Q}_{\mathcal{D}} + \mathcal{R}_{\mathcal{D}})$$
$$\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = -\frac{4\pi G}{3} \langle \alpha^{2} (\varrho + S) \rangle + \frac{\Lambda}{3} \langle \alpha^{2} \rangle + \frac{1}{3} (\mathcal{Q}_{\mathcal{D}} + \mathcal{P}_{\mathcal{D}})$$

Formalism: Modifications to Standard Cosmology

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

Kinematical "backreaction":

$$\mathcal{Q}_{\mathcal{D}} = \left\langle \alpha^2 \left(K^2 - K^i_j K^j_i \right) \right\rangle - \frac{2}{3} \left\langle \alpha K \right\rangle^2$$

- Dynamical "backreaction": \$\mathcal{P}_D = \langle \alpha K \rangle + \langle \alpha D_i \alpha \rangle\$
 Curvature contribution: \$\mathcal{R}_D = \langle \alpha^2 \mathcal{R} \rangle\$
- Deviation from average density and pressure:

$$\frac{3\mathcal{T}_{\mathcal{D}}^{(a)}}{8\pi G} = \left\langle \alpha^2 \varrho_{(a)} \right\rangle - \overline{\rho}_{(a)}, \quad \frac{3\mathcal{S}_{\mathcal{D}}^{(a)}}{4\pi G} = \left\langle \alpha^2 S_{(a)} \right\rangle - \overline{S}_{(a)}$$

Formalism: Modifications to Standard Cosmology

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms Numerical Study

Summary

The Buchert equations can then be written as

$$\frac{\dot{a}_{\mathcal{D}}}{\dot{a}_{\mathcal{D}}} \right)^{2} = \frac{8\pi G}{3} \sum_{a} \overline{\rho}_{(a)} + \frac{\Lambda}{3} + \frac{8\pi G}{3} \overline{\rho}_{\text{eff}},$$
$$\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = -\frac{4\pi G}{3} \sum_{a} \left(\overline{\rho}_{(a)} + \overline{S}_{(a)}\right) + \frac{\Lambda}{3} - \frac{4\pi G}{3} \left(\overline{\rho}_{\text{eff}} + \overline{S}_{\text{eff}}\right)$$

with effective correction fluid

$$\frac{8\pi G}{3}\overline{\rho}_{\text{eff}} = \sum_{a} \mathcal{T}_{\mathcal{D}}^{(a)} + \langle \alpha^{2} - 1 \rangle \frac{\Lambda}{3} - \frac{1}{6} \left(\mathcal{Q}_{\mathcal{D}} + \mathcal{R}_{\mathcal{D}} \right),$$

$$16\pi G\overline{p}_{\text{eff}} = 4\sum_{a} \mathcal{S}_{\mathcal{D}}^{(a)} - 2\Lambda \langle \alpha^{2} - 1 \rangle + \frac{1}{3} \left(\mathcal{R}_{\mathcal{D}} - 3\mathcal{Q}_{\mathcal{D}} - 4\mathcal{P}_{\mathcal{D}} \right),$$

$$w_{\text{eff}} = -\frac{1}{3} \frac{\mathcal{R}_{\mathcal{D}} - 3\mathcal{Q}_{\mathcal{D}} - 4\mathcal{P}_{\mathcal{D}} + 12\sum_{a} \mathcal{S}_{\mathcal{D}}^{(a)} - 6\Lambda \langle \alpha^{2} - 1 \rangle}{\mathcal{R}_{\mathcal{D}} + \mathcal{Q}_{\mathcal{D}} - 6\sum_{a} \mathcal{T}_{\mathcal{D}}^{(a)} - 2\Lambda \langle \alpha^{2} - 1 \rangle}_{9/23}$$

Link to Perturbation Theory

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

Identify ADM and Newtonian co-ordinates (c.f. Mukhanov et. al.)

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(t)(1-2\Phi)\delta_{ij}dx^{i}dx^{j} = -\alpha^{2}dt^{2} + h_{ij}dx^{i}dx^{j}$$

 $a_{\mathcal{D}}(t)$ is "observational", a(t) is "physical" – drawback of re-averaging assumed average (Kolb, Marra, Matarrese 08; IB, Behrend, Robbers 08)

Link to Perturbation Theory

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms Numerical Study

Summary

Identify ADM and Newtonian co-ordinates (c.f. Mukhanov et. al.)

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(t)(1-2\Phi)\delta_{ij}dx^{i}dx^{j} = -\alpha^{2}dt^{2} + h_{ij}dx^{i}dx^{j}$$

 $a_{\mathcal{D}}(t)$ is "observational", a(t) is "physical" – drawback of re-averaging assumed average (Kolb, Marra, Matarrese 08; IB, Behrend, Robbers 08)

Quickly find

$$\frac{\dot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = \frac{\dot{a}}{a} - \left\langle \dot{\Phi} \left(1 + 2\Phi \right) \right\rangle$$

Link to Perturbation Theory: Backreaction Terms

Kinematical and dynamical backreactions:

Motivation

Backreaction Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms $\begin{aligned} \mathcal{Q}_{\mathcal{D}} &= 6\left(\left\langle \dot{\Phi}^2 \right\rangle - \left\langle \dot{\Phi} \right\rangle^2 \right), \\ \mathcal{P}_{\mathcal{D}} &= \frac{1}{a^2} \left\langle \nabla^2 \Psi - (\nabla \Psi)^2 + 2\Phi \nabla^2 \Psi - (\nabla \Phi) \cdot (\nabla \Psi) \right\rangle \\ &+ 3\frac{\dot{a}}{a} \left\langle \dot{\Psi} - 2\Psi \dot{\Psi} \right\rangle - 3 \left\langle \dot{\Psi} \dot{\Phi} \right\rangle \end{aligned}$

Numerical Study

Summary

Curvature correction:

$$\mathcal{R}_{\mathcal{D}} = \frac{2}{a^2} \left\langle 2\nabla^2 \Phi + 3(\nabla \Phi)^2 + 4(2\Phi + \Psi)\nabla^2 \Phi \right\rangle.$$

Link to Perturbation Theory: Backreaction Terms

Fluid corrections:

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

$\begin{aligned} \mathcal{T}_{\mathcal{D}} &= \frac{8\pi G}{3} \overline{\rho} \left\langle \delta + 2\Psi + (1+\overline{w})a^2v^2 + 2\Psi\delta \right\rangle, \\ \mathcal{S}_{\mathcal{D}} &= \frac{4\pi G}{3} \overline{\rho} \left\langle 3c_s^2\delta + 6\overline{w}\Psi + (1+\overline{w})a^2v^2 + 6c_s^2\Psi\delta \right\rangle \end{aligned}$

Link to Perturbation Theory: Backreaction Terms

Fluid corrections:

Motivation

Backreaction

Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms

Numerical Study

Summary

$\mathcal{T}_{\mathcal{D}} = \frac{8\pi G}{3} \overline{\rho} \left\langle \delta + 2\Psi + (1+\overline{w})a^2v^2 + 2\Psi\delta \right\rangle,$ $\mathcal{S}_{\mathcal{D}} = \frac{4\pi G}{3} \overline{\rho} \left\langle 3c_s^2\delta + 6\overline{w}\Psi + (1+\overline{w})a^2v^2 + 6c_s^2\Psi\delta \right\rangle$

Note: alternative gauges – uniform density to simplify T_D and S_D , uniform curvature to remove \mathcal{R}_D , synchronous gauge to remove \mathcal{P}_D . \mathcal{Q}_D cannot be entirely removed except in EdS matter domination.

NЛ	01	Hiv.	ati		n
IVI	U		au	U	

Backreaction

Numerical Study

Ergodic Averaging Quintessence Cosmology Early Dark Energy Inverse Power Law Potential Exponential Potential Equations of State

Summary

Numerical Study

Ergodic Averaging

Motivation

Backreaction

Numerical Study

Ergodic Averaging Quintessence

Cosmology

Early Dark Energy

Inverse Power Law

Potential

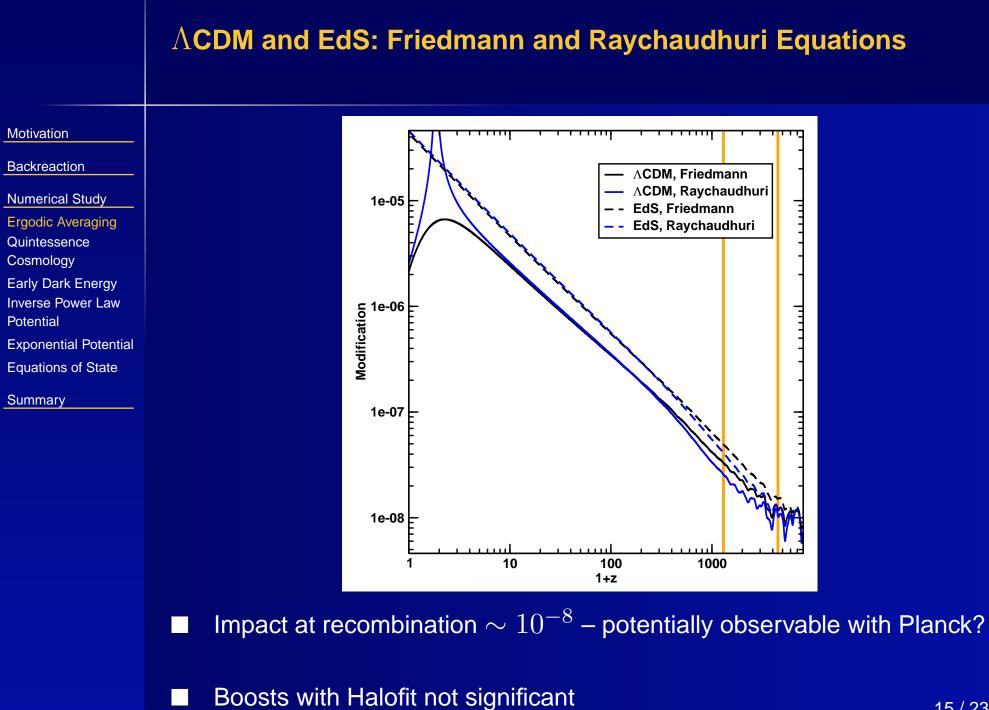
Exponential Potential

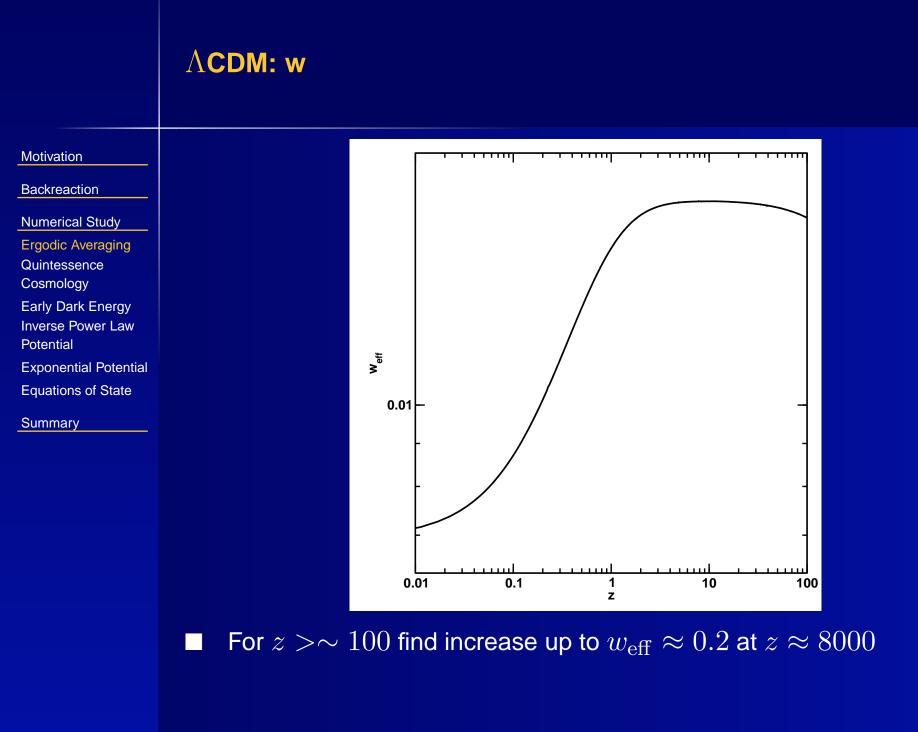
Equations of State

Summary

Boltzmann codes are 1-d, averages are 3-d, so take \mathcal{D} large enough to employ ergodic principle

Ergodic Averaging


Motivation


Backreaction

- Numerical Study
- Ergodic Averaging
- Quintessence
- Cosmology
- Early Dark Energy Inverse Power Law
- Potential
- **Exponential Potential**
- Equations of State

Summary

- Boltzmann codes are 1-d, averages are 3-d, so take D large enough to employ ergodic principle
- Corrections to standard case to be evaluated with cmbeasy: $Q_D = 6 \int \mathcal{P}_{\psi}(k) \left| \dot{\Phi} \right|^2 (dk/k)$ etc.
- Integration domain $k \in (1/\eta, 100 {\rm Mpc}^{-1})$

Quintessence Cosmology

Motivation

Backreaction

Numerical Study

- Ergodic Averaging
- Quintessence
- Cosmology
- Early Dark Energy Inverse Power Law
- Potential
- **Exponential Potential**
- Equations of State

Summary

Models tested

- Early dark energy parameterisation
- Exponential potential
- Inverse power-law potential
- Still linear analysis \Rightarrow still expect small impacts on the observed evolution
- Expect w_{eff} to increase with dark matter perturbations so w_{eff} clearest discriminant

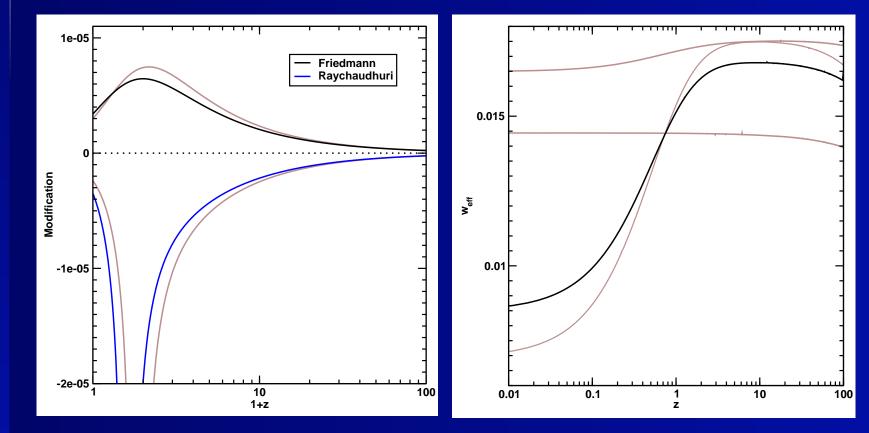
Early Dark Energy

Motivation

Backreaction

Numerical Study

Ergodic Averaging Quintessence Cosmology Early Dark Energy


Inverse Power Law Potential

Exponential Potential Equations of State

Summary

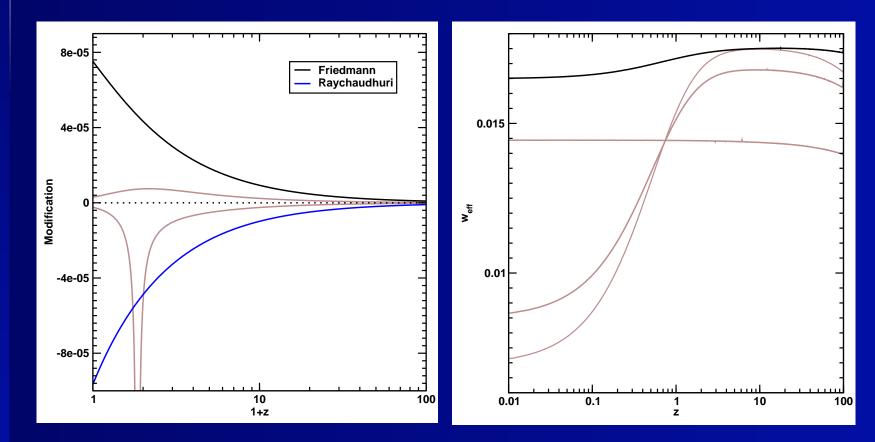
Very similar to Λ CDM; larger at present day, smaller at peak

Inverse Power Law Potential

Motivation

Backreaction

Numerical Study


Ergodic Averaging Quintessence Cosmology Early Dark Energy Inverse Power Law Potential

Exponential Potential Equations of State

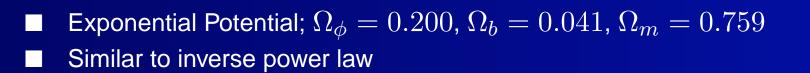
Summary

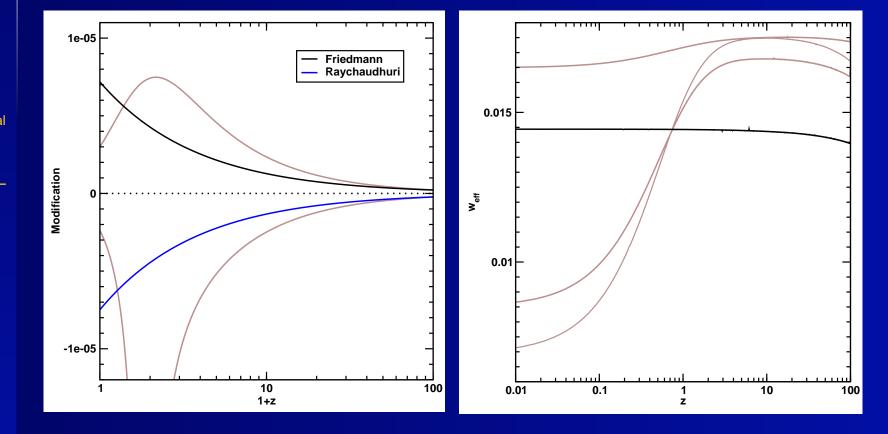
Inverse-Power Law Potential (Ratra-Peebles); $\Omega_{\phi} = 0.118$, $\Omega_b = 0.046$, $\Omega_c = 0.837$, n = -2

Similar to but smaller than EdS for these parameters

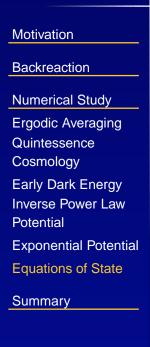
Exponential Potential

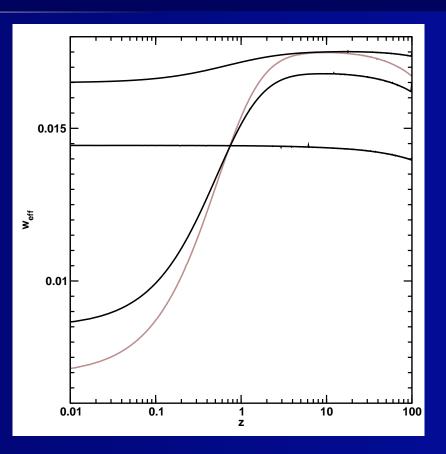
Motivation


Backreaction


Numerical Study

Ergodic Averaging Quintessence Cosmology Early Dark Energy Inverse Power Law Potential


Exponential Potential Equations of State


Summary

Equations of State

- \blacksquare $w_{\rm eff} > 0$ as before acts against acceleration
- But: this includes quintessence perturbations!
- These differences far too small to observe, but smaller-scale study looks vital

Motivation Backreaction Numerical Study Summary	
Summary	Summary

Summary

Motivation

Backreaction

Numerical Study

Summary

Summary

- Have expressed Buchert equations in multifluid form easily incorporated into general Boltzmann codes for wide variety of models
 Differing *linear* models barely change impact on Friedmann equation; on Raychaudhuri equation it's similar and remains ~ 10⁻⁵
 Impact at recombination is close to observable anisotropies ⇒ possible chance of detection?
 - Λ CDM: $w_{\mathrm{eff}} pprox 0.007$
 - Early dark energy: $w_{\rm eff} pprox 0.009$
 - Exponential: $w_{\rm eff} \approx 0.014$
 - Inverse power law: $w_{\rm eff} \approx 0.016$
- Equation of state from quintessence perturbations > -1: is there a problem with clustering quintessence models? Small scale study is needed (c.f. Wetterich '02).
- CMB observables?
- Non-Linear models
- Modified averaging procedure (Behrend/Nachtmann?)