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Locally Rotationally Symmetric Spacetimes

• Spacetimes with perfect fluid flow vector ui studied by Ellis (1967)

and Stewart and Ellis (1968), whose notation we follow.

• A spacetime is locally LRS in a neighborhood N(P0) of a point P0

if at each point P ∈ N(P0) there exists a non-discrete subgroup g

of the Lorentz group in the tangent space TP which leaves invariant

ui, the curvature tensor, and their derivatives up to 3rd order.

• g operates in a subspace of TP orthogonal to ui and so is a 1- or

3-dimensional group of rotations in TP .

• If g is 3-dimensional, then have a RW model.

These are included in the solutions for g 1-dimensional.

• Cosmological models with limited symmetry groups.
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Physical Model

• Perfect fluid with flow ui. uiui = −1. hij = gij + uiuj.

Expansion θ = ui
;i.

Acceleration u̇i = ui;ju
j. u̇ =

√

u̇iu̇
i.

Vorticity ωij = u[i;j] + u̇[iuj]. ω =
√

1
2ωijω

ij.

Shear σij = u(i;j) + u̇(iuj) −
1
3θhij. σ =

√

1
2σijσ

ij.

• Viscous with, in rest frame of ui,

energy density µ, scalar pressure p,

energy flux qi, anisotropic pressure πij.

• Non-interacting EM field

Fij =











0 E1 E2 E3
−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0











. Charge density ε.
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Physical Model

• Energy-momentum tensor

Tij = µuiuj + phij + 2u(iqj) + πij + τij,

where

τij =
1

4
gij(FklF

kl) − FikF
k

j .
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Tetrad choice

• At each point introduce a local orthonomal frame {ea}.

Convention: coord ix i, j, ..., frame ix a, b, ..., geom ob bold.

K = Ki
j

∂

∂xi
⊗ dxj = Ka

bea ⊗ e
b

.

• Choose e0 to lie along ua and e1 along an axis of symmetry.

• LRS implies all cov. defined spacelike vectors are parallel to e1 and

spacelike parts of cov. defined rank 2 tensors have diagonal form

with (22) and (33) components equal.

• Write

πab = diag(0,2π,−π,−π)

σab +
1

3
hab = diag(0, α, β, β)
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Tetrad choice

• Stewart and Ellis, Thm 1: Can choose tetrad such that

[e0, e1] = u̇e0 −αe1
[e0, e2] = −βe2
[e0, e3] = −βe3
[e2, e3] = −2ωe0 −ke1 +se3
[e3, e1] = −ae3
[e1, e2] = ae2,

with ∂3s = 0.

• µ, p, q, π, τ, ω, u̇, α, β, a, k are cov. defined so have ∂2 = ∂3 = 0.

Let r = ∂2s − s2.
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LRS Classes

• Stewart and Ellis, Thm 2: Have 3 disjoint and exhaustive cases

Class I: ω 6= 0, k = 0. α = β = 0.

Class II: ω = 0, k = 0.

Class III: ω = 0, k 6= 0. u̇ = a = ∂1k = ∂1α = ∂1β = 0.

• Isometry groups:

Class Group Orbit Specialization

Ia G5 spacetime a = u̇ = 0

Ib G4 {x1 = C1} a = 0, u̇ 6= 0

Ic G4 {x1 = C1} a 6= 0, u̇ = 0

Id G4 {x1 = C1} a 6= 0, u̇ 6= 0

IIa G3 {x0 = C0, x1 = C1} a = 0

IIb G4 {x1 = C1} a 6= 0, u̇ = 0

IIc G3 {x0 = C0, x1 = C1} a 6= 0, u̇ 6= 0
IIIa G5 spacetime β = 0

IIIb G4 {x0 = C0} β 6= 0

• Class IIc most interesting.
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Basic Equations for Class II

• Jacobi identities:
∂1s = as

∂1β + ∂0a = −βu̇ − αa

∂0s = −βs

• Einstein field equations:

∂0α = −
1

2
(µ + p) + β2 − α2 − a2 + r + ∂1u̇ + u̇2

∂0β =
1

2

(

Λ − p − 3β2 + a2 − r − 2au̇ − τ
)

∂1a =
1

2

(

Λ + µ − β2 − 2aβ + 3a2 − r + τ
)

∂1β = a(β − α) −
1

2
τ

• Bianchi identities:

∂0µ = −(µ + p)(α + 2β)

∂1p = −(µ + p)u̇
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How Did We Get Here?

• Want to explore solutions to the field equations satisfying certain

properties.

• Adding an isometry to LRS over simplifies.

• Want to enforce, e.g. equation of state of certain form, intrinsic

symmetries on sub-manifold families.

• Add constraint equation, prolong in each direction, apply commutators,

repeat.

• Generates the set of conditions for the constraint to be consistent

with given equations (with C.B. Collins).

• Recent work in computer algebra builds on classical Riquier-Janet

theory, providing tools for differential ideals (e.g. Hubert, Reid,

Schwartz).
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Properties of the EM Field: E and B parallel to e1

• Earlier work assumed τab = diag(τ,−τ, τ, τ) where τ = 1
2(E

2 + B2)

with [E,0,0] and [B,0,0] the electric and magnetic fields in the rest

space of ua.

• In this case, for general LRS, Maxwell’s equations are

∂1E = −2ωB + 2aE + ε

∂1B = 2ωE + 2aB

∂0E = −2βE − kB

∂0B = −2βB + kE

and ∂2E = ∂3E = ∂2B = ∂3B = 0.

• However Fab is not covariantly defined...
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Properties of the EM Field, more generally

• We have τab = 1
4gab(FcdF

cd) − FacF
c

b as

τ00 =
1

2
(E · E + B · B)

τ0α = − (E × B)α

ταβ = −
(

EαEβ + BαBβ

)

+
1

2
gαβ (E · E + B · B)

• By LRS we have

τab =











τ00 τ01 0 0
τ10 τ11 0 0
0 0 τ22 0
0 0 0 τ33











where τ22 = τ33 as well as τ01 = τ10.
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Properties of the EM Field, more generally

• This form of τab gives

τ22 = τ33 ⇔ E2
2 + B2

2 = E2
3 + B2

3 (1)

τ12 = 0 ⇔ E1E2 + B1B2 = 0 (2)

τ13 = 0 ⇔ E1E3 + B1B3 = 0 (3)

τ23 = 0 ⇔ E2E3 + B2B3 = 0 (4)

and τa
a = 0 is identically satisfied.

• We consider two cases:

Case 1: E2 = 0 and B2 = 0

Case 2: E2 6= 0 or B2 6= 0.
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Case 1: E2 = 0 and B2 = 0

• Equation (1) ⇒ E3 = B3 = 0. Previously known case.

• τab = diag(τ,−τ, τ, τ)

• τ = 1
2(E · E + B · B) = 1

2(E
2
1 + B2

1).
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Case 2: E2 6= 0 or B2 6= 0

• Consider separately cases with one or both of E2 6= 0, B2 6= 0.

• In each case, equations (1-4) imply

Eα = [0, E2, E3] Bα = [0,±E3,∓E2].

τab =











τ τ 0 0
τ τ 0 0
0 0 0 0
0 0 0 0











where τ = 1
2(E · E + B · B) = E2

2 + E2
3.
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Maxwell’s Equations

In Case 2 with one choice of sign we have:

• Eα = [0, E2, E3] Bα = [0, E3,−E2]

• This gives Maxwell’s equations as

(∂0 + ∂1)E2 = −E2 (α + β + a − u̇) ∂2E2 = −∂3E3 + E2s

(∂0 + ∂1)E3 = −E3 (α + β + a − u̇) ∂2E3 = ∂3E2 + E3s

ε = 0

It is straightforward to show ∂0τ = −∂1τ − τ (α + β + a − u̇) and

∂2E2 = 0 ∂2E3 = 0

∂3E2 = −sE3 ∂3E3 = sE2

• In LRS II, the [2,3] commutator implies r = 0 so ∂2s = s2.
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Physical Significance

• In Case 2 we have E × B parallel to e1.

• This is the Poynting vector, describing the energy flux of the field

in the cov. defined rest space of ua.

• In Case 1 we have trivially that E × B = 0 is parallel to e1.

So it is always the case that E × B is parallel to e1.
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Related Work

• Misner and Wheeler (Ann Phys 1957): If F is non-singular it is

determined from the metric only up to duality transformations.

• Henneaux (J Math Phys 1984): EM fields invariant up to a duality

rotation under a group H of isometries.

• Considers F such that h∗ F = cosα(h)F+sinα(h)F∗ for all elements

h ∈ H, h∗ F is pullback of F, F∗ is dual 2-form.

• Examined Bianchi models whose source is an EM field sharing the

symmetry of the metric up to a duality transformation. G3 on

space-like hypersurfaces.
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Conclusions

• It is well known that symmetries of the metric are not always

symmetries of the EM field. It appears that LRS spacetimes admit

such solutions.

• If there is a covariantly defined time-like vector field ua (e.g. fluid

flow), then the Poynting vector field is covariantly defined in the rest

space of ua and is subject to the same symmetry conditions as all

other covariantly defined quantities.

• This limits the admisible transformations on F.

19


