## Sterile Neutrinos in Cosmology and Astrophysics

### Kalliopi Petraki (UCLA)

August 25, 2008

< ≣⇒

э

#### ♦ Particle Physics

Neutrino Oscillation experiments: neutrinos have mass

#### Cosmology and Astrophysics Plenty of unexplained phenomena

Dark Matter Pulsar Kicks Supernova explotions Matter-Antimatter Asymmetry

#### Can these issues be attacked on the same ground?

< ∃ →

### Neutrino masses

The discovery of neutrino masses suggests the existence of right-handed, called *sterile*, neutrinos. The neutrino sector is extended to include:

$$\{ 
u_e, \, 
u_\mu, \, 
u_ au, \, N_1, \, N_2, \, N_3, .... \}$$

The SM Lagrangian is extended to include the new states:

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + ar{N}_a i \partial \hspace{-0.15cm} / N_a - y_{lpha a} arepsilon^{ij} H_i (ar{L}_lpha)_j N_a - rac{M_a}{2} \ ar{N}_a^c N_a + h.c.$$

The neutrino mass mixing matrix becomes:

$$\widetilde{M} = \left( \begin{array}{cc} 0 & D_{3 \times \mathbf{N}} \\ \\ D_{\mathbf{N} \times 3}^T & M_{\mathbf{N} \times \mathbf{N}} \end{array} \right)$$

where  $D_{3 imes N} \sim y \langle H \rangle$  are the Dirac masses and  $M_{N imes N}$  are the Majorana masses of sterile states .

< 3 b



What can experiments and theoretical considerations tell us about sterile neutrinos?

- ♦ How many are there?
- What is the scale of their Majorana masses?

< ≣⇒

= nac



What can experiments and theoretical considerations tell us about sterile neutrinos?

- ♦ How many are there?
  - theory: no upper limit experiment: at least 1
- What is the scale of their Majorana masses?

< ∃⇒

э.

## Seesaw Mechanism and Yukawa couplings

$$\widetilde{M} = \left( egin{array}{cc} 0 & D \\ D^T & M \end{array} 
ight)$$

The eigenvalues of this matrix are:

 $-D^2/M$  and M

In the Standard Model, the matrix D arises from the Higgs mechanism:

 $D_{lpha a} = y_{lpha a} \langle H 
angle$ 

The smallness of neutrino masses

$$m_
u \sim y \langle H 
angle \left( rac{y \langle H 
angle}{M} 
ight)$$

can be explained by either:

- small Yukawa couplings  $y \ll 1$
- Large M and  $y\sim 1$

∢ 글 ▶ - 글

## Seesaw Mechanism and Yukawa couplings

$$\widetilde{M} = \left( egin{array}{cc} 0 & D \\ D^T & M \end{array} 
ight)$$

The eigenvalues of this matrix are:

$$-D^2/M$$
 and  $M$ 

In the Standard Model, the matrix D arises from the Higgs mechanism:

 $D_{lpha a} = y_{lpha a} \langle H 
angle$ 

The smallness of neutrino masses

$$m_
u \sim y \langle H 
angle \left( rac{y \langle H 
angle}{M} 
ight)$$

can be explained by either:

- small Yukawa couplings  $y \ll 1$
- Large M and  $y\sim 1$

#### Is $y \sim 1$ better than $y \ll 1$ ?

#### Depends on the model:

- $\diamond$  If y pprox some intersection number in string theory, then  $y \sim 1$  is natural.
- $\diamond$  If y comes from wave function overlap of fermions living on different branes in a model with extra-dimensions, then it can be exponentially suppressed, hence,  $y \ll 1$  is natural.

< ≣⇒

## Seesaw Mechanism and Yukawa couplings

$$\widetilde{M} = \left( egin{array}{cc} 0 & D \\ D^T & M \end{array} 
ight)$$

The eigenvalues of this matrix are:

$$-D^2/M$$
 and  $M$ 

In the Standard Model, the matrix D arises from the Higgs mechanism:

 $D_{lpha a} = y_{lpha a} \langle H 
angle$ 

The smallness of neutrino masses

$$m_
u \sim y \langle H 
angle \left( rac{y \langle H 
angle}{M} 
ight)$$

can be explained by either:

- small Yukawa couplings  $y \ll 1$
- Large M and  $y \sim 1$

#### Is $y \sim 1$ better than $y \ll 1$ ?

Depends on the model:

- ♦ If  $y \approx$  some intersection number in string theory, then  $y \sim 1$  is natural.
- $\diamond$  If y comes from wave function overlap of fermions living on different branes in a model with extra-dimensions, then it can be exponentially suppressed, hence,  $y \ll 1$  is natural.

In the absence of theory of the Yukawa couplings, consider all allowed values for the sterile neutrino masses.

**B N A B N** 

What can experiments and theoretical considerations tell us about sterile neutrinos?

♦ How many are there?

theory: no upper limit experiment: at least 1

What is the scale of their Majorana masses?

*lack-of-theory* + *experiment*: **anything** 

### What are the cosmological consequences of such particles?

Light sterile neutrino as a Dark Matter candidate Heavy sterile neutrinos produced in supernovae

< 3 b

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Dark Matter

### A sterile neutrino of mass $\sim \rm keV$ can be Dark Matter

A good candidate because:

- It is a plausible explanation of neutrino masses
- $\diamond\,$  if it is sufficiently light (sub-MeV), it is stable
- ◊ it constitutes Warm Dark Matter, of variable "warmth", depending on the production mechanism

Other hints in favor of such a particle:

- Pulsar kicks
- Star Formation
- Matter Antimatter asymmetry

 $\hookrightarrow$  Investigate production mechanisms and cosmological properties

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## CDM vs WDM

In large scales, both CDM and WDM are in complete agreement with observations.

In small scales, CDM predictions do not match observations: overprediction of satellite galaxies prediction of central cusps rather than cores

프 + + 프 +

< 🗇 🕨

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## CDM vs WDM

In large scales, both CDM and WDM are in complete agreement with observations.

In small scales, CDM predictions do not match observations: overprediction of satellite galaxies

prediction of central cusps rather than cores



Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## CDM vs WDM

In large scales, both CDM and WDM are in complete agreement with observations.

In small scales, CDM predictions do not match observations: overprediction of satellite galaxies prediction of central cusps rather than cores

Quantitatively:

- free-streaming length: cutoff scale of the power spectrum of density perturbations; observationally inferred from Lyman- $\alpha$  forest

$$\lambda_{_{FS}}(z) pprox 13 \; {
m kpc} \; \sqrt{1+z} \left( {{
m keV}\over m_{_X}} 
ight) \left( {{\langle p^{-2} 
angle}^{-{1\over 2}}\over 1.61 \, T} 
ight) \left( {{0.2}\over \Omega_X} 
ight)^{{1\over 2}}$$

- phase-space density: entropy content; observationally inferred from Dwarf Spheroidal Galaxies

$$Q\equiv arrho \left/ \left\langle rac{p^2}{m^2} 
ight
angle^{rac{3}{2}}$$

э

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### Production Mechanisms

Sterile neutrinos can be produced in the early universe through:

- ♦ Oscillations
  - off-resonance, at  $T_{\rm prod}\simeq 130\,{\rm MeV};$  thermal spectrum [Dodelson, Widrow]
  - on-resonance\*, at  $T_{\rm prod}\simeq 150\,{\rm MeV};$  non-thermal spectrum [Fuller, Shi] \*if there is large lepton asymmetry Cool~DM

< 🗇 🕨

э.

글 🕨 🖌 글 🕨

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### Production Mechanisms

Sterile neutrinos can be produced in the early universe through:

- ♦ Oscillations
  - off-resonance, at  $T_{\rm prod}\simeq 130\,{\rm MeV};$  thermal spectrum [Dodelson, Widrow]
  - on-resonance\*, at  $T_{\rm prod}\simeq 150\,{\rm MeV};$  non-thermal spectrum [Fuller, Shi] \*if there is large lepton asymmetry  $Cool\ DM$
- ♦ Decays
  - inflaton decays into sterile neutrinos [Shaposhnikov, Tkachev]
  - Higgs decays, at the electroweak scale [Kusenko, KP]

- 4 E b 4 E b

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## The Majorana Masses

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_a i \partial \!\!\!/ N_a - y_{\alpha a} \varepsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{M_a}{2} \bar{N}_a^c N_a + h.c.$$

・ロト ・個ト ・モト ・モト

Ξ.

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism. Can the Majorana masses of sterile neutrinos arise in the same way?

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_a i \partial \!\!\!/ N_a - y_{\alpha a} \varepsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{M_a}{2} \bar{N}_a^c N_a + h.c.$$

< ∃→

э

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism. Can the Majorana masses of sterile neutrinos arise in the same way?

 $\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_a i \partial \!\!\!/ N_a + \frac{1}{2} (\partial S)^2 - y_{\alpha a} \varepsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{f_a}{2} S \bar{N}_a^c N_a + h.c.$ 

프 🕨 🔺 프 🕨 👘

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism. Can the Majorana masses of sterile neutrinos arise in the same way?

 $\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_a i \partial \!\!\!/ N_a + \frac{1}{2} (\partial S)^2 - y_{\alpha a} \varepsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{f_a}{2} S \bar{N}_a^c N_a - V(H, S) + h.c.$ 

医下颌 医下颌

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism. Can the Majorana masses of sterile neutrinos arise in the same way?

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{N}_a i \partial \!\!\!/ N_a + \frac{1}{2} (\partial S)^2 - y_{\alpha a} \varepsilon^{ij} H_i (\bar{L}_\alpha)_j N_a - \frac{f_a}{2} S \bar{N}_a^c N_a - V(H, S) + h.c.$$

The singlet Higgs couples to the SM Higgs through a scalar potential:

$$V(H,S) = -\mu_{\rm H}^2 |H|^2 + \lambda_{\rm H} |H|^4 - \frac{1}{2} \mu_{\rm S}^2 S^2 + \frac{1}{4} \lambda_{\rm S} S^4 + 2\lambda_{\rm HS} |H|^2 S^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S^2 + \frac{1}{6} \alpha S^3 + \frac{1}{6} \alpha S^3$$

If the parameters of the potential are such that  $\langle S \rangle \sim 10^2 {
m GeV}$ , then the singlet Higgs will take part in the EWPT.

글 🖌 🖌 글 🕨

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Electroweak Phase Transition

#### The presence of the singlet Higgs changes the nature of the EWPT



It is possible that the singlet Higgs will be discovered at the LHC [Profumo, Ramsey-Musolf, G. Shaughnessy (2007); Barger et al. (2008)]

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

### The Majorana Masses

In the SM, fermion masses arise via the Higgs mechanism. Can the Majorana masses of sterile neutrinos arise in the same way?

$$\mathcal{L} = \mathcal{L}_{_{SM}} + ar{N}_a i \partial \!\!\!/ N_a + rac{1}{2} (\partial S)^2 - y_{_{lpha a}} arepsilon^{ij} H_i (ar{L}_lpha)_j N_a - rac{f_a}{2} S ar{N}_a^c N_a - V(H,S) + h.c.$$

The singlet Higgs couples to the SM Higgs and takes part in the EWPT:

$$V(H,S) = -\mu_{\rm H}^2 |H|^2 + \lambda_{\rm H} |H|^4 - \frac{1}{2} \mu_{\rm S}^2 S^2 + \frac{1}{4} \lambda_{\rm S} S^4 + 2\lambda_{\rm HS} |H|^2 S^2 + \frac{1}{6} \alpha S^3 + \omega |H|^2 S^2 + \frac{1}{6} \alpha S^3 + \frac{1}{6} \alpha S^3$$

Majorana masses may arise, after spontaneous symmetry breakdown, from the coupling of sterile neutrinos to a gauge-singlet Higgs:

$$M=f\langle S
angle$$

Sterile neutrinos are produced by decays of S bosons:  $S \rightarrow NN$ 

< ∃ >

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Higgs singlet decays

$$\Omega_{_N} \sim 0.2 \left(\frac{f}{10^{-8}}\right)^3 \left(\frac{\langle S \rangle}{m_S}\right) \left(\frac{33}{\xi}\right)$$

 $\Omega_{\scriptscriptstyle N}$  does not depend on the mixing angle

イロン イ団と イヨン イヨン

æ

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Higgs singlet decays

$$\Omega_{_N}\sim 0.2\left(rac{f}{10^{-8}}
ight)^3\left(rac{\langle S
angle}{m_S}
ight)\left(rac{33}{\xi}
ight)$$

#### $\Omega_{\scriptscriptstyle N}$ does not depend on the mixing angle

Take  $\langle S \rangle \approx m_S$ , this sets  $f \approx 10^{-8}$ (since  $\Omega_N \propto f^3$ , f not very sensitive to the changes of the other parameters)

For a sterile neutrino of mass  $m_{_N}\sim {\rm keV}$  to constitute all of dark matter, the singlet Higgs VEV has to be:

$$\langle S 
angle \sim rac{m_{_N}}{f} \sim rac{\mathrm{keV}}{10^{-8}} \sim 10^2 \mathrm{GeV}$$

< ≣⇒

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Higgs singlet decays

$$\Omega_{_N}\sim 0.2\left(rac{f}{10^{-8}}
ight)^3\left(rac{\langle S
angle}{m_S}
ight)\left(rac{33}{\xi}
ight)$$

 $\Omega_{\scriptscriptstyle N}$  does not depend on the mixing angle

Take  $\langle S \rangle \approx m_S$ , this sets  $f \approx 10^{-8}$ (since  $\Omega_N \propto f^3$ , f not very sensitive to the changes of the other parameters)

For a sterile neutrino of mass  $m_{_N}\sim {\rm keV}$  to constitute all of dark matter, the singlet Higgs VEV has to be:

$$\langle S 
angle \sim rac{m_{_N}}{f} \sim rac{\mathrm{keV}}{10^{-8}} \sim 10^2 \mathrm{GeV}$$

*S* lives in the electroweak scale and can affect the EW Phase Transition.

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Higgs singlet decays

$$\Omega_{_{N}}\sim 0.2\left(rac{f}{10^{-8}}
ight)^{3}\left(rac{\langle S
angle}{m_{S}}
ight)\left(rac{33}{\xi}
ight)$$

#### $\Omega_{\scriptscriptstyle N}$ does not depend on the mixing angle

For a sterile neutrino of mass  $m_N \sim {\rm keV}$  to constitute all of dark matter, the singlet Higgs VEV has to be:

$$\langle S 
angle \sim rac{m_{_N}}{f} \sim rac{\mathrm{keV}}{10^{-8}} \sim 10^2 \mathrm{GeV}$$

*S* lives in the electroweak scale and can affect the EW Phase Transition.

$$\xi = rac{g_*(T_{
m prod})}{g_*(T_{
m today})} \simeq rac{110}{3.36} \simeq 33$$

- ∢ ≣ →

E >

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Higgs singlet decays

$$\Omega_{_N}\sim 0.2\left(rac{f}{10^{-8}}
ight)^3\left(rac{\langle S
angle}{m_S}
ight)\left(rac{33}{\xi}
ight)$$

#### $\Omega_{\scriptscriptstyle N}$ does not depend on the mixing angle

For a sterile neutrino of mass  $m_N \sim {\rm keV}$  to constitute all of dark matter, the singlet Higgs VEV has to be:

$$\langle S 
angle \sim rac{m_{_N}}{f} \sim rac{\mathrm{keV}}{10^{-8}} \sim 10^2 \mathrm{GeV}$$

S lives in the electroweak scale and can affect the EW Phase Transition.

$$\xi = rac{g_*(T_{
m prod})}{g_*(T_{
m today})} \simeq rac{110}{3.36} \simeq 33$$

The  $\xi$  factor is important because it redshifts the sterile neutrinos and results in colder dark matter. This weakens the limits derived from the small-scale structure considerations [Kusenko (2006)].

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

Sterile neutrinos of  $m_N \sim \text{keV}$  are produced non-thermally from decays of a singlet Higgs. At production  $T \sim 100 \text{ GeV}$ :

$$\left. \frac{\left\langle p_{_N} \right\rangle}{3.15T} \right|_{_{T\sim 100 \, {\rm GeV}}} = 0.8$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

Sterile neutrinos of  $m_N \sim \text{keV}$  are produced non-thermally from decays of a singlet Higgs. At production  $T \sim 100 \text{ GeV}$ :

$$\left. \frac{\langle p_{_N} \rangle}{3.15T} \right|_{_{T \sim 100 \rm GeV}} = 0.8$$

As universe expands, relativistic species decouple, releasing entropy. Sterile neutrinos produced at the EW scale appear redshifted at later times:

$$\left. \frac{\langle p_N \rangle}{3.15T} \right|_{T \sim \rm keV} = \frac{0.8}{\xi^{\frac{1}{3}}} \simeq 0.2$$
where  $\xi = \frac{g_*(T_{\rm prod})}{g_*(T_{\rm today})} \simeq \frac{110}{3.36} \simeq 33$ 

This is lower than for sterile neutrinos produced via off-resonance oscillations, at  $T\sim 100\,{\rm MeV}$ , and modifies the small-scale structure limits

★ E ► ★ E ►

-

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

# Chilling...

Sterile neutrinos of  $m_N \sim \text{keV}$  are produced non-thermally from decays of a singlet Higgs. At production  $T \sim 100 \text{ GeV}$ :

$$\left. \frac{\langle p_{_N} \rangle}{3.15T} \right|_{_{T \sim 100 \rm GeV}} = 0.8$$

As universe expands, relativistic species decouple, releasing entropy. Sterile neutrinos produced at the EW scale appear redshifted at later times:

$$\left. \frac{\langle p_N 
angle}{3.15T} \right|_{T \sim \mathrm{keV}} = \frac{0.8}{\xi^{\frac{1}{3}}} \simeq 0.2$$
  
where  $\xi = \frac{g_*(T_{\mathrm{prod}})}{g_*(T_{\mathrm{today}})} \simeq \frac{110}{3.36} \simeq 33$ 

This is lower than for sterile neutrinos produced via off-resonance oscillations, at  $T\sim 100\,{\rm MeV}$ , and modifies the small-scale structure limits



Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Dark Matters

| sterile neutrinos                                                         | free-streaming length $(z=0)$ kpc                                           | primordial phase-space density, in $rac{M_{\odot}/kpc^3}{(km/s)^3}$ |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
| Warm DM<br>via off-res. oscill.                                           | $7\left(rac{30}{g_d} ight)^{rac{1}{3}}\left(rac{\mathrm{keV}}{m} ight)$  | $2\cdot 10^5 \left(rac{m}{ m keV} ight)^3$                          |
| <b>Cool DM</b><br>via on-res. oscill.<br>w. lepton asymm.                 | $1.7\left(rac{30}{g_d} ight)^{rac{1}{3}}\left(rac{	extbf{keV}}{m} ight)$ | $3.2\cdot 10^7 \left(rac{m}{ m keV} ight)^3$                        |
| $ \frac{\nu - \text{chill}}{\nu \text{ia Higgs decays}} $ at the EW scale | $2\left(rac{110}{g_d} ight)^{rac{1}{3}}\left(rac{\mathrm{keV}}{m} ight)$ | $2.4\cdot 10^5 \left(rac{m}{ m keV} ight)^3$                        |
| observations                                                              |                                                                             | $Q \geqslant 10^4 - 10^5$ [Gilmore]                                  |

[Boyanovsky, Vega, Sanchez (2008); Boyanovsky (2008); KP (2008)]

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

# Astrophysical Hints

◊ Pulsar Kicks [Kusenko, Segrè]

E ► < E ►

æ

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

◊ Pulsar Kicks [Kusenko, Segrè]

Pulsars have large velocities  $\langle v \rangle \approx 250 - 450 \text{ km/s}.$ 

99% of the gravitational energy from the collapse of a supernova  $\sim 10^{53}~{\rm erg}$  is emitted in neutrinos.

1% asymmetry in neutrino emission can explain pulsar velocities.

Urca processes produce neutrinos asymmetrically, in the presence of strong magnetic field inside the supernova:

 $p + e^- \rightleftharpoons n + \nu_e$  and  $n + e^+ \rightleftharpoons p + \bar{\nu}_e$ 

but asymmetry is washed out as active neutrinos escape from the supernova.

If a weaker interacting sterile neutrino is produced in these processes, asymmetry in production will result in asymmetry in emission and give a pulsar kick.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

◊ Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

◊ Star Formation [Biermann, Kusenko; Stasielak et al.]

< ∃→

э

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

◊ Star Formation [Biermann, Kusenko; Stasielak et al.]

Molecular Hydrogen is necessary for star formation.

 $H + H \rightarrow H_2 + \gamma - \text{very slow!}$ 

In the presence of ions the following reactions are faster:

| $H + H^+$       | $\rightarrow$ | $H_2^+ + \gamma$ |
|-----------------|---------------|------------------|
| $H + H_{2}^{+}$ | $\rightarrow$ | $H^{+} + H_{2}$  |

The X-ray photons produced by sterile neutrino decays ionize H.  $H^+$  catalyzes the formation of molecular hydrogen.

(4 回 ) (4 回 ) (4 回 )

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

◊ Star Formation [Biermann, Kusenko; Stasielak et al.]

by speeding up  $H_2$  formation

 Matter-Antimatter Asymmetry [Fukugita, Yanagida; Akhmedov, Rubakov, Smirnov; Asaka, Blanchet, Shaposhnikov]

< ∃ →

э

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

◊ Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

 $\diamond~$  Star Formation [Biermann, Kusenko; Stasielak et al.]

by speeding up  $H_2$  formation

 Matter-Antimatter Asymmetry [Fukugita, Yanagida; Akhmedov, Rubakov, Smirnov; Asaka, Blanchet, Shaposhnikov]

Lepton asymmetry can be generated by:

Decays of heavy sterile neutrinos Oscillations of lighter sterile neutrino states

Lepton number can then be converted into baryon number by sphalerons.

4 E b

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Astrophysical Hints

Pulsar Kicks [Kusenko, Segrè]

from asymmetric emission of sterile neutrinos

◊ Star Formation [Biermann, Kusenko; Stasielak et al.]

by speeding up  $H_2$  formation

 Matter-Antimatter Asymmetry [Fukugita, Yanagida; Akhmedov, Rubakov, Smirnov; Asaka, Blanchet, Shaposhnikov]

via leptogenesis

< ∃ >

э

Sterile neutrino Dark Matter Relic Sterile Neutrinos from the Higgs Sector Astrophysical Hints Detection

## Radiative Decay and X-ray detection

Sterile neutrinos with  $m \sim \text{keV}$  have lifetimes longer than the age of the universe, but they do decay into lighter neutrino states and photons:



The rate of the radiative decay is:

$$\Gamma_{\scriptscriptstyle N \rightarrow \nu \gamma} \approx 1.4 \cdot 10^{-32} \left( \frac{\sin^2 2\theta}{10^{-10}} \right) \left( \frac{m_{\scriptscriptstyle N}}{1 \, {\rm keV}} \right)^5 s^{-1} \label{eq:Gamma-star}$$

Decay rate is very small, but large lumps of dark matter emit some X-rays. [Abazajian, Fuller, Tucker; Dolgov, Hansen; Shaposhnikov et al.]

Photon energy is  $m/2 \Rightarrow$  detection with X-ray telescopes.

Suzaku observations of Dwarf Spheroidal Galaxies: Draco and Ursa Minor [P. Biermann, A. Kusenko, M. Loewenstein]

Supernova explosions Short GRBs and the 511 keV line

## Supernovae won't explode...

Simulations of core-collapse SN fail to reproduce the shock.

Problem is:

Gravitational energy  $\sim 10^{53}$  erg initially trapped in the core.

At the bounce, this energy is drained from the core by active neutrinos.

The stalled shock needs only 1% of this energy,  $\sim 10^{51}~{\rm erg},$  to propagate successfully.

**Energy transport** from the core to the vicinity of the shock. What are we missing?

it might be multi-dimensional hydrodynamic effects, or new physics

・ 何 ト ・ ヨ ト ・ ヨ ト

-

Supernova explosions Short GRBs and the 511 keV line

SN explosions from heavy sterile neutrino decay

A neutral particle, produced in the core, that will decay inside the envelope increases the energy of the envelope melts nuclei in front of the shock

Image: Second second

э

Supernova explosions Short GRBs and the 511 keV line

### SN explosions from heavy sterile neutrino decay

A neutral particle, produced in the core, that will decay inside the envelope increases the energy of the envelope melts nuclei in front of the shock

#### A heavy sterile neutrino could do !

- produced in the core from weak interactions
- small mixing means it's not trapped: it streams-out freely from the core
- heavy: carries out the right amount of energy  $10^{51}$  erg
- short-lived  $\tau \sim 0.01-0.1$  s: it decays in the vicinity of the shock

Image: Second second

Supernova explosions Short GRBs and the 511 keV line

## Limits



Limits from BBN may loosen under more careful consideration [Fuller, Kusenko, KP, Smith, in preparation].

Supernova explosions Short GRBs and the 511 keV line

### Calculations show that

A sterile neutrino  $m_s pprox 145 - 250 \ {
m MeV}$  mixing with  $u_\mu$  or  $u_ au$  by  $\sin^2 \theta pprox 10^{-8} - 10^{-7}$ 

removes from a typical supernova core

 $E_s pprox 10^{51} - 10^{52} {
m erg}$  within 1-5 s

글 🖌 🖌 글 🕨

3

Decay mode:

$$N_s \ 
ightarrow \ 
u_{\mu, au} + \pi^0 \ 
ightarrow \ 
u_{\mu, au} + 2\gamma$$

 In Core Collapse SN, the decay products absorbed in the dense envelope, depositing energy that leads to a successful shock.

Supernova explosions Short GRBs and the 511 keV line

### Calculations show that

A sterile neutrino  $m_s \approx 145 - 250 \text{ MeV}$ mixing with  $\nu_{\mu}$  or  $\nu_{\tau}$  by  $\sin^2 \theta \approx 10^{-8} - 10^{-7}$ 

removes from a typical supernova core

 $E_s pprox 10^{51} - 10^{52} {
m erg}$  within 1-5 s

**B K 4 B K** 

Decay mode:

$$N_s \ 
ightarrow \ 
u_{\mu, au} + \pi^0 \ 
ightarrow \ 
u_{\mu, au} + 2\gamma$$

- In Core Collapse SN, the decay products absorbed in the dense envelope, depositing energy that leads to a successful shock.
- In Accretion-Induced Collapse SN, there is no envelope

Supernova explosions Short GRBs and the 511 keV line

## $\gamma\text{-ray}$ bursts and the galactic positrons

Accretion Induced Collapse SN occur very rarely, but can give **observable signal** from heavy sterile neutrinos decays.

< ∃ →

э

Supernova explosions Short GRBs and the 511 keV line

## $\gamma\text{-}\mathrm{ray}$ bursts and the galactic positrons

Accretion Induced Collapse SN occur very rarely, but can give **observable signal** from heavy sterile neutrinos decays.

 $\diamond\,$  Sterile neutrinos decaying in the baryon-poor environment of an AIC SN, give  $\sim 50~MeV$  photons

$$N_s \rightarrow 
u_{\mu, au} + 2\gamma$$

 $\gamma$ -ray photons produced will form a relativistic fireball that propagates in the interstellar medium, generating a short GRB.

4 E b

Supernova explosions Short GRBs and the 511 keV line

## $\gamma\text{-}\mathrm{ray}$ bursts and the galactic positrons

Accretion Induced Collapse SN occur very rarely, but can give **observable signal** from heavy sterile neutrinos decays.

 $\diamond\,$  Sterile neutrinos decaying in the baryon-poor environment of an AIC SN, give  $\sim 50~MeV$  photons

$$N_s 
ightarrow 
u_{\mu, au} + 2\gamma$$

 $\gamma$ -ray photons produced will form a relativistic fireball that propagates in the interstellar medium, generating a short GRB.

◊ Fireball also optically thick to pair production

Positrons produced may account for the  $511\ keV$  line observed in the Milky Way

### [Fuller, Kusenko, KP, in preparation]

- Sterile neutrinos are introduced to explain the observed neutrino masses. The same particles can account for a lot of astrophysical phenomena.
- $\diamond$  If one of them is light,  $m_s \sim \text{keV}$ , it can be the Dark Matter.

Different production mechanisms result in "colder" or "warmer" DM.  $S \rightarrow NN$  decays yield sufficient DM abundance that does not depend on the mixing angle and is in agreement with the small-scale structure.

The same particle can explain the **pulsar velocities**, speed up the **star formation**, and account for the **matter-antimatter asymmetry**.

Detection possible through X-ray observations of nearby galaxies.

♦ Heavy sterile neutrinos,  $m_s \sim 200 \text{ MeV}$ , produced in supernovae cores, can enhance SN explosions, provide a mechanism for GRBs and explain the 511 keV line of the galaxy.

不良的 不良的

-