dynamics of cosmic superstring networks

Mairi sakellariadou King's college London

Fundamental (F) strings and 1-dim Dirichlet branes (D-strings) are generically produced at the end of brane inflation
collisions of F-strings \& D-strings produce FD bound states

superstring intercommutations form a trilinear vertex

- Oöes a cosmic superstring network reach scaling, or does it fre... Leading to predictions inconsistent with our observed univers...
evolution of cosmic superstring networks
aim: build a simple field theory model of bound states, in analogy with the Abelian Higgs model, and study its properties using lattice simulations
characteristics:
- bound states have different tension than single-charge strings
- set long-range interaction of each species of strings individually; different components of the FD-string are expected to exhibit different types of long-range interactions
the model
- two different species of cosmic strings: include two sets of fields of the Abelian Higgs model
- formation of bound states: introduce a coupling of the scalar fields via a potential
- one non-BPS species of strings (such strings have long range interactions):
consider the second type of string to be the topological defect of a scalar field with a global U(1) symmetry

Rajantíe, sakellaríadou, Stoíca (JCAP 2007)
if both species of strings are BPS:

$$
\begin{aligned}
& S=\int \mathrm{d}^{3} x \mathrm{~d} t\left[-\frac{1}{4} F^{2}-\frac{1}{2}\left(D_{\mu} \phi\right)\left(D^{\mu} \phi\right)^{\star}-\frac{\lambda_{1}}{4}\left(\phi \phi^{\star}-\eta_{1}^{2}\right)^{2}\right. \\
&-\frac{1}{4} H^{2}-\frac{1}{2}\left(D_{\mu} \chi\right)\left(D^{\mu} \chi\right)^{\star}-\frac{\lambda_{2}}{4} \phi \phi^{\star}\left(\chi \chi^{\star}-\eta_{2}^{2}\right)^{2}
\end{aligned}
$$

$$
D_{\mu} \phi=\partial_{\mu} \phi-i e_{1} A_{\mu} \phi
$$

$$
D_{\mu} \chi=\partial_{\mu} \chi-i e_{2} C_{\mu} \chi
$$

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

$$
H_{\mu \nu}=\partial_{\mu} C_{\nu}-\partial_{\nu} C_{\mu}
$$

$$
\phi \text { the Higgs field } \quad \chi \text { the axion field }
$$

in the case of a non-BPS species of string: set $e_{2}=0$
splitting of a bound state as a result of the long-range interactions between strings
the total physical volume of the simulation box occupied by Higgs strings the axion strings, and their bound states

volume of bound states identical with that of axion strings

 local-local networks
cosmo 2008
Rajantie, sakellariadou, stoica (JCAP 2007)
-
only one pair of local and one pair of global strings
attractive interactions between global strings result in their motion towards the local ones
does the formation of bound states can stop the motion of the global strings?

global strings move towards local ones and cross them, forming bound states
bound states split as global strings continue to move towards each other finally they collide and annihilate

bound states do not surive the longrange interactions of global strings
Rajantie, sakellariadou, stoica (JCAP 2007)
dynamics of cosmic superstring networks
does the existence of bound states prevent a cosmic superstring network from reaching a scaling solution?
use a field theory model to study the effect of junctions in the evolution of a network composed by F, D and FD-strings
we have control over the initial population of bound states
sakellariadou, stoíca (JCAP 2008)
correlation length as function of time in a local-global network $\xi=\sqrt{V / L}$

there is scaling $\xi(\tau)=\gamma \tau \quad$, characterised with a change of correlation length during network evolution

correlation length as function of time in a local-local network

- scaling of $F, D, F D$-strings is robust and independent of initial configurations
- the existence of bound states effects the evolution of the network
- there is a supplementary energy loss mechanism, in addition to chopping offloops
new mechanism: formation of bound states with increasing length the overall network does not freeze because the string length of the unbound states decreases faster
sakellariadou, stoíca (JCAP 2008)
the three-string junction

$$
\text { F-string: } \quad \tau_{1}=1
$$

D-string:

$$
\tau_{2}=1 / g_{\mathrm{s}}
$$

${ }^{\mathrm{FD}-\text { bound state: }} \quad \tau_{3}=\sqrt{1+\frac{1}{g_{s}^{2}}}=\frac{1}{g_{s}}+\frac{g_{s}}{2}+\mathcal{O}\left(g_{s}^{2}\right)$
in the small g_{s}-limit:

- length of F-string remains constant
- length of D-string decreases and length of FD-bound state increases
cosmic superstring detection
cosmic superstrings interact with SM particles via gravity detection involves the gravitational interactions of cosmic superstrings
- gravitational lensing
> micro-lensing
>CMB anisotropíes
> gravity waves
>RR/dílaton emission

cosmic strings in flat space-time

$$
\mathbf{x}(\sigma, t)
$$

constraint equations and string e.o.m.:

$$
\begin{aligned}
\dot{\mathrm{x}} \cdot \mathrm{x}^{\prime} & =0 \\
\dot{\mathrm{x}}^{2}+\mathrm{x}^{\prime 2} & =1 \\
\ddot{\mathrm{x}}-\mathrm{x}^{\prime \prime} & =0
\end{aligned}
$$

general solution to string e.o.m. in flat space-time:

$$
\mathbf{x}=\frac{1}{2}[\mathbf{a}(\sigma-t)+\mathbf{b}(\sigma+t)]
$$

continuous arbitrary functions which satisfy:

$$
\mathbf{a}^{\prime 2}=\mathbf{b}^{\prime 2}=1
$$

cusps
property of loop solutions:
points along the string can reach the velocity of light

$$
\dot{\mathbf{x}}^{2}(\sigma, t)=\frac{1}{4}\left[\mathbf{a}^{\prime}(\sigma-t)-\mathbf{b}^{\prime}(\sigma+t)\right]^{2}
$$

$\mathbf{a}^{\prime}(\sigma)$ and $-\mathbf{b}^{\prime}(\sigma)$ describe closed curves on a unit sphere
the satisfy: $\quad \int_{0}^{L} \mathbf{a}^{\prime} \mathrm{d} \sigma=\int_{0}^{L} \mathbf{b}^{\prime} \mathrm{d} \sigma=0$
but otherwise are arbitrary
if the two curves intersect then: $\quad \dot{\mathbf{x}}^{2}(\sigma, t)=1$
smooth loops will in general have such luminal points: cusps
a DBI string ending on two stationary and parallel Dn-branes from $B C, a^{\prime}$ and b^{\prime} curves are related by inversion through a surface of identical dimension and orientation to the D-branes, that passes through the center of the unit sphere

```
a' and b' trace out closed curves
on a unit sphere separated by the
inter-brane distance
cusps: if a' and b'intersect
```


D1-branes
a^{\prime} and b^{\prime} intersect whenever the line through which they are inverted is enclosed by the closed curves

when the angle between the 2 vectors perpendicular to the inversion line and ending on the curve is equal to π, the inverted curve will intersect the original one

Davis, Nelson, Rajamanoharan, sakellaríadon (2008)
genericity of cusps on non-periodic strings ending on branes

- cusps are generic features of an F-string ending on two parallel D-strings
- an F-string stretched between 2 three-string junctions behaves as an F-string between 2 D1-branes (to order g_{s})
a pair of three-string junctions would have cusps

Davis, Nelson, Rajamanoharan, sakellariadou (2008)
$g_{\mathrm{s}} \rightarrow 0$ limit: the heavy D/FD string behaves as a single string unaffected by dynamics of light F-string
cusps are significant if the typical separation of the heavy strings must be small w.r.t. length of the F-string stretched between them as heavy strings move apart, F-strings stretch increasing the distance and the importance of cusps gets reduced
under S-duality the role of F and D strings is reversed:
F-strings and bound FD-strings are the heavy ones cusps exist on light D-strings ending on three-string junctions
cosmic strings

- cusps can be formed on smooth closed string loops
- intercommutation leads to kinks, which may reduce cusp formation
-GW and SM fields can be emitted
\Rightarrow cosmic superstrings
- cusps exsít in non-periodic strings ending on D-branes
- cusps in loops may be less important
- intercommutation leads to junctions
- GW and SM fields + dílaton/RR/modulí/gravitínos/stable SUSY particles can be emitted
conclusions
towards the end of brane inflation cosmic superstrings are produced
their properties and subsequent cosmological evolution into a scaling network open up their possible detections in the near future, via cosmological, astrophysical and gravitational wave measurements
finding distinctive stringy signatures in observations will reveal the particular brane inflationary scenario and validate string theory and the brane world scenario

