Admissible Symmetries of the Electromagnetic Field in LRS Spacetimes

Stephen M. Watt
Ontario Research Centre for Computer Algebra University of Western Ontario

Outline

- Locally Rotationally Symmetric spacetimes
- Physical model, solution classes
- How did we get here? Applying constraints
- EM field symmetries: earlier assumptions
- EM field, more generally
- Related work
- Conclusions

Locally Rotationally Symmetric Spacetimes

- Spacetimes with perfect fluid flow vector u^{i} studied by Ellis (1967) and Stewart and Ellis (1968), whose notation we follow.
- A spacetime is locally LRS in a neighborhood $N\left(P_{0}\right)$ of a point P_{0} if at each point $P \in N\left(P_{0}\right)$ there exists a non-discrete subgroup g of the Lorentz group in the tangent space T_{P} which leaves invariant u^{i}, the curvature tensor, and their derivatives up to $3^{\text {rd }}$ order.
- g operates in a subspace of T_{P} orthogonal to u^{i} and so is a 1- or 3-dimensional group of rotations in T_{P}.
- If g is 3-dimensional, then have a RW model.

These are included in the solutions for g 1-dimensional.

- Cosmological models with limited symmetry groups.

Physical Model

- Perfect fluid with flow $u^{i} . \quad u^{i} u_{i}=-1 . \quad h_{i j}=g_{i j}+u_{i} u_{j}$. Expansion $\quad \theta=u^{i}{ }_{; i}$.
Acceleration $\dot{u}_{i}=u_{i ; j} u^{j}$.
Vorticity
$\omega_{i j}=u_{[i ; j]}+\dot{u}_{[i} u_{j]}$.
$\dot{u}=\sqrt{\dot{u}_{i} \dot{u}^{i}}$.

Shear
$\sigma_{i j}=u_{(i ; j)}+\dot{u}_{(i} u_{j)}-\frac{1}{3} \theta h_{i j}$.
$\omega=\sqrt{\frac{1}{2} \omega_{i j} \omega^{i j}}$.
$\sigma=\sqrt{\frac{1}{2} \sigma_{i j} \sigma^{i j}}$.

- Viscous with, in rest frame of u_{i}, energy density μ, scalar pressure p, energy flux q_{i}, anisotropic pressure $\pi_{i j}$.
- Non-interacting EM field

$$
F_{i j}=\left[\begin{array}{rrrr}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & B_{3} & -B_{2} \\
-E_{2} & -B_{3} & 0 & B_{1} \\
-E_{3} & B_{2} & -B_{1} & 0
\end{array}\right] . \quad \text { Charge density } \epsilon
$$

Physical Model

- Energy-momentum tensor

$$
T_{i j}=\mu u_{i} u_{j}+p h_{i j}+2 u_{(i} q_{j)}+\pi_{i j}+\tau_{i j},
$$

where

$$
\tau_{i j}=\frac{1}{4} g_{i j}\left(F_{k l} F^{k l}\right)-F_{i k} F_{j}^{k} .
$$

Tetrad choice

- At each point introduce a local orthonomal frame $\left\{\mathrm{e}_{a}\right\}$. Convention: coord ix i, j, \ldots, frame ix a, b, \ldots, geom ob bold.

$$
\mathbf{K}=K_{j}^{i} \frac{\partial}{\partial x^{i}} \otimes \mathrm{~d} x^{j}=K_{b}^{a} \mathbf{e}_{a} \otimes \mathbf{e}^{b}
$$

- Choose \mathbf{e}_{0} to lie along u^{a} and \mathbf{e}_{1} along an axis of symmetry.
- LRS implies all cov. defined spacelike vectors are parallel to e_{1} and spacelike parts of cov. defined rank 2 tensors have diagonal form with (22) and (33) components equal.
- Write

$$
\begin{gathered}
\pi_{a b}=\operatorname{diag}(0,2 \pi,-\pi,-\pi) \\
\sigma_{a b}+\frac{1}{3} h_{a b}=\operatorname{diag}(0, \alpha, \beta, \beta)
\end{gathered}
$$

Tetrad choice

- Stewart and Ellis, Thm 1: Can choose tetrad such that

$$
\begin{aligned}
& {\left[\mathrm{e}_{0}, \mathrm{e}_{1}\right]=\quad \dot{u} \mathrm{e}_{0} \quad-\alpha \mathrm{e}_{1}} \\
& {\left[\mathrm{e}_{0}, \mathrm{e}_{2}\right]=\quad-\beta \mathrm{e}_{2}} \\
& {\left[\mathrm{e}_{0}, \mathrm{e}_{3}\right]=\quad-\beta \mathrm{e}_{3}} \\
& {\left[\mathrm{e}_{2}, \mathrm{e}_{3}\right]=-2 \omega \mathrm{e}_{0} \quad-k \mathrm{e}_{1} \quad+s \mathrm{e}_{3}} \\
& {\left[\mathrm{e}_{3}, \mathrm{e}_{1}\right]=\quad-a \mathrm{e}_{3}} \\
& {\left[\mathrm{e}_{1}, \mathrm{e}_{2}\right]=\quad a \mathrm{e}_{2},}
\end{aligned}
$$

with $\partial_{3} s=0$.

- $\mu, p, q, \pi, \tau, \omega, \dot{u}, \alpha, \beta, a, k$ are cov. defined so have $\partial_{2}=\partial_{3}=0$. Let $r=\partial_{2} s-s^{2}$.

LRS Classes

- Stewart and Ellis, Thm 2: Have 3 disjoint and exhaustive cases

$$
\begin{array}{ll}
\text { Class I: } & \omega \neq 0, k=0 . \quad \alpha=\beta=0 \\
\text { Class II: } & \omega=0, k=0 . \\
\text { Class III: } & \omega=0, k \neq 0 . \quad \dot{u}=a=\partial_{1} k=\partial_{1} \alpha=\partial_{1} \beta=0
\end{array}
$$

- Isometry groups:

Class	Group	Orbit	Specialization
Ia	G_{5}	spacetime	$a=\dot{u}=0$
Ib	G_{4}	$\left\{x^{1}=C^{1}\right\}$	$a=0, \dot{u} \neq 0$
Ic	G_{4}	$\left\{x^{1}=C^{1}\right\}$	$a \neq 0, \dot{u}=0$
Id	G_{4}	$\left\{x^{1}=C^{1}\right\}$	$a \neq 0, \dot{u} \neq 0$
IIa	G_{3}	$\left\{x^{0}=C^{0}, x^{1}=C^{1}\right\}$	$a=0$
IIb	G_{4}	$\left\{x^{1}=C^{1}\right\}$	$a \neq 0, \dot{u}=0$
IIc	G_{3}	$\left\{x^{0}=C^{0}, x^{1}=C^{1}\right\}$	$a \neq 0, \dot{u} \neq 0$
IIIa	G_{5}	spacetime	$\beta=0$
IIIb	G_{4}	$\left\{x^{0}=C^{0}\right\}$	$\beta \neq 0$

- Class IIc most interesting.

Basic Equations for Class II

- Jacobi identities:

$$
\begin{aligned}
\partial_{1} s & =a s \\
\partial_{1} \beta+\partial_{0} a & =-\beta \dot{u}-\alpha a \\
\partial_{0} s & =-\beta s
\end{aligned}
$$

- Einstein field equations:

$$
\begin{aligned}
& \partial_{0} \alpha=-\frac{1}{2}(\mu+p)+\beta^{2}-\alpha^{2}-a^{2}+r+\partial_{1} \dot{u}+\dot{u}^{2} \\
& \partial_{0} \beta=\frac{1}{2}\left(\Lambda-p-3 \beta^{2}+a^{2}-r-2 a \dot{u}-\tau\right) \\
& \partial_{1} a=\frac{1}{2}\left(\Lambda+\mu-\beta^{2}-2 a \beta+3 a^{2}-r+\tau\right) \\
& \partial_{1} \beta=a(\beta-\alpha)-\frac{1}{2} \tau
\end{aligned}
$$

- Bianchi identities:

$$
\begin{aligned}
\partial_{0} \mu & =-(\mu+p)(\alpha+2 \beta) \\
\partial_{1} p & =-(\mu+p) \dot{u}
\end{aligned}
$$

How Did We Get Here?

- Want to explore solutions to the field equations satisfying certain properties.
- Adding an isometry to LRS over simplifies.
- Want to enforce, e.g. equation of state of certain form, intrinsic symmetries on sub-manifold families.
- Add constraint equation, prolong in each direction, apply commutators, repeat.
- Generates the set of conditions for the constraint to be consistent with given equations (with C.B. Collins).
- Recent work in computer algebra builds on classical Riquier-Janet theory, providing tools for differential ideals (e.g. Hubert, Reid, Schwartz).

Properties of the EM Field: E and B parallel to e_{1}

- Earlier work assumed $\tau_{a b}=\operatorname{diag}(\tau,-\tau, \tau, \tau)$ where $\tau=\frac{1}{2}\left(E^{2}+B^{2}\right)$ with $[E, 0,0$] and $[B, 0,0]$ the electric and magnetic fields in the rest space of u^{a}.
- In this case, for general LRS, Maxwell's equations are

$$
\begin{aligned}
\partial_{1} E & =-2 \omega B+2 a E+\epsilon \\
\partial_{1} B & =2 \omega E+2 a B \\
\partial_{0} E & =-2 \beta E-k B \\
\partial_{0} B & =-2 \beta B+k E
\end{aligned}
$$

and $\partial_{2} E=\partial_{3} E=\partial_{2} B=\partial_{3} B=0$.

- However $F_{a b}$ is not covariantly defined...

Properties of the EM Field, more generally

- We have $\tau_{a b}=\frac{1}{4} g_{a b}\left(F_{c d} F^{c d}\right)-F_{a c} F_{b}{ }^{c}$ as

$$
\begin{aligned}
\tau_{00} & =\frac{1}{2}(\mathbf{E} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{B}) \\
\tau_{0 \alpha} & =-(\mathbf{E} \times \mathbf{B})_{\alpha} \\
\tau_{\alpha \beta} & =-\left(E_{\alpha} E_{\beta}+B_{\alpha} B_{\beta}\right)+\frac{1}{2} g_{\alpha \beta}(\mathbf{E} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{B})
\end{aligned}
$$

- By LRS we have

$$
\tau_{a b}=\left[\begin{array}{cccc}
\tau_{00} & \tau_{01} & 0 & 0 \\
\tau_{10} & \tau_{11} & 0 & 0 \\
0 & 0 & \tau_{22} & 0 \\
0 & 0 & 0 & \tau_{33}
\end{array}\right]
$$

where $\tau_{22}=\tau_{33}$ as well as $\tau_{01}=\tau_{10}$.

Properties of the EM Field, more generally

- This form of $\tau_{a b}$ gives

$$
\begin{array}{llr}
\tau_{22}=\tau_{33} & \Leftrightarrow & E_{2}^{2}+B_{2}^{2}=E_{3}^{2}+B_{3}^{2} \\
\tau_{12}=0 & \Leftrightarrow & E_{1} E_{2}+B_{1} B_{2}=0 \\
\tau_{13}=0 & \Leftrightarrow & E_{1} E_{3}+B_{1} B_{3}=0 \\
\tau_{23}=0 & \Leftrightarrow & E_{2} E_{3}+B_{2} B_{3}=0
\end{array}
$$

and $\tau^{a}{ }_{a}=0$ is identically satisfied.

- We consider two cases:

Case 1: $E_{2}=0$ and $B_{2}=0$
Case 2: $E_{2} \neq 0$ or $B_{2} \neq 0$.

Case 1: $E_{2}=0$ and $B_{2}=0$

- Equation (1) $\Rightarrow E_{3}=B_{3}=0$. Previously known case.
- $\tau_{a b}=\operatorname{diag}(\tau,-\tau, \tau, \tau)$
- $\tau=\frac{1}{2}(\mathbf{E} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{B})=\frac{1}{2}\left(E_{1}^{2}+B_{1}^{2}\right)$.

Case 2: $E_{2} \neq 0$ or $B_{2} \neq 0$

- Consider separately cases with one or both of $E_{2} \neq 0, B_{2} \neq 0$.
- In each case, equations (1-4) imply

$$
\begin{gathered}
E_{\alpha}=\left[0, E_{2}, E_{3}\right] \quad B_{\alpha}=\left[0, \pm E_{3}, \mp E_{2}\right] . \\
\tau_{a b}=\left[\begin{array}{cccc}
\tau & \tau & 0 & 0 \\
\tau & \tau & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\text { where } \tau=\frac{1}{2}(\mathbf{E} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{B})=E_{2}^{2}+E_{3}^{2} .
\end{gathered}
$$

Maxwell's Equations

In Case 2 with one choice of sign we have:

- $E_{\alpha}=\left[0, E_{2}, E_{3}\right] \quad B_{\alpha}=\left[0, E_{3},-E_{2}\right]$
- This gives Maxwell's equations as

$$
\begin{aligned}
\left(\partial_{0}+\partial_{1}\right) E_{2} & =-E_{2}(\alpha+\beta+a-\dot{u}) & & \partial_{2} E_{2}=-\partial_{3} E_{3}+E_{2} s \\
\left(\partial_{0}+\partial_{1}\right) E_{3} & =-E_{3}(\alpha+\beta+a-\dot{u}) & & \partial_{2} E_{3}=\partial_{3} E_{2}+E_{3} s \\
\epsilon & =0 & &
\end{aligned}
$$

It is straightforward to show $\partial_{0} \tau=-\partial_{1} \tau-\tau(\alpha+\beta+a-\dot{u})$ and

$$
\begin{array}{ll}
\partial_{2} E_{2}=0 & \partial_{2} E_{3}=0 \\
\partial_{3} E_{2}=-s E_{3} & \partial_{3} E_{3}=s E_{2}
\end{array}
$$

- In LRS II, the $[2,3]$ commutator implies $r=0$ so $\partial_{2} s=s^{2}$.

Physical Significance

- In Case 2 we have $\mathbf{E} \times \mathbf{B}$ parallel to e_{1}.
- This is the Poynting vector, describing the energy flux of the field in the cov. defined rest space of u^{a}.
- In Case 1 we have trivially that $\mathbf{E} \times \mathbf{B}=0$ is parallel to \mathbf{e}_{1}.

So it is always the case that $\mathbf{E} \times \mathbf{B}$ is parallel to \mathbf{e}_{1}.

Related Work

- Misner and Wheeler (Ann Phys 1957): If F is non-singular it is determined from the metric only up to duality transformations.
- Henneaux (J Math Phys 1984): EM fields invariant up to a duality rotation under a group H of isometries.
- Considers \mathbf{F} such that $h^{*} \mathbf{F}=\cos \alpha(h) \mathbf{F}+\sin \alpha(h) \mathbf{F}^{*}$ for all elements $h \in H, h^{*} \mathbf{F}$ is pullback of $\mathbf{F}, \mathbf{F}^{*}$ is dual 2 -form.
- Examined Bianchi models whose source is an EM field sharing the symmetry of the metric up to a duality transformation. G_{3} on space-like hypersurfaces.

Conclusions

- It is well known that symmetries of the metric are not always symmetries of the EM field. It appears that LRS spacetimes admit such solutions.
- If there is a covariantly defined time-like vector field u^{a} (e.g. fluid flow), then the Poynting vector field is covariantly defined in the rest space of u^{a} and is subject to the same symmetry conditions as all other covariantly defined quantities.
- This limits the admisible transformations on \mathbf{F}.

