CMB Features of Brane Inflation

Jiajun Xu

Cornell University

With R. Bean, X. Chen, G. Hailu, S. Shandera and S.H.Tye
hep-th/0702107, arXiv:0710.1812, arXiv:0802.0491

Cosmo 08

Brane Inflation (Dvali \& Tye, KKLMMT, DBI)

Brane Inflation in Warped Throat

Consider D3 Branes moving in the $\operatorname{AdS} S_{5} \times X_{5}$ background

$$
d s^{2}=h^{2}(r)\left(-d t^{2}+a(t)^{2} d \mathbf{x}^{2}\right)+h^{-2}(r)\left(d r^{2}+r^{2} d s_{X_{5}}^{2}\right)
$$

in the UV region, $d s_{X 5}^{2}=d s_{T^{1,1}}^{2}$

Our Current Understanding of the Early Universe

Three Scenarios

- non-relativistic slow roll (ккцммт)

$$
\begin{aligned}
&-e^{-\Phi} T(\phi) \sqrt{1-\frac{\dot{\phi}^{2}}{T(\phi)}}+T(\phi)-V(\phi) \\
&=\frac{1}{2} e^{-\Phi} \dot{\phi}^{2}-\left[T(\phi)\left(e^{-\Phi}-1\right)+V(\phi)\right] \quad \begin{array}{l}
\text { warp factor shows up in power } \\
\text { spectrum and non-gaussianity. }
\end{array} \\
& \text { (Bean, Chen, Hailu, Tye, JX, arXiv:0802.0491) }
\end{aligned}
$$

- DBI (UV) : steep potential attracting the brane to the bottom. (silverstein \& Tong) $\quad V(\phi)=m^{2} \phi^{2}$

$$
f_{N L}^{e q} \sim-\frac{M_{p l}^{4}}{\phi^{4}} \quad \frac{\phi}{M_{p l}} \lesssim \frac{1}{\sqrt{K M}}
$$

- DBI (IR) : steep potential driving the brane out of the throat. (Chen)

$$
V(\phi)=-m^{2} \phi^{2}
$$

$$
\begin{gathered}
-0.046 \leq \frac{d n_{s}}{d \ln k} \leq-0.01 \\
-270 \leq f_{N L}^{e q} \leq-70
\end{gathered}
$$

Due to a stringy suppression of power spectrum on large scales
(Bean, Chen, Peries, JX, arXiv:0710.1812)

Sharp features in Brane Inflation

- Background geometry is not smooth and dilaton runs. (Hailu \& Tye)

- For slow roll, steps in the potential

$$
V_{e f f}(\phi)=T(\phi)\left(e^{-\Phi}-1\right)+V(\phi) \quad \frac{\Delta V}{V} \equiv c
$$

- For DBI, steps in the speed limit $T(\phi) \quad \frac{\Delta T}{T} \equiv b$

The Power Spectrum

- The power spectrum

$$
\begin{gathered}
v_{k}^{\prime \prime}+\left(k^{2} c_{s}^{2}-\frac{z^{\prime \prime}}{z}\right) v_{k}=0 \quad v_{k} \equiv z u_{k}, \quad z \equiv a \sqrt{2 \epsilon} / c_{s} \\
P_{\mathcal{R}} \equiv \frac{k^{3}}{2 \pi^{2}}\left|u_{\mathrm{k}}\right|^{2} \sim\left(\frac{H^{2}}{2 \pi \dot{\phi}}\right)^{2}
\end{gathered}
$$

- $z^{\prime \prime} / z$ encodes all the information from the inflationary background
- Define three parameters $\epsilon \equiv-\frac{\dot{H}}{H^{2}}, \quad \tilde{\eta} \equiv \frac{\dot{\epsilon}}{H \epsilon}, \quad s \equiv \frac{\dot{c}_{s}}{H c_{s}}$.

$$
\frac{z^{\prime \prime}}{z}=2 a^{2} H^{2}\left(1-\frac{\epsilon}{2}-\frac{3 \tilde{\eta}}{4}-\frac{3 s}{2}-\frac{\epsilon \tilde{\eta}}{4}+\frac{\epsilon s}{2}+\frac{\tilde{\eta}^{2}}{8}-\frac{\tilde{\eta} s}{2}+\frac{s^{2}}{2}+\frac{\dot{\tilde{\eta}}}{4 H}-\frac{\dot{s}}{2 H}\right)
$$

The Slow-Roll Power Spectrum

$$
\frac{z^{\prime \prime}}{z} \sim 2 a^{2} H^{2}\left(1-\frac{c}{\epsilon} \frac{1}{\Delta N_{e}^{2}}\right) \quad \frac{\Delta V}{V} \equiv c
$$

$$
\begin{gathered}
\frac{c}{\epsilon} \sim 1, \Delta N_{e} \ll 1 \\
\text { observable }
\end{gathered}
$$

In KKLMMT, $\quad c \sim 10^{-11}$
$\epsilon \sim 10^{-11} \longrightarrow$ observable !!

Best Fit:

$$
\begin{aligned}
c / \epsilon & =0.2 \\
\sqrt{c} / d & =\mathcal{O}(1)
\end{aligned}
$$

(Adams, Ross, Sarkar 1997, Leach, Liddle, 2001
Hunt, Sakar, 2004, 2007
Adams, Creswell, Easther, 2001
Peiris et al, 2003
Covi et al, 2006, 2007)

The DBI Power Spectrum

$$
\begin{gathered}
\frac{z^{\prime \prime}}{z} \sim 2 a^{2} H^{2}\left(1-\frac{b}{\Delta N_{e}^{2}}\right) \\
\frac{\Delta T}{T} \equiv b \\
\frac{b}{\Delta N_{e}}
\end{gathered} \lesssim \frac{1}{c_{s}^{3}}
$$

need $b=-0.3$, too large for steps due to duality cascade

Estimations of Non-Gaussianity

- Slow-roll: $\prod^{u_{i}} \int a^{2} \tilde{\epsilon}^{\prime} u_{1} u_{2} u_{3}^{\prime} \Rightarrow$ non_G $\sim \mathcal{O}(\Delta \tilde{\eta})$

$$
\begin{aligned}
& \Delta \epsilon \approx \Delta V / H^{2} \approx 5 c \quad \Delta \tilde{\eta} \approx \tilde{\eta}=\frac{\dot{\epsilon}}{H \epsilon} \approx \frac{7 c^{3 / 2}}{d \epsilon}, \\
& \Delta t_{\text {accel }} \approx \Delta \phi / \dot{\phi} \approx d / \sqrt{c V}, \quad \\
& c / \epsilon=0.2 \quad \sqrt{c} / d=\mathcal{O}(1) \Rightarrow \text { non_G } \sim \mathcal{O}(1)
\end{aligned}
$$

- DBI: $\quad\left(a^{3} \epsilon / c_{s}^{4}\right) \zeta \dot{\zeta}^{2} \Rightarrow$ non_G $\sim \mathcal{O}\left(c_{s}^{-2}\right)$

$$
\begin{gathered}
\frac{a^{3} \epsilon}{2 c_{s} \frac{d}{d t}}\left(\frac{\tilde{\eta}}{c_{s}^{2}}\right) \zeta^{2} \dot{\zeta} \Rightarrow \text { non_G } \sim \Delta \frac{\tilde{\eta}}{c_{s}^{2}} \sim \frac{\Delta s}{c_{s}} \sim \frac{1}{c_{s}} \frac{b}{\Delta N_{e}} \\
\frac{a \epsilon}{c_{s}^{2}} s \zeta(\partial \zeta)^{2} \Rightarrow \text { non_G } \sim \frac{s}{c_{s}^{2}} H \Delta t \sim \frac{\Delta c_{s}}{c_{s}^{3}} \sim \frac{b}{c_{s}^{2}}
\end{gathered}
$$

$\frac{b}{\Delta N_{e}} \lesssim \frac{1}{c_{s}^{3}} \quad$ Given $b=0.01, \Delta N_{e}=0.001, c_{s}=0.1$,

$$
\frac{1}{c_{s}} \frac{b}{\Delta N_{e}} \sim 100, \frac{b}{c_{s}^{2}} \sim 1
$$

Multiple Steps

- Duality cascade gives a series of steps,

$$
\ln \left(r_{p+1}\right)-\ln \left(r_{p}\right) \simeq \frac{2 \pi}{3 g_{s} M}
$$

- Feature on scale k in the power spectrum shows up on angular scale 1 on CMB

$$
\begin{aligned}
\frac{\pi}{l} & \approx \frac{k^{-1}}{H_{0}^{-1}} \\
-d N_{e} \simeq d \ln k & \simeq d \ln l \simeq H d t \simeq \frac{H}{\dot{\phi}} d \phi \quad d \ln l \propto d \phi
\end{aligned}
$$

- Take I=2, I=20 as two steps for example,

$$
\ln (2)-\ln (20)=\ln (20)-\ln \left(l_{3}\right) \Rightarrow l_{3}=200, l_{4}=2000
$$

Summary

- Brane inflation with D3 branes in KS throat is very rich in CMB phenomenology. ($f_{N L}, d n_{s} / d \ln k$, local features)
- Generically the dilaton runs, and features in the warp geometry translate into features in the slow-roll potential. The sensitivity to the steps is controlled by c / ϵ. Brane inflation is highly sensitive to small features in the inflaton potential because its small field nature.
- DBI scenario: sharp features in warp factor gives features in non-guassianity on top of the smooth $f_{N L} \sim-c_{s}^{-2}$.
- Sharp features if shows up in CMB power spectrum, they appears on several correlated scales, and accompanied by non-G. If no signal in CMB power spectrum, non-G has a better chance to see it.

