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� Particle Physics

Neutrino Oscillation experiments: neutrinos have mass

� Cosmology and Astrophysics Plenty of unexplained phenomena

Dark Matter
Pulsar Kicks
Supernova explotions
Matter-Antimatter Asymmetry

Can these issues be attacked on the same ground?
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Neutrino masses

The discovery of neutrino masses suggests the existence of right-handed, called
sterile, neutrinos. The neutrino sector is extended to include:

{νe, νµ, ντ , N1, N2, N3, ....}

The SM Lagrangian is extended to include the new states:

L = LSM + N̄ai6∂Na − yαaεijHi(L̄α)jNa −
Ma

2
N̄c
aNa + h.c.

The neutrino mass mixing matrix becomes:

M̃ =

 0 D
3×N

DT
N×3

M
N×N


where D

3×N ∼ y〈H〉 are the Dirac masses
and M

N×N are the Majorana masses of sterile states .
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What can experiments and theoretical considerations tell us about sterile
neutrinos?

� How many are there?

� What is the scale of their Majorana masses?
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What can experiments and theoretical considerations tell us about sterile
neutrinos?

� How many are there?

theory: no upper limit
experiment: at least 1

� What is the scale of their Majorana masses?
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Seesaw Mechanism and Yukawa couplings

M̃ =

(
0 D
DT M

)
The eigenvalues of this matrix are:

−D2/M and M

In the Standard Model, the matrix D
arises from the Higgs mechanism:

Dαa = yαa〈H〉

The smallness of neutrino masses

mν ∼ y〈H〉
(
y〈H〉
M

)
can be explained by either:

- small Yukawa couplings y � 1

- Large M and y ∼ 1

Is y ∼ 1 better than y � 1?

Depends on the model:

� If y ≈ some intersection number in
string theory, then y ∼ 1 is natural.

� If y comes from wave function overlap
of fermions living on different branes in
a model with extra-dimensions, then it
can be exponentially suppressed,
hence, y� 1 is natural.

In the absence of theory of the Yukawa
couplings, consider all allowed values for
the sterile neutrino masses.
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What can experiments and theoretical considerations tell us about sterile
neutrinos?

� How many are there?

theory: no upper limit
experiment: at least 1

� What is the scale of their Majorana masses?

lack-of-theory + experiment: anything

What are the cosmological consequences of such particles?

Light sterile neutrino as a Dark Matter candidate

Heavy sterile neutrinos produced in supernovae
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Sterile neutrino Dark Matter
Relic Sterile Neutrinos from the Higgs Sector
Astrophysical Hints
Detection

Dark Matter

A sterile neutrino of mass ∼ keV can be Dark Matter

A good candidate because:

� it is a plausible explanation of neutrino masses

� if it is sufficiently light (sub-MeV), it is stable

� it constitutes Warm Dark Matter, of variable ”warmth”, depending on
the production mechanism

Other hints in favor of such a particle:

- Pulsar kicks

- Star Formation

- Matter - Antimatter asymmetry

↪→ Investigate production mechanisms and cosmological properties
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CDM vs WDM

In large scales, both CDM and WDM are in complete agreement with
observations.

In small scales, CDM predictions do not match observations:

overprediction of satellite galaxies
prediction of central cusps rather than cores

Quantitatively:

- free-streaming length: cutoff scale of the power spectrum of density
perturbations; observationally inferred from Lyman-α forest

λFS(z) ≈ 13 kpc
√

1 + z

(
keV

mX

)〈p−2〉
− 1

2

1.61 T

( 0.2

ΩX

) 1
2

- phase-space density: entropy content; observationally inferred from
Dwarf Spheroidal Galaxies

Q ≡ %
/〈

p2

m2

〉 3
2
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CDM vs WDM

In large scales, both CDM and WDM are in complete agreement with
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Production Mechanisms

Sterile neutrinos can be produced in the early universe through:

� Oscillations
- off-resonance, at Tprod ' 130MeV; thermal spectrum [Dodelson, Widrow]

- on-resonance∗, at Tprod ' 150MeV; non-thermal spectrum [Fuller, Shi]
∗if there is large lepton asymmetry
Cool DM

� Decays
- inflaton decays into sterile neutrinos [Shaposhnikov, Tkachev]

- Higgs decays, at the electroweak scale [Kusenko, KP]
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The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism.
Can the Majorana masses of sterile neutrinos arise in the same way?

L =LSM+N̄ai 6∂Na−yαaεijHi(L̄α)jNa−Ma
2
N̄c
aNa +h.c.

−V (H,S)+h.c.

The singlet Higgs couples to the SM Higgs through a scalar potential:

V (H,S) = −µ2

H
|H|2 + λ

H
|H|4 −

1

2
µ

2

S
S

2
+

1

4
λ

S
S

4
+ 2λ

HS
|H|2S2

+
1

6
αS

3
+ ω|H|2S

If the parameters of the potential are such that 〈S〉 ∼ 102GeV, then the
singlet Higgs will take part in the EWPT.
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The Electroweak Phase Transition

The presence of the singlet Higgs changes the nature of the EWPT

S 6= 0, H = 0
2nd order PT to

H 6= 0
1st order PT

to the true vacuum

It is possible that the singlet Higgs will be discovered at the LHC
[Profumo, Ramsey-Musolf, G. Shaughnessy (2007); Barger et al. (2008)]
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The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism.
Can the Majorana masses of sterile neutrinos arise in the same way?

L = LSM+N̄ai 6∂Na+
1

2
(∂S)2−yαaε

ijHi(L̄α)jNa−
fa
2
SN̄c

aNa−V (H,S)+h.c.

The singlet Higgs couples to the SM Higgs and takes part in the EWPT:

V (H,S) = −µ2

H
|H|2 + λ

H
|H|4 −

1

2
µ

2

S
S

2
+

1

4
λ

S
S

4
+ 2λ

HS
|H|2S2

+
1

6
αS

3
+ ω|H|2S

Majorana masses may arise, after spontaneous symmetry breakdown, from the
coupling of sterile neutrinos to a gauge-singlet Higgs:

M = f〈S〉

Sterile neutrinos are produced by decays of S bosons: S → NN
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Higgs singlet decays

ΩN ∼ 0.2

(
f

10−8

)3( 〈S〉
mS

)(
33

ξ

)
ΩN does not depend on the mixing angle
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Higgs singlet decays

ΩN ∼ 0.2

(
f

10−8

)3( 〈S〉
mS

)(
33

ξ

)
ΩN does not depend on the mixing angle

Take 〈S〉 ≈mS , this sets f ≈ 10−8

(since ΩN ∝ f
3, f not very sensitive to the changes of the other parameters)

For a sterile neutrino of mass mN ∼ keV to constitute all of dark matter, the
singlet Higgs VEV has to be:

〈S〉 ∼ mN

f
∼ keV

10−8
∼ 102GeV
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Higgs singlet decays

ΩN ∼ 0.2

(
f

10−8

)3( 〈S〉
mS

)(
33

ξ

)
ΩN does not depend on the mixing angle

Take 〈S〉 ≈mS , this sets f ≈ 10−8

(since ΩN ∝ f
3, f not very sensitive to the changes of the other parameters)

For a sterile neutrino of mass mN ∼ keV to constitute all of dark matter, the
singlet Higgs VEV has to be:

〈S〉 ∼ mN

f
∼ keV

10−8
∼ 102GeV

S lives in the electroweak scale and can affect the EW Phase Transition.
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Higgs singlet decays

ΩN ∼ 0.2

(
f

10−8

)3( 〈S〉
mS

)(
33

ξ

)
ΩN does not depend on the mixing angle

For a sterile neutrino of mass mN ∼ keV to constitute all of dark matter, the
singlet Higgs VEV has to be:

〈S〉 ∼ mN

f
∼ keV

10−8
∼ 102GeV

S lives in the electroweak scale and can affect the EW Phase Transition.

ξ =
g∗(Tprod)

g∗(Ttoday)
' 110

3.36
' 33
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Higgs singlet decays

ΩN ∼ 0.2

(
f

10−8

)3( 〈S〉
mS

)(
33

ξ

)
ΩN does not depend on the mixing angle

For a sterile neutrino of mass mN ∼ keV to constitute all of dark matter, the
singlet Higgs VEV has to be:

〈S〉 ∼ mN

f
∼ keV

10−8
∼ 102GeV

S lives in the electroweak scale and can affect the EW Phase Transition.

ξ =
g∗(Tprod)

g∗(Ttoday)
' 110

3.36
' 33

The ξ factor is important because it redshifts the sterile neutrinos and results
in colder dark matter. This weakens the limits derived from the small-scale
structure considerations [Kusenko (2006)].
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Sterile neutrinos of mN ∼ keV are produced non-thermally from decays of a
singlet Higgs. At production T ∼ 100 GeV:

〈pN 〉
3.15T

∣∣∣∣
T∼100GeV

= 0.8
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Sterile neutrinos of mN ∼ keV are produced non-thermally from decays of a
singlet Higgs. At production T ∼ 100 GeV:

〈pN 〉
3.15T

∣∣∣∣
T∼100GeV

= 0.8

As universe expands, relativistic species decouple, releasing entropy. Sterile neu-
trinos produced at the EW scale appear redshifted at later times:

〈pN 〉
3.15T

∣∣∣∣
T∼keV

=
0.8

ξ
1
3

' 0.2

where ξ =
g∗(Tprod

)

g∗(Ttoday
)
' 110

3.36
' 33

This is lower than for sterile neutrinos produced via off-resonance oscillations, at
T ∼ 100 MeV, and modifies the small-scale structure limits
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Chilling...

Sterile neutrinos of mN ∼ keV are produced non-thermally from decays of a
singlet Higgs. At production T ∼ 100 GeV:

〈pN 〉
3.15T

∣∣∣∣
T∼100GeV

= 0.8

As universe expands, relativistic species decouple, releasing entropy. Sterile neu-
trinos produced at the EW scale appear redshifted at later times:

〈pN 〉
3.15T

∣∣∣∣
T∼keV

=
0.8

ξ
1
3

' 0.2

where ξ =
g∗(Tprod

)

g∗(Ttoday
)
' 110

3.36
' 33

This is lower than for sterile neutrinos produced via off-resonance oscillations, at
T ∼ 100 MeV, and modifies the small-scale structure limits�



�
	Dark Matter candidate

ν-chill
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Dark Matters

sterile neutrinos
free-streaming length

(z = 0)
kpc

primordial phase-space

density, in
M⊙/kpc3

(km/s)3

Warm DM
via off-res. oscill.

7
(

30
g
d

) 1
3 (keV

m

)
2 · 105

(
m

keV

)3
Cool DM
via on-res. oscill.
w. lepton asymm.

1.7
(

30
g
d

) 1
3 (keV

m

)
3.2 · 107

(
m

keV

)3
ν-chill
via Higgs decays
at the EW scale

2
(

110
g
d

) 1
3 (keV

m

)
2.4 · 105

(
m

keV

)3
observations Q >>> 104 − 105

[Gilmore]

[Boyanovsky, Vega, Sanchez (2008); Boyanovsky (2008); KP (2008)]
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Astrophysical Hints

� Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

� Star Formation [Biermann, Kusenko; Stasielak et al.]

by speeding up H2 formation

� Matter-Antimatter Asymmetry [Fukugita, Yanagida; Akhmedov,
Rubakov, Smirnov; Asaka, Blanchet, Shaposhnikov]

via leptogenesis
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Astrophysical Hints

� Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

� Star Formation [Biermann, Kusenko; Stasielak et al.]

by speeding up H2 formation

� Matter-Antimatter Asymmetry [Fukugita, Yanagida; Akhmedov,
Rubakov, Smirnov; Asaka, Blanchet, Shaposhnikov]

via leptogenesis

Pulsars have large velocities 〈v〉 ≈ 250− 450 km/s.

99% of the gravitational energy from the collapse of a supernova ∼ 1053 erg is
emitted in neutrinos.

1% asymmetry in neutrino emission can explain pulsar velocities.

Urca processes produce neutrinos asymmetrically, in the presence of strong mag-
netic field inside the supernova:

p+ e− 


 n+ νe and n+ e+ 


 p+ ν̄e

but asymmetry is washed out as active neutrinos escape from the supernova.

If a weaker interacting sterile neutrino is produced in these processes, asym-
metry in production will result in asymmetry in emission and give a pulsar kick.
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via leptogenesis
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Molecular Hydrogen is necessary for star formation.

H +H → H2 + γ − very slow!

In the presence of ions the following reactions are faster:

H +H+ → H+
2 + γ

H +H+
2 → H+ +H2

The X-ray photons produced by sterile neutrino decays ionize H.
H+ catalyzes the formation of molecular hydrogen.
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Lepton asymmetry can be generated by:

Decays of heavy sterile neutrinos

Oscillations of lighter sterile neutrino states

Lepton number can then be converted into baryon number by sphalerons.
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Radiative Decay and X-ray detection

Sterile neutrinos with m ∼ keV have lifetimes longer than the age of the
universe, but they do decay into lighter neutrino states and photons:

The rate of the radiative decay is:

ΓN→νγ ≈ 1.4 · 10−32

(
sin2 2θ

10−10

)( mN

1 keV

)5

s−1

Decay rate is very small, but large lumps of dark matter emit some X-rays.
[Abazajian, Fuller, Tucker; Dolgov, Hansen; Shaposhnikov et al.]

Photon energy is m/2⇒ detection with X-ray telescopes.

Suzaku observations of Dwarf Spheroidal Galaxies: Draco and Ursa Minor
[P. Biermann, A. Kusenko, M. Loewenstein]
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Supernovae won’t explode...

Simulations of core-collapse SN fail to reproduce the shock.

Problem is:

Gravitational energy ∼ 1053 erg initially trapped in the core.

At the bounce, this energy is drained from the core by active neutrinos.

The stalled shock needs only 1% of this energy, ∼ 1051 erg, to propagate
successfully.

Energy transport from the core to the vicinity of the shock.
What are we missing?

it might be multi-dimensional hydrodynamic effects, or new physics
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SN explosions from heavy sterile neutrino decay

A neutral particle, produced in the core, that will decay inside the envelope

increases the energy of the envelope

melts nuclei in front of the shock

A heavy sterile neutrino could do !

- produced in the core from weak interactions

- small mixing means it’s not trapped: it streams-out freely from the core

- heavy: carries out the right amount of energy 1051 erg

- short-lived τ ∼ 0.01− 0.1 s: it decays in the vicinity of the shock
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Limits

mixing with νµ

[Kusenko, Pascoli, Semikoz (2005)]

mixing with ντ

[Nédélec (2001)]

Limits from BBN may loosen under more careful consideration
[Fuller, Kusenko, KP, Smith, in preparation].
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Calculations show that

A sterile neutrino

ms ≈ 145−250 MeV

mixing with νµ or ντ by

sin2θ ≈ 10−8 − 10−7

removes from a
typical supernova core

Es ≈ 1051 − 1052erg
within
1-5 s

Decay mode:

Ns → νµ,τ + π0 → νµ,τ + 2γ

� In Core Collapse SN, the decay products absorbed in the dense envelope,
depositing energy that leads to a successful shock.

� In Accretion-Induced Collapse SN, there is no envelope
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γ-ray bursts and the galactic positrons

Accretion Induced Collapse SN occur very rarely, but can give
observable signal from heavy sterile neutrinos decays.

� Sterile neutrinos decaying in the baryon-poor environment of an AIC SN,
give ∼ 50 MeV photons

Ns → νµ,τ + 2γ

γ-ray photons produced will form a relativistic fireball that propagates in
the interstellar medium, generating a short GRB.

� Fireball also optically thick to pair production

Positrons produced may account for the 511 keV line observed in the
Milky Way

[Fuller, Kusenko, KP, in preparation]
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� Sterile neutrinos are introduced to explain the observed neutrino masses.
The same particles can account for a lot of astrophysical phenomena.

� If one of them is light, ms ∼ keV, it can be the Dark Matter.

Different production mechanisms result in “colder” or “warmer” DM.

S→NN decays yield sufficient DM abundance that does not depend on
the mixing angle and is in agreement with the small-scale structure.

The same particle can explain the pulsar velocities, speed up the star
formation, and account for the matter-antimatter asymmetry.

Detection possible through X-ray observations of nearby galaxies.

� Heavy sterile neutrinos, ms ∼ 200 MeV, produced in supernovae cores,
can enhance SN explosions, provide a mechanism for GRBs and explain
the 511 keV line of the galaxy.
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