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Outline - 

1.  Dark matter in the Universe.
Luminosity of halos.

2.  Effect on the IGM. 
can they reionize the Universe?

3. Contribution to the optical depth.
constraints on particle and halo parameters.

(Furlanetto et al. ’06; Mapelli et al. ’06; Ripamonti et al. ’07; Chuzhoy ’08)
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Most of the matter in our galaxy is dark

Dark matter searches :   ADMX, DAMA, CDMS, Xenon,        
                                        Edelweiss, Zeplin, EGRET, ......
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Particle  annihilation in clumps - 

Probability of annihilation = 

Number of pairs = 

Energy released per ann. = 
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Energy spectrum of photons - 

Let x = Eγ/mχ
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Isothermal + core
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Abstract
If most of the dark matter in the Universe is composed of WIMPs, their annihilation will release energy, ionizing some of

the gas in the Universe. We investigate the effect of the earliest dark matter halos on reionization. It is shown that these halos
could contribute significantly to the WMAP inferred optical depth. Our results may be combined with studies of other ionizing
sources to put stronger constraints on the allowed halo and particle parameters.

The absence of significant Lyα absorption (the Gunn
Peterson test[? ]) in the spectrum of many quasars im-
plies that the Universe is highly ionized up to a redshift
≈ 6. Observations of the cosmic microwave background
(CMB) by the Wlikinson Microwave Anisotropy Probe
(WMAP)[? ] suggest that the Universe was reionized
at a redshift ≈ 11, assuming full ionization at lower red-
shifts. Primordial stars and quasars are commonly be-
lieved to have played a dominant role in the reionization
of the Universe. In this Letter, we investigate another
possibility, namely whether radiation from the earliest
dark matter halos could have contributed significantly to
reionization.

One of the well motivated candidates for the dark mat-
ter thought to exist in the Universe, is a Weakly In-
teracting Massive Particle (WIMP). WIMP dark mat-
ter has a very small primordial velocity dispersion and is
expected to form the first non-linear structures of mass
M ≈ 10−6M#, at a redshift ≈ 60[? ? ] (see however[? ],
which gives a much larger range of masses). Recent high
resolution simulations[? ] suggest that many of these ha-
los may survive to the present epoch. WIMP annihilation
in these early dark matter halos releases energy, some of
which is absorbed by gas, resulting in ionization. The
effect of particle annihilation on the ionization of gas, by
a uniform distribution of dark matter was studied by [?
? ]. These authors however, concluded that WIMP dark
matter is unlikely to have a significant effect on ioniza-
tion. The effect of dark matter clumping was taken into
account by [? ], who modified the dark matter distribu-
tion by including a “boost factor”, and found that WIMP
annihilation could be relevant to reionization, provided
that the annihilation rate 〈σav〉 ≈ 10−23 cm3/s for a 100
GeV WIMP, close to the upper limit inferred from the
WMAP observations.

We show here that the earliest dark matter halos
could play an important role in the reionization of the
Universe, even when a more realistic annihilation rate
〈σav〉 = 3 × 10−26 cm3/s [? ], (for a 100 GeV WIMP)
is assumed. We also provide a more detailed analysis
of the ionization process. We fit these early halos with
the profile of Navarro, Frenk, and White (NFW)[? ],
and calculate the energy released by WIMP annihilation.

We then solve for the evolution of the ionization fraction
with redshift. The contribution to the optical depth is
computed using the best-fit concordance values of the
WMAP 5 year data[? ]. We also determine the param-
eter space consistent with the WMAP inferred value of
optical depth.

Luminosity of dark matter halos: We fit each dark
matter halo with an NFW profile[? ]:

ρ(r) =
ρs

(r/rs) [1 + r/rs]
2 (1)

ρ(r) is the dark matter density at r, and ρs and rs are
constants. Let r200 denote the radius at which the mean
density ρ̄ equals 200 times the matter density at the for-
mation redshift zf , i.e.,

ρ̄(zf) = 200 ρc Ωm (1 + zf)
3 (2)

where ρc = 3H2
0/8πG is the critical density, H0 is the

Hubble parameter today and Ωm is the matter fraction.
The mass in dark matter enclosed within r200

Mdm(r200) = 4πρsr
3
s

[

ln(1 + c200) −
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]

= fdm M

=
4π

3
r3
200 fdm ρ̄(zf) (3)

M = M(r200) is the halo mass. The concentration pa-
rameter c200 = r200/rs and fdm is the fraction of mass in
dark matter which we set equal to Ωdm/Ωm = 0.8287[?
]. This allows us to solve for ρs in terms of c200 and zf :

ρs =
fdm ρ̄(zf)

3

c3
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1+c200
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The luminosity of the halo is then given by

dE
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=
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s r3
s

3mχ
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1
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]

(5)

〈σav〉 is the averaged annihilation cross section of the
WIMPs times their relative velocity. mχ is the WIMP
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The absence of significant Lyα absorption (the Gunn
Peterson test[? ]) in the spectrum of many quasars im-
plies that the Universe is highly ionized up to a redshift
≈ 6. Observations of the cosmic microwave background
(CMB) by the Wlikinson Microwave Anisotropy Probe
(WMAP)[? ] suggest that the Universe was reionized
at a redshift ≈ 11, assuming full ionization at lower red-
shifts. Primordial stars and quasars are commonly be-
lieved to have played a dominant role in the reionization
of the Universe. In this Letter, we investigate another
possibility, namely whether radiation from the earliest
dark matter halos could have contributed significantly to
reionization.

One of the well motivated candidates for the dark mat-
ter thought to exist in the Universe, is a Weakly In-
teracting Massive Particle (WIMP). WIMP dark mat-
ter has a very small primordial velocity dispersion and is
expected to form the first non-linear structures of mass
M ≈ 10−6M#, at a redshift ≈ 60[? ? ] (see however[? ],
which gives a much larger range of masses). Recent high
resolution simulations[? ] suggest that many of these ha-
los may survive to the present epoch. WIMP annihilation
in these early dark matter halos releases energy, some of
which is absorbed by gas, resulting in ionization. The
effect of particle annihilation on the ionization of gas, by
a uniform distribution of dark matter was studied by [?
? ]. These authors however, concluded that WIMP dark
matter is unlikely to have a significant effect on ioniza-
tion. The effect of dark matter clumping was taken into
account by [? ], who modified the dark matter distribu-
tion by including a “boost factor”, and found that WIMP
annihilation could be relevant to reionization, provided
that the annihilation rate 〈σav〉 ≈ 10−23 cm3/s for a 100
GeV WIMP, close to the upper limit inferred from the
WMAP observations.

We show here that the earliest dark matter halos
could play an important role in the reionization of the
Universe, even when a more realistic annihilation rate
〈σav〉 = 3 × 10−26 cm3/s [? ], (for a 100 GeV WIMP)
is assumed. We also provide a more detailed analysis
of the ionization process. We fit these early halos with
the profile of Navarro, Frenk, and White (NFW)[? ],
and calculate the energy released by WIMP annihilation.

We then solve for the evolution of the ionization fraction
with redshift. The contribution to the optical depth is
computed using the best-fit concordance values of the
WMAP 5 year data[? ]. We also determine the param-
eter space consistent with the WMAP inferred value of
optical depth.

Luminosity of dark matter halos: We fit each dark
matter halo with an NFW profile[? ]:

ρ(r) =
ρs

(r/rs) [1 + r/rs]
2 (1)

ρ(r) is the dark matter density at r, and ρs and rs are
constants. Let r200 denote the radius at which the mean
density ρ̄ equals 200 times the matter density at the for-
mation redshift zf , i.e.,

ρ̄(zf) = 200 ρc Ωm (1 + zf)
3 (2)

where ρc = 3H2
0/8πG is the critical density, H0 is the

Hubble parameter today and Ωm is the matter fraction.
The mass in dark matter enclosed within r200

Mdm(r200) = 4πρsr
3
s

[

ln(1 + c200) −
c200

1 + c200

]

= fdm M

=
4π

3
r3
200 fdm ρ̄(zf) (3)

M = M(r200) is the halo mass. The concentration pa-
rameter c200 = r200/rs and fdm is the fraction of mass in
dark matter which we set equal to Ωdm/Ωm = 0.8287[?
]. This allows us to solve for ρs in terms of c200 and zf :

ρs =
fdm ρ̄(zf)

3

c3
200

ln(1 + c200) − c200

1+c200

(4)

The luminosity of the halo is then given by

dE

dt
=

4π〈σa v〉
mχ

∫ r200

0
dr r2ρ2(r)

=
4π〈σav〉 ρ2

s r3
s

3mχ

[

1 −
1

(1 + c200)3

]

(5)

〈σav〉 is the averaged annihilation cross section of the
WIMPs times their relative velocity. mχ is the WIMP
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Recombination:

The fraction of charged particles(photons) available at location s, having been emitted
at s

′

η(s, s
′
) = exp

[
−σ nb

∫ s

s′
ds

′′ [
1 + z(s

′′
)
]3

]
(9)

for σ = σch(σγ). In Eq. ??, we have included both bound and ionized fractions in accounting
for the energy loss by scattering. Let nhalo be the comoving number density of early dark
matter halos. The number of ionizations per unit time per unit volume due to charged
particles/photons at s, is given by the expression:

I(s) = 4π i(s) nhalo
dE/dt

13.6 eV

∫ s

sf

ds
′
s

′2 [1 + z(s
′
)]3 η(s, s

′
)

1 + z(s)

1 + z(s′)
(10)

sf and s are given by Eq. ?? for redshifts zf and z respectively. The last term accounts for
the redshifting in energy. In Eq. ??, we have assumed that each ionization consumes 13.6
eV of energy. Expressing Eq. ?? in terms of redshift using Eq. ??, we have

I(z) = A nhalo
dE/dt

13.6 eV
[1− xion(z)] (1 + z)5

∫ zf

z
dz

′
(1 + z

′
)−1/2 exp
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A

∫ z
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dz
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(1 + z

′′
)3/2

]

= nhalo

(
2A

5

)4/5 dE/dt
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[1− xion(z)] (1 + z)5eξ(z)

∫ ξ(zf )

ξ(z)
dξ

′
ξ

′−4/5
e−ξ

′
(11)

where A = nb σ/H0 and σ = σch(σγ) for charged particles(photons). ξ(z) = (2A/5)(1+z)5/2.
Assuming 30% of the annihilation products are charged particles, and 30% are photons[? ],
the mean ionization rate is given by

I(z) =
Ich(z)

3
+

Iγ(z)

3
(12)

C. Recombination.

Let us now consider recombination into bound atoms. The recombination rate per unit
volume

R(z) = n2
b x2

ion(z)(1 + z)6
[
0.76

0.82
αH(z) +

0.06

0.82
αHe(z)

]
(13)

αH is given by the expression[? ? ]

αH =
2.076× 10−11cm3s−1

√
TK

Φ(TK) (14)

where TK is the electron temperature in Kelvin and the function Φ(TK) is approximated by
the sum[? ]

Φ(TK) ≈
nmax∑

2

1

n

nmax =

√
1.58× 105

TK
(15)
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We do not include recombination to the ground state n = 1 since that would release an
ionizing photon. The Helium recombination coefficient is given by the approximate result[?
] αHe ≈ 3.925× 10−13 (T/eV)−0.6353. In terms of the redshift z, we have

TK ≈ 2.5× 10−3(1 + z)2

αH =
fH(z)

1 + z

αHe =
fHe(z)

1 + z
(16)

with the functions fH(z) and fHe(z) given by

fH(z) = 4.16× 10−10cm3s−1
nmax∑

2

1

n

fHe(z) = 6.753× 10−9cm3s−1 (1 + z)−0.2706 (17)

and nmax = 7.95× 103/(1 + z). Eq. ?? can be then written as

R(z) = n2
b x2

ion(z)(1 + z)5
[
0.76

0.82
fH(z) +

0.06

0.82
fHe(z)

]
(18)

From Eq. ?? and Eq. ??, we may solve for xion(z)

I(z)−R(z) = nb(1 + z)3dxion

dt

= −nbH0

√
Ωm

dxion

dz
(1 + z)11/2 (19)

where we have used the relation

−H0

√
Ωm dt =

dz

(1 + z)
√

(1 + z)3 + ΩΛ
Ωm

(20)

with the approximation ΩΛ $ Ωm(1 + z)3, valid at high redshifts.

III. OPTICAL DEPTH.

As mentioned earlier, the absence of significant Lyα absorption in the spectrum of quasars
up to z ≈ 6 implies that Hydrogen is almost completely ionized up to z ≈ 6. We assume
that Helium is doubly ionized at z = 3 [? ? ? ] and singly ionized at z = 6. We then have
the optical depth

τ(z < 6) = nb σT

[

−0.88

0.82

∫ 3

0
dz

dt

dz
(1 + z)3 −

∫ 6

3
dz

dt

dz
(1 + z)3

]

(21)

which yields τ(z < 6) = 0.04 where we have used Eq. ?? and the 5 year mean values of the
WMAP experiment[? ]. From the mean value of the WMAP measured optical depth[? ]
τ = 0.087, we note that an excess δτ ≈ 0.047 needs to be provided by sources at redshift
z > 6. In this section, we explore the dark matter models that can contribute this value δτ

5

mass and we have set the speed of light c = 1. 〈σav〉 ≈
3 × 10−26 cm3/s, in order to obtain Ωχh2 ≈ 0.1 today[?
? ].

Ionization of gas: The probability of ionization by
charged particles or photons, per unit volume at loca-
tion s

p(s) =
nb [1 − xion(s)] [1 + z(s)]3 σ

4πs2
(6)

s is the distance travelled by a light ray from redshift
infinity to redshift z (in the matter dominated era, z & 1)

s =
2

H0

1√
1 + z

(7)

σ is the ionization cross section and is replaced by σch

for charged particles, and by σγ for photons. xion is the
ionization fraction and nb [1−xion] is the comoving num-
ber density of bound atoms. For a mixture of 76% H
and 24% He, and assuming singly ionized He (the con-
tribution of doubly ionized He is smaller, and is hence
neglected here), we have

nb =
0.82ρc Ωb

mp

σch =

[

0.76

0.82
σH +

0.06

0.82
σHe

]

i(s) ≈ η p(s)µ
dE

dt
(8)

where

µ =

[

0.76

0.82

1

13.6 eV
+

0.06

0.82

1

24.6 eV

]

(9)

σH and σHe are the ionization cross sections (of charged
particles) for H and He respectively. i(s) is the number
of ionizations per unit time, per unit volume, at s. For
simplicity, we have accounted for the different ionization
potentials of H and He using µ defined in Eq. ??, rather
than by modifying the cross section. In any case, i(s)
in Eq. ?? is only an approximation, since we do not
consider in detail, the scattering processes involved. We
use the symbol i to describe ionization by either charged
particles(ich) or photons(iγ). η is an efficiency factor.
η = 1 implies that all the energy produced by dark matter
annihilation results in ionization. We have assumed an
ionization potential of 13.6 eV for Hydrogen and 24.6 eV
for singly ionized Helium[? ]. Ωb is the baryon fraction
and mp is the proton mass. From the measured values of
the radiation length for charged particles[? ] XH = 62.5
gm cm−2 for Hydrogen and XHe = 23.6 gm cm−2 for
Helium, we find σH ≈ 0.04 σT and σHe ≈ 0.426 σT where
σT is the Thomson cross section. The ionization cross
section due to scattering by photons σγ , is computed by
averaging the Klein-Nishina cross section for electron-
photon scattering[? ], over photon energy Eγ (for photon

wavelengths much smaller than the Bohr radius, we may
neglect details of the bound structure while computing
the scattering cross section). We use the phenomenolog-
ical result of [? ] for the photon multiplicity function
dNγ/dEγ (averaging over the different channels), to ob-
tain σγ ≈ 0.014 σT.

The fraction of charged particles(photons) available at
location s, having been emitted at s

′

κ(s, s′) = exp

[

−σ nb

∫ s

s′

ds′′ [1 + z(s′′)]
3
]

(10)

for σ = σch(σγ). In Eq. ??, we have included both
bound and ionized fractions in accounting for the energy
loss by scattering. Let nhalo be the comoving number
density of early dark matter halos. The number of ion-
izations per unit time per unit volume due to charged
particles/photons at s, is given by the expression:

I(s) = 4π i(s)nhalo

∫ s

sf

ds′s′
2
[1+z(s′)]3 κ(s, s′)

1 + z(s)

1 + z(s′)
(11)

sf and s are given by Eq. ?? for redshifts zf and z re-
spectively. The last term accounts for the redshifting in
energy. Expressing Eq. ?? in terms of redshift using Eq.
??, we have

I(z) = η nhalo

(

2A

5

)4/5

µ
dE

dt
[1 − xion(z)] (1 + z)5

× eξ(z)

∫ ξ(zf)

ξ(z)
dξ′ξ′

−4/5
e−ξ′

(12)

where A = nb σ/H0 and σ = σch(σγ) for charged parti-
cles(photons). ξ(z) = (2A/5)(1+z)5/2. Assuming 30% of
the annihilation products are charged particles, and 30%
are photons[? ], the mean ionization rate = Ich/3+Iγ/3.

Recombination: The recombination rate per unit vol-
ume

R(z) = n2
b x2

ion(1 + z)6
[

0.76

0.82
αH +

0.06

0.82
αHe

]

(13)

αH is given by the expression[? ? ]

αH ≈
2.2 × 10−9 cm3s−1

√

T/eV

nmax
∑

2

1

n

nmax ≈
4.3 × 104

√

T/eV
(14)

We do not include recombination to the ground state
n = 1 since that would release an ionizing photon. The
Helium recombination coefficient is given by the approx-
imate result[? ] αHe ≈ 3.925 × 10−13 (T/eV)−0.6353.
Using T ≈ 8 × 10−4[(1 + z)/61]2 eV, Eq. ??, accounting
for only photons and charged particles, and Eq. ??, we
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αH is given by the expression[? ? ]

αH ≈
2.2 × 10−9 cm3s−1

√

T/eV

nmax
∑

2

1

n

nmax ≈
4.3 × 104

√

T/eV
(14)

We do not include recombination to the ground state
n = 1 since that would release an ionizing photon. The
Helium recombination coefficient is given by the approx-
imate result[? ] αHe ≈ 3.925 × 10−13 (T/eV)−0.6353.
Using T ≈ 8 × 10−4[(1 + z)/61]2 eV, Eq. ??, accounting
for only photons and charged particles, and Eq. ??, we

2

(L. Spitzer ’48;  H.Zanstra ’54)

Mmin = 10−6M"

αH ≈ 3.746× 10−13(T/eV)−0.724

i ∼ 〈σav〉
mχ

x = Eγ/mχ

µ = 0.76
0.82

1
13.6 eV + 0.06

0.82
1

24.6 eV

[
cσTnb

H0
√

Ωm

]
µ η [1− xion(z)] 1√

1+z

∫ z
zF
−dz′ (1 + z′)−1/2

∫ 1
0 dxae−bx

√
x

σ(x)
σT

κ(z′; z, x)
∫∞
Mmin

dM dN
dM L0(M)

nγ(s) = nγ(s′)× κ(s′; s)

κ(s′; s) = exp
[
−

∫ s
s′ ds n(s)σ

]

p(s) = nb(s)σδs
4πs2δs

ξ(c200) = c3
200

[ln(1+c200)−c200/(1+c200)]
2

[
1− 1

(1+c200)3

]

dL
dx = M ρ̄[zf (M)]

mχ

〈σav〉 f2
dm ae−bx

18
√

x
ξ(c200)

c200 = r200/rs

fdm = Ωdm/ΩΛ

4πr3
200

3 ρ̄(zf ) = Mdm(r200)

ρ(r) = ρs

(r/rs)α(1+r/rs)β

ρ(r) = ρs

(r/rs)2+K

Let x = Eγ/mχ

dL
dx = 〈σav〉

2mχ

a e−bx
√

x
4π

∫
dr r2ρ2(r)

a = 0.9

b = 9.56

dNγ

dx = ae−bx

x1.5

3



We do not include recombination to the ground state n = 1 since that would release an
ionizing photon. The Helium recombination coefficient is given by the approximate result[?
] αHe ≈ 3.925× 10−13 (T/eV)−0.6353. In terms of the redshift z, we have

TK ≈ 2.5× 10−3(1 + z)2

αH =
fH(z)

1 + z

αHe =
fHe(z)

1 + z
(16)

with the functions fH(z) and fHe(z) given by

fH(z) = 4.16× 10−10cm3s−1
nmax∑

2

1

n

fHe(z) = 6.753× 10−9cm3s−1 (1 + z)−0.2706 (17)

and nmax = 7.95× 103/(1 + z). Eq. ?? can be then written as

R(z) = n2
b x2

ion(z)(1 + z)5
[
0.76

0.82
fH(z) +

0.06

0.82
fHe(z)

]
(18)

From Eq. ?? and Eq. ??, we may solve for xion(z)

I(z)−R(z) = nb(1 + z)3dxion

dt

= −nbH0

√
Ωm

dxion

dz
(1 + z)11/2 (19)

where we have used the relation

−H0

√
Ωm dt =

dz

(1 + z)
√

(1 + z)3 + ΩΛ
Ωm

(20)

with the approximation ΩΛ $ Ωm(1 + z)3, valid at high redshifts.

III. OPTICAL DEPTH.

As mentioned earlier, the absence of significant Lyα absorption in the spectrum of quasars
up to z ≈ 6 implies that Hydrogen is almost completely ionized up to z ≈ 6. We assume
that Helium is doubly ionized at z = 3 [? ? ? ] and singly ionized at z = 6. We then have
the optical depth

τ(z < 6) = nb σT

[

−0.88

0.82

∫ 3

0
dz

dt

dz
(1 + z)3 −

∫ 6

3
dz

dt

dz
(1 + z)3

]

(21)

which yields τ(z < 6) = 0.04 where we have used Eq. ?? and the 5 year mean values of the
WMAP experiment[? ]. From the mean value of the WMAP measured optical depth[? ]
τ = 0.087, we note that an excess δτ ≈ 0.047 needs to be provided by sources at redshift
z > 6. In this section, we explore the dark matter models that can contribute this value δτ
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1.   Particle mass  -  MeV range.

2.  Minimum halo mass.

3.   Halo concentration parameter.

x     depends on - ion

nH

δTb,0 = (1−e−τ )(Ts−Tγ)
1+z

Tb = Tγe−τ + Ts [1− e−τ ]

Iν(T.E.) ≈ 2kbTν2/c2

= jν/κν

τ =
∫

ds κν

Iν = Iγe−τ +
∫ τ
0 dτ

′
e−τ ′ jν

κν

dIν
ds = −κνIν + jν

Iγ

n1
n0

= g1
g0

e−hν/kTs

1 0S1/2

1 1S1/2

dnx
dM = 2ρ0 δc√

π
(1 + z)2

∫∞
Mmin

dM
M

1
σ2(M)

dσ(M)
dM exp

[
− δ2

c (1+z)2

2σ2(M)

]

σ2 = 1
(1+z)2

∫∞
0

dk
2π2 k2 P (k) |W (kR)|2

, Mmin

L0 = L0(M, c200)

= ae−bx
√

x
L0

mχ ∼ 20 MeV

zmax = 57

zmax = 44

Mmin = 10−6M$

Mmin = 10−2M$

〈σav〉 = 3× 10−26 cm3 s−1

2



mdm

Mmin

c200



    

• No Gunn-Peterson trough in the spectrum of quasars at z < 6.

• H fully ionized at z = 6.

• He doubly ionized at z = 3.

• He singly ionized at z = 6.   

   

   

•  But WMAP inferred 

   

〈σav〉nχ
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M
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s
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′
)

4πs2δs

s
′

N(s; s
′
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ds

′′
n(s
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)σ

]
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∫

ds ne(s) σT
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) = N(s) exp−

[∫
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′′
n(s

′′
)σ

]

s −→ z

τ =
∫

ds ne(s) σT

τ(z < 6) = 0.04

τ = 0.087 !
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〈σav〉nχ

nχ

dE
dt = 〈σav〉mχ

∫
n2

χ dV

M ∼ 106

n ∼ 1 pc−3

zf ∼ 60

ρ(r) = ρs

(r/rs)(1+r/rs)2

c200

c200 = r200/rs

Mdm =
∫

ρ dV

= Ωdm
Ωm

M

L = dE/dt = L(M, c200)

−→

s

s + δs

[nb(s) σ δs] N(s;s
′
)

4πs2δs

s
′

N(s; s
′
) = N(s) exp−

[∫
ds

′′
n(s

′′
)σ

]

s −→ z

τ =
∫

ds ne(s) σT

τ(z < 6) = 0.04

τ = 0.087 !
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Optical depth





1.    Predicts a gradual reionization history.

Conclusions:

2.   H21 signal = 10’s of mK at z=15
(L. Chuzhoy ’08)

3.    Places an upper limit on the DM mass. 

Soft gamma ray background      (K. Ahn, E. Komatsu, ’05)

Positron production            (J.F. Beacom, N.F. Bell, G. Bertone, ’05) 

mχ ∼ 20 MeV

zmax = 57

zmax = 44

Mmin = 10−6M"

Mmin = 10−2M"

〈σav〉 = 3× 10−26 cm3 s−1

Mmin = 10−6M"

αH = 3.746× 10−13(T/eV)−0.724
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x = Eγ/mχ
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1
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dM L0(M)

nγ(s) = nγ(s′)× κ(s′; s)

κ(s′; s) = exp
[
−
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s′ ds n(s)σ

]

p(s) = nb(s)σδs
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[
1− 1
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dx = M ρ̄[zf (M)]

mχ

〈σav〉 f2
dm ae−bx

18
√

x
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4πr3
200

3 ρ̄(zf ) = Mdm(r200)

ρ(r) = ρs

(r/rs)α(1+r/rs)β

1

4.   Pop. III star formation.

(Spolyar et al. ’08;     Freese et al. ’08;    Iocco et al. ’08; 
Fairbairn et al. ’08;   Taoso et al. ’08;     Natarajan et al. ’08)

5.   DM and stars.

May conflict with upper limit set by optical depth.


