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Fig. 9. The KS throat glued to the larger Calabi-Yau manifold where the radial coordinate r ∼ R.

the combination of gravitational and gauge forces—they cancel for D3 but add for D3. To understand how

this comes about, recall that the D3 brane is the source of the F(5) field strength, which comes from the C(4)

gauge potential. The fluxes create a background of C(4) or F(5) because there is contribution to the F(5)

equation of motion (which we did not previously mention) of the form

dF5 ∼ H3 ∧ F3 (2.34)

Thus the complete action for a brane or an antibrane located at r = r1(xµ) is

S = −τ3

∫

d 4x
1

h(r1)

√

1 − h(r1)(∂r1)2 ± τ3

∫

d 4x(C4)0123 (2.35)

where the sign is + for D3 and − for D3. The form of the DBI part of the action can be understood from the
more general definition,

SDBI = −τ3

∫

d 4x
√
−G (2.36)

where the induced metric on the D3-brane is given by

Gµν = GAB
∂XA

∂xµ

∂XB

∂xν
=

1√
h

ηµν −
√

h∂µr ∂νr (2.37)

in the case where r is the only one of the 6 extra dimensions which depends on xµ. Furthermore the equation

of motion for the RR field has the solution

(C4)αβγδ =
1

h(r1)
εαβγδ (2.38)

Consider the case where the transverse fluctuations of the brane vanish, ∂r1 = 0. Then the two contribu-
tions to the action cancel for D3, but they add for D3, to give

S = −2τ3

(r1

R

)4
∫

d 4x = −2τ3a
4(r1)

∫

d 4x (2.39)

Notice that τ3a4 is the warped brane tension, and V = τ3a4 is the 4D potential energy associated with this

tension. Because of the warp factor, V is minimized at the bottom of the throat. This is why the antibrane

sinks to the bottom of the throat, whereas the D3 is neutrally buoyant—it will stay wherever one puts it.

φ
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D̄3



Consider D3 Branes moving in the              background

in the UV region, 

AdS5 ×X5

from example to example. In Section 6 we make some remarks on some broader aspects of

brane inflation. A number of details are contained in the appendices.

2. The Model

First it is useful to define a basis of coordinates and a metric. The ten dimensional metric

which describes the throat is that of AdS5 × X5, where X5 has the T 1,1 geometry in the

UV region. Including the expansion of the universe, the metric has the form

ds2 = h2(r)(−dt2 + a(t)2dx2) + h−2(r)(dr2 + r2ds2
X5

), (2.1)

Far away from the bottom of the throat, dsX5 = ds2
T 1,1 is the metric that describes a base

of the conifold T 1,1 which is an S3 fibered over S2. Here h(r) is the warp factor, that is, a

generic mass m → mh(r) in the presence of h(r).

The inflaton φ is related to the position of nB 4-dimensional space-time filling D3-

branes. In IR DBI inflation, they are moving out of the B throat into the bulk and then

falling into the A throat. Inflation takes place while the branes are moving out of the B

throat. In UV DBI inflation or the KKLMMT scenario, inflation takes place when they are

moving down the A throat. Specifically, we use a single coordinate to describe collectively

the motion of the branes,

φ ≡
√

nBT3r . (2.2)

The edge of the throat is identified with φR ≡
√

nBT3R, with

R4 =
27

4
πgsNα′2, N = KM . (2.3)

In regions where several kinds of backreactions from the 4d expanding background

[34, 36], the stringy effects [34, 29] and the probe-branes [10, 37] can be ignored, the

following DBI-CS action describes the radial motion of the D3 branes,

S =

∫

d4x
√
−g



−e−ΦT (φ)

√

1 − φ̇2

T (φ)
+ T (φ) − V (φ)



 . (2.4)

The warped D3 brane tension T (φ) and the inflaton potential is given by

T (φ) = nBT3h
4(φ) , (2.5)

V (φ) =
β

2
H2φ2 + VDD̄(φ) , (2.6)

VDD̄(φ) = V0

(

1 − nBV0

4π2v

1

(φ − φA)4

)

. (2.7)

Here v is the volume ratio; one may take v = 16/27. For our purpose here, the Coulomb

term is negligible so VDD̄(φ) = V0 = 2nAT3h4(φA) is the effective vacuum energy. We

expect |β| ∼ 1. Positive β ' 1 for UV DBI model while negative β ∼ −1 for IR DBI

model. Slow-roll inflation requires |β| ( 1.
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T (φ) = T3h
4(φ)

T3 ∼ m4
s

gs
=

m4
s

〈gs〉
e−Φ(r)

Brane Inflation in Warped Throat

V (φ) = VDD̄(φ) + corrections

VDD̄(φ) = V0

(
1− V0

4π2v

1
φ4

)

V0 = 2T3h
4
A



Our Current Understanding of the Early Universe

- Homogeneous and isotropic 

- Primordial perturbations are:  

 nearly Gaussian

 

 nearly adiabatic 

 nearly scale invariant

- Tensor perturbation 

S/R < O(0.2)

|ns − 1| < O(0.05), |dns/d ln k| < O(0.05)

−9 < f local
NL < 111

r < 0.2

−151 < feq
NL < 253

∆2
R = 2.4× 10−9



• non-relativistic slow roll (KKLMMT)

• DBI (UV) : steep potential attracting the brane to the 
bottom. (Silverstein & Tong) 

• DBI (IR) : steep potential driving the brane out of the 
throat. (Chen)

Three Scenarios

−e−ΦT (φ)

√

1− φ̇2

T (φ)
+ T (φ)− V (φ)

=
1
2
e−Φφ̇2 −

[
T (φ)(e−Φ − 1) + V (φ)

]

V (φ) = m2φ2

If             ,  geometric features in 
warp factor shows up in power 
spectrum and non-gaussianity.

e−Φ != 1

φ
Mpl

! 1√
KM

(Baumann & McAllister, hep-th/0610285) 
(Bean, Shandera, Tye, JX, hep-th/0702107)

−0.046 ≤ dns
d ln k ≤ −0.01 Due to a stringy suppression of 

power spectrum on large scales

feq
NL ∼ −

M4
pl

φ4

−270 ≤ feq
NL ≤ −70 (Bean, Chen, Peries, JX, arXiv:0710.1812)

V (φ) = −m2φ2

(Bean, Chen, Hailu, Tye, JX, arXiv:0802.0491)



Sharp features in Brane Inflation

• Background geometry is not smooth and dilaton runs. 
(Hailu & Tye) 

• For slow roll, steps in the potential

• For DBI, steps in the speed limit 

95898273
r

0.80

0.85

0.90

0.95

1.00
hh(r)

r     

Veff (φ) = T (φ)(e−Φ − 1) + V (φ) ∆V
V ≡ c

T (φ) ∆T
T ≡ b

ln(rp+1)− ln(rp) "
2π

3gsM

It is convenient to introduce the inflationary parameter ε ≡ −Ḣ/H2, so that

ä

a
= H2(1 − ε) . (2.8)

The universe is inflating when ε < 1. In all the scenarios that we consider here, ε never

grows to 1, so inflation ends by DD̄ annihilation.

For simplicity, let us assume that the B throat is a KS throat. The warped factor for

the B throat around the plth duality transition (starting from the bottom of the throat)

is simplified to (see Appendix A) [17]

h4(r) # r4

R4
B

K

pl
(1 + ∆) , ∆ =

K
∑

pi

3gsM

16π

1

p3

[

1 + tanh

(

r − rp

dp

)]

, (2.9)

where h(r = RB) # 1 at the edge of the throat. Here φp are the positions of the steps, the

initial pi $ 1 so that the warped factor formula is approximately good, and dp controls

the width of the step. The steps has a constant separation in ln φ, that is, ln rp+1 − ln rp #
2π/3gsM . As one moves down the throat (r and p decreasing), note that the step in the

warped factor h4(r) of the KS throat is going down. See Figure 1. This stepping down

happens at each Seiberg duality transition. Together, they form a cascade [16]. For large

K, one encounters K − 1 steps as one approaches the infrared. Note that we are ignoring

smooth corrections to the shape of the warp factor even though they may be larger than

the step size. This is a reasonable approximation since it is the sharp features that will

show up as distinctive features in the CMBR.

This is a generic feature. Consider another throat whose gauge dual has nG gauge

factors, with appropriate bi-fundamentals [18]. As the gauge coupling of the gauge factor

with the fastest running towards large coupling in the infrared (decreasing r) gets strong,

Seiberg duality transition applies. This happens for each gauge group factor sequentially

until we reach the same structure as the original gauge model. Typically, it takes nG/ns

number of transitions to complete this cycle, where ns is a factor in nG (the KS throat has

nG = ns = 2 so each cycle has only 1 transition). Because of the jump in the corresponding

anomalous mass dimension, steps in the warp factor is very generic. It is also likely that

for another throat with a different geometry, some steps may show up with an opposite

sign. To be general, we shall discuss each of these scenarios. If the throat has relatively

few steps, or if the steps are well separated, the impact of individual step on CMBR may

be observable. Otherwise, the steps may be too close for them to show up in the power

spectrum.

In the original KS throat solution, they have taken the approximation where the dilaton

is constant. Here the dilaton factor e−Φ runs in general and is φ dependent. However, for

the IR DBI inflation model we discuss in this paper, most of the DBI e-folds are generated

at the tip of the throat where HR2
B/Ne < r < HR2

B . At the same time, the brane moves

across roughly gsM steps [33]. The running of the dilaton can be ignored if gsM % pl,

which is most easily satisfied with a small gs. Furthermore, the WMAP data only covers

a few e-folds, which corresponds to 3gsM/Ne steps, so we only need pl ! gsM to safely

ignore the dilaton modification to the kinetic term. In this paper, when we discuss the IR
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• The power spectrum 

•        encodes all the information from the inflationary 
background

• Define three parameters

      

The Power Spectrum

We see explicitly that the effective inflaton potential Veff(φ) = T (φ)(e−Φ − 1) + V (φ)

now exhibits the step feature from T (φ). In the original KS solution, e−Φ = 1, and

the steps in the warp factor does not affect the inflaton potential. However, the term

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)

– 9 –

We see explicitly that the effective inflaton potential Veff(φ) = T (φ)(e−Φ − 1) + V (φ)

now exhibits the step feature from T (φ). In the original KS solution, e−Φ = 1, and

the steps in the warp factor does not affect the inflaton potential. However, the term

T (φ)(e−Φ − 1) is generically bad for slow-roll inflation. Since T (φ) ∼ φ4, effectively we

have introduced a quartic term in the potential. It is well known that λφ4 type potential

requires a trans-Planckian φ to generate inflation. However, in the KS throat (and other

GKP type compactifications), trans-Planckian φ is impossible [38, 30] and we have a strong

bound on the largest inflaton field value

∆φ

Mpl
!

1√
KM

$ 1 . (2.15)

In order to get slow-roll inflation, the dominant term in the potential has to be the uplifting

term from D̄3 at the bottom of the throat, so we require

V0 % T (φ)(e−Φ − 1) . (2.16)

Since V0 ∼ h4(φA) $ T (φ) ∼ h4(φ), the above relation is true only when

e−Φ ≈ 1 . (2.17)

Note that if V0 dominates the inflaton potential, the step height in the inflaton potential is

not given by ∆ as defined in Eq.(2.9), but is suppressed by a factor (e−Φ − 1)φ4/φ4
A $ 1,

i.e.
∆V

V
= (e−Φ − 1)

φ4

φ4
A

∆ . (2.18)

So far, we have argued that even if the dilaton runs generically, slow-roll inflation can only

occur within the region where e−Φ stays close to 1. Thus when we discuss slow-roll scenario

in this paper, we will ignore the e−Φ modification to the kinetic term, and set e−Φφ̇2 ≈ φ̇2,

but we keep the term T (φ)(e−Φ −1) in the potential. This approximation should be pretty

good, since e−Φ only exhibits mild features like kinks, while T (φ) has sharp features like

steps. When both of them are present, the sharp features in T (φ) definitely dominate.

3. The Power Spectrum and Bispectrum in General

The gauge invariant scalar perturbation ζ(τ,k) can be decomposed into mode functions

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) . (3.1)

The mode function uk(τ) is given by the equation of motion

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0 , (3.2)

where

vk ≡ zuk , z ≡ a
√

2ε/cs , (3.3)

– 9 –

and prime denotes derivative with respect to the conformal time τ (defined as dt ≡ adτ).

In the absence of any features in either potential or warp factor, the power spectrum is

given by

PR(k) ≡ k3

2π2
|uk|2 (3.4)

=
H2

8π2M2
plεcs

, (3.5)

where uk is u(τ,k) evaluated after each mode crosses the horizon.

To study the effects of features, we define the inflationary parameters as below

ε ≡ − Ḣ

H2
, η̃ ≡ ε̇

Hε
, s ≡ ċs

Hcs
. (3.6)

We can express z′′/z exactly as,

z′′

z
= 2a2H2

(

1 − ε

2
+

3η̃

4
− 3s

2
− εη̃

4
+

εs

2
+

η̃2

8
− η̃s

2
+

s2

2
+

˙̃η

4H
− ṡ

2H

)

. (3.7)

The z′′/z encodes all the information from the inflationary background, and determines

the evolution of u(τ,k). In the absence of sharp features, ε, η and s remains much smaller

than 1, so z′′/z ∼ 2a2H2. However, a sharp feature in the inflation potential or the warp

factor will induce a sharp local change in ε, η̃ and s, and z′′/z has a nontrivial behavior

deviating strongly from 2a2H2 around the feature. In this paper, we have analyzed two

cases. First, the slow roll brane inflation with a step feature in the inflaton potential V (φ).

Due to the small field nature of brane inflation, ε is negligible, which greatly simplifies z′′/z

to (See Appendix B)

z′′

z
≈ 2a2H2

(

1 − V ′′(φ)

2H2

)

= 2a2H2

(

1 − 3

2

V ′′

V

)

. (3.8)

Second, the IR DBI brane inflation scenario with a sharp step appearing in the warp

factor. In Section 5.2.2, we show that the sharp change of the sound speed is the major

contribution to z′′/z, and we have

z′′

z
≈ 2a2H2

(

1 − T ′′

2H2

)

= 2a2H2

(

1 − csε
T ′′

T

)

, (3.9)

where T is the warped brane tension defined in Eq.(2.5). To avoid confusion, we emphasize

that the primes on z or uk (functions of time) denote the derivative with respect to the

conformal time τ , while the primes on T or V (functions of φ) denote the derivatives with

respect to the field φ.

Among all the terms in the exact cubic action for the general single field inflation [39],

the 3pt for sharp features receives dominant contribution from the term proportional to
d
dτ ( η̃

c2s
) in most interesting cases,

〈ζ3〉 = i

(

∏

i

uki
(τend)

)

∫ τend

−∞

dτa2 ε

c2
s

d

dτ
(
η̃

c2
s
)

(

u∗
k1

(τ)u∗
k2

(τ)
d

dτ
u∗

k3
(τ) + perm

)

× (2π)3δ3(
∑

i

ki) + c.c. . (3.10)
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2H

)

. (3.7)

The z′′/z encodes all the information from the inflationary background, and determines

the evolution of u(τ,k). In the absence of sharp features, ε, η and s remains much smaller

than 1, so z′′/z ∼ 2a2H2. However, a sharp feature in the inflation potential or the warp

factor will induce a sharp local change in ε, η̃ and s, and z′′/z has a nontrivial behavior

deviating strongly from 2a2H2 around the feature. In this paper, we have analyzed two

cases. First, the slow roll brane inflation with a step feature in the inflaton potential V (φ).

Due to the small field nature of brane inflation, ε is negligible, which greatly simplifies z′′/z

to (See Appendix B)

z′′

z
≈ 2a2H2

(

1 − V ′′(φ)

2H2

)

= 2a2H2

(

1 − 3

2

V ′′

V

)

. (3.8)

Second, the IR DBI brane inflation scenario with a sharp step appearing in the warp

factor. In Section 5.2.2, we show that the sharp change of the sound speed is the major

contribution to z′′/z, and we have

z′′

z
≈ 2a2H2

(

1 − T ′′

2H2

)

= 2a2H2

(

1 − csε
T ′′

T

)

, (3.9)

where T is the warped brane tension defined in Eq.(2.5). To avoid confusion, we emphasize

that the primes on z or uk (functions of time) denote the derivative with respect to the

conformal time τ , while the primes on T or V (functions of φ) denote the derivatives with

respect to the field φ.

Among all the terms in the exact cubic action for the general single field inflation [39],

the 3pt for sharp features receives dominant contribution from the term proportional to
d
dτ ( η̃

c2s
) in most interesting cases,

〈ζ3〉 = i

(

∏

i

uki
(τend)

)

∫ τend

−∞

dτa2 ε

c2
s

d

dτ
(
η̃

c2
s
)

(

u∗
k1

(τ)u∗
k2

(τ)
d

dτ
u∗

k3
(τ) + perm

)

× (2π)3δ3(
∑

i

ki) + c.c. . (3.10)
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DBI inflation
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• DBI:
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can estimate the order of magnitude of the non-Gaussianity estimator fNL by comparing

it to the slow-roll case. The most important difference is that here we replace a factor of

ε by η̃′, and also η̃′ only gets large momentarily. Hence we estimate f feature
NL = O(η̃′∆τ) =

O(∆η̃), where ∆τ is the conformal time that the inflaton spends crossing the step.

To estimate the level of this non-Gaussianities, we now give a qualitative estimate for

η̃′ [26]. During the acceleration period, the ε is increased by

∆ε ≈ ∆V/H2 ≈ 5c . (4.13)

The duration of this period is

∆taccel ≈ ∆φ/φ̇ ≈ d/
√

cV , (4.14)

where we used φ̇ estimated in Sec. 4.2. These can be further used to estimate

∆η̃ ≈ η̃ =
ε̇

Hε
≈ 7c3/2

dε
, (4.15)

The time scale for the relaxation period is of order H−1, during which η̃ is O(1) and ˙̃η are

of order O(H).

We sum over the contributions from both the acceleration and relaxation periods. The

former gives faccel
NL ≈ 7c3/2/(dε), the latter gives f relax

NL = O(1). So for most interesting

cases where non-Gaussianities are large enough to be observed, it can be estimated by the

first contribution,

f feature
NL ∼ 7c3/2

dε
. (4.16)

We note that this is only crude order of magnitude estimation on the amplitude of this

non-Gaussianity, since the integration (4.12) also involve mode functions uk which will

be modulated by the presence of the sharp feature, and the shape and running of such

non-Gaussianities are very important. Details have to be done numerically as in [26].

Qualitatively since we have argued in Sec. 4.2 that for a specific observed feature the c/ε

is hold fixed model-independently, (4.16) implies that the value of d is very crucial to the

level of the non-Gaussianities. There are two major constraints on d. First, in the power

spectrum, as shown in Fig. 2 the bump in PR may depend sensitively on d. Second, the

range of oscillation in PR(k) is also controlled by d. If d is too small, the oscillation in

PR(k) might spread over to the well measured first acoustic peak in WMAP Cl curve.

Numerically, we have found that
√

c/d ∼ O(1), consistent with (4.11), so the magnitude of

(4.16) should be close to that in Ref. [26].

It is instructive to split this expression to f feature
NL ∼ 7c/ε ·

√
c/d. The first factor is

determined by the amplitude of the glitch from (4.9), while the second factor the extension

of the glitch from (4.11). Note both are in the k-space not the CMB multipole l-space.

Therefore in principle a sharp feature can also appear only in 3pt. This is clear from our

estimation (4.9) and (4.16), where one can reduce c/ε while increase c3/2/(dε).

Our analyses so far do not depend on the whether the inflation is caused by large field

or small field. But when it comes to the numerical numbers the differences are interesting.
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c/ε = 0.2
√

c/d = O(1)

Estimations of Non-Gaussianity
∏

ui

∫
a2εη̃′u1u2u

′
3 non G ∼ O(∆η̃)

non G ∼ O(1)

e-folds (See Appendix C), typically b/∆N2
e ! 1. The mode vk will first see a dip in z′′/z

followed by a bump. Let us assume that the feature in z′′/z shows up around conformal

time τs, then modes with c2
sk

2 ! (z′′/z)|τs or c2
sk

2 " (z′′/z)|τs will not be affected, because

they are either oscillating well inside the sound horizon or have already crossed the sound

horizon and got frozen. The major effect will be on the modes with c2
sk

2 ∼ (z′′/z)|τs . The

range of k affected by the sharp feature is determined by b/∆N2
e . If PR starts seeing the

feature at k0, the feature will disappear at

∆k ∼ k0

√
b/∆Ne . (5.30)

5.2.3 Non-Gaussianities

Although Ref. [39, 41, 42] are only interested in non-Gaussianities without sharp features,

the cubic expansion of the perturbations is exact and does not rely on the assumption that

various inflationary parameters ε, η̃ and s are small. For DBI inflation, among all the terms

in Ref. [39], the leading term in the cubic action that is responsible for sharp features in

non-Gaussianity is

a3ε

2c2
s

d

dt

(

η̃

c2
s

)

ζ2ζ̇ . (5.31)

In the absence of sharp features, a term such as (a3ε/c4
s)ζζ̇2 contributes to the non-

Gaussianity estimator fNL ∼ 1/c2
s . Therefore as a rough estimate the term (5.31) con-

tributes

f feature
NL ∼ d

dt

(

η̃

c2
s

)

∆t ∼ ∆

(

η̃

c2
s

)

. (5.32)

The cases with large s are most interesting for non-Gaussianities. Using (5.21),

η̃ ≈ css , (5.33)

so

f feature
NL ∼ ∆s

cs
∼ 1

cs

b

∆Ne
. (5.34)

There is another term

−2
aε

c2
s
sζ(∂ζ)2 (5.35)

in the cubic action of Ref. [39] that contributes

f feature
NL ⊃ s

c2
s
∆tH ∼ ∆cs

c3
s

∼ b

c2
s

, (5.36)

which is also possibly observable. The term (5.34) dominates for the most interesting cases.

The net observable effect will be a nearly-scale-invariant large non-Gaussianity of order

O(1/c2
s) plus the scale-dependent (oscillatory) modulation of order O(∆s/cs). Similar to

the slow-roll case, we can write f feature
NL ∼ (

√
b/cs)(

√
b/∆Ne). As we have shown, the
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non G ∼ O(c−2
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non G ∼ ∆
η̃

c2
s
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cs
∼ 1

cs
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∆Ne

aε
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sζ(∂ζ)2 non G ∼ s
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b = 0.01,∆Ne = 0.001, cs = 0.1,

1
cs

b

∆Ne
∼ 100,

b

c2
s

∼ 1



Multiple Steps

• Duality cascade gives a series of steps, 

• Feature on scale    in the power spectrum shows up on 
angular scale   on CMB
 

• Take l=2, l=20 as two steps for example, 

ln(rp+1)− ln(rp) "
2π

3gsM

k

π
l ≈

k−1

H−1
0

Using l ∼ 104(k/Mpc−1), we find

− dNe # d ln k # d ln l # Hdt # H

φ̇
dφ , (4.2)

Since both H and φ̇ are slowly varying during inflation, we have

d ln l ∝ dφ . (4.3)

Suppose φ is decreasing (going down a throat), also suppose that the step at l = 2 is at

φm0 and that at l = 20 is at φm0+1, we have

φm0

φm0+1
# φm0+1

φm0+2
# ... # e2π/3gsM (4.4)

For large gsM , this ratio is close to unity, e2π/3gsM # 1 + δ, so φm0 − φm0+1 # φm0+1 −
φm0+2 # φm0+1δ. Due to (4.3), equal spacing in φ implies equal spacing in ln l. So we

find that the next 2 steps are at around l # 200 and l # 2000 respectively. In addition,

the effect of the step at l-th multiple moments should span over ∆l number of multiple

moments with ∆l ∝ l.

4.2 The Power Spectrum

In the slow-roll scenario without features, we have the attractor solution, in units of MP ,

H2 = V (φ)/3, 3Hφ̇ = −V ′ , (4.5)

where ′ is derivative with respect to the inflaton φ(t) and dot is derivative with respect to

time. Here,

ε = − Ḣ

H2
= 2

(

H ′

H

)2

=
1

2

(

V ′

V

)2

= εSR (4.6)

It is convenient to introduce another inflationary parameter

η̃ = ε̇/Hε = −2ηSR + 4εSR (4.7)

where the usual slow-roll version is given by

ηSR =
V ′′

V
(4.8)

This yields ns − 1 = −η̃ − 2ε = 2ηSR − 6εSR. We emphasize that the above relations

between ε, η̃ and εSR, ηSR only hold for the attractor solution in absence of sharp features.

We will use the parameters ε and η̃ in our analyses for the sharp feature case.

To see the full details of the effect of a step in potential, numerical calculation is

necessary. However, the qualitative behavior can be estimated as follows. The step in

the potential is typically characterized by two numbers: the depth which we describe as

the ratio ∆V/V ≈ 2c, and the width ∆φ = 2d in unit of Planck mass. We can divide the

motion of inflaton into two parts: acceleration and relaxation. First, the inflaton, originally

moving in its attractor solution, momentarily gets accelerated by the step. The potential
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ln(2)− ln(20) = ln(20)− ln(l3)⇒ l3 = 200, l4 = 2000

l



Summary

• Brane inflation with D3 branes in KS throat is very rich in CMB 
phenomenology. (      ,               , local features)

• Generically the dilaton runs, and features in the warp 
geometry translate into features in the slow-roll potential. 
The sensitivity to the steps is controlled by      . Brane 
inflation is highly sensitive to small features in the inflaton 
potential because its small field nature.

• DBI scenario: sharp features in warp factor gives features in 
non-guassianity on top of the smooth                .

• Sharp features if shows up in CMB power spectrum, they 
appears on several correlated scales, and accompanied by 
non-G. If no signal in CMB power spectrum, non-G has a 
better chance to see it.

c/ε

fNL dns/d ln k

fNL ∼ −c−2
s




