k- / DBI inflationary Power Spectra and Constraints from WMAP5

Larissa C. Lorenz Institut d'Astrophysique de Paris, France

COSMO 08 Madison, August 26th, 2008

work with J. Martin & C. Ringeval: arXiv:0807.2414, 0807.3037

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

k- / DBI inflation			

DBI as a special case of k-inflation

Two ways to drive inflation:

flat potential

modified kinetic term

Armendariz-Picon, Damour and Mukhanov (1999) Garriga and Mukhanov (1999)

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

k- / DBI inflation			

DBI as a special case of k-inflation

Two ways to drive inflation:

flat potential

modified kinetic term

・ロト ・聞 ト ・ヨト ・ヨト

2

Armendariz-Picon, Damour and Mukhanov (1999) Garriga and Mukhanov (1999)

String inflation combines both:

- candidate potentials (Coulomb terms, moduli stabilization etc.)
- DBI kinetic term from brane action (open string mode)

k- / DBI inflation			

DBI as a special case of k-inflation

Effective 4d DBI inflaton action:

$$S = -\int d^4x \sqrt{-g} \left[V(\phi) - T(\phi) + T(\phi) \sqrt{1 + \frac{1}{T(\phi)} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi} \right]$$

 $V(\phi)$: potential $T(\phi)$: warped brane tension

"speed limit": $\gamma(\dot{\phi}, \phi) = \frac{1}{\sqrt{1 - \dot{\phi}^2 / T(\phi)}}$ functions of 10d background geometry

 $\gamma \approx$ 1: standard regime $\gamma \gg$ 1: "ultrarelativistic" DBI regime

Silverstein and Tong (2003) Alishahiha, Silverstein and Tong (2004)

Perturbations		

Regimes and perturbation equations

Inflation can proceed in two regimes:

$$\epsilon_{1} = \frac{2}{\kappa \gamma} \frac{1}{\mathsf{H}^{2}} \left(\frac{\mathrm{d}\mathsf{H}}{\mathrm{d}\phi}\right)^{2} \qquad \qquad \mathsf{d}H/\mathrm{d}\phi \ll 1 \qquad \qquad \gamma \gg 1$$

"ultrarelativistic"

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037 k- / DBI inflationary Power Spectra & WMAP5

Perturbations		

Regimes and perturbation equations

Inflation can proceed in two regimes:

$$\epsilon_{1} = \frac{2}{\kappa \gamma} \frac{1}{\mathsf{H}^{2}} \left(\frac{\mathrm{d}\mathsf{H}}{\mathrm{d}\phi}\right)^{2} \qquad \qquad dH/\mathrm{d}\phi \ll 1 \qquad \qquad \gamma \gg 1$$

"ultrarelativistic"

Scalar perturbations have a sound speed $c_{\rm s} \neq 1$:

$$\begin{split} \textbf{v}_k'' + \left(c_{\rm s}^2 \textbf{k}^2 - \frac{\textbf{z}''}{\textbf{z}}\right) \textbf{v}_k &= 0 \qquad \qquad \textbf{z} \sim a \, \gamma \sqrt{\epsilon_1} \\ c_{\rm s} &= 1/\gamma \end{split}$$

- sound speed c_s time dependent standard solution method fails, initial conditions?
- effective potential z''/z

contains usual ϵ_i parameters, but also c_s derivatives

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

	Perturbations						
New parameter hierarchies							

$$\epsilon_{n+1} = \frac{\mathrm{d} \ln |\epsilon_n|}{\mathrm{d} N}, \text{ where } \epsilon_0 = \frac{H_{\mathrm{in}}}{H} \qquad \qquad \delta_{n+1} = \frac{\mathrm{d} \ln |\delta_n|}{\mathrm{d} N}, \text{ where } \delta_0 = \frac{c_{\mathrm{s,in}}}{c_{\mathrm{s}}}$$

"Hubble flow parameters"

"sound flow parameters"

similar parameter sets defined e.g. in: Shandera and Tye (2006), Bean et al. (2007), Kinney and Tzirakis (2007)

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037 k- / DBI inflationary Power Spectra & WMAP5

	Perturbations					
New parameter hierarchies						

$$\epsilon_{n+1} = \frac{\mathrm{d} \ln |\epsilon_n|}{\mathrm{d} N}, \text{ where } \epsilon_0 = \frac{H_{\mathrm{in}}}{H} \qquad \qquad \delta_{n+1} = \frac{\mathrm{d} \ln |\delta_n|}{\mathrm{d} N}, \text{ where } \delta_0 = \frac{c_{\mathrm{s,in}}}{c_{\mathrm{s}}}$$

"Hubble flow parameters"

"sound flow parameters"

イロト イ部ト イヨト イヨト 三日

similar parameter sets defined e.g. in: Shandera and Tye (2006), Bean et al. (2007), Kinney and Tzirakis (2007)

Recall: $z \sim a \sqrt{\epsilon_1}/c_{
m s}$, $c_{
m s} = 1/\gamma$ in DBI

At $\mathcal{O}(\epsilon_i, \delta_i)$, the effective potential becomes:

$$rac{\mathsf{z}''}{\mathsf{z}}\simeq rac{1}{\eta^2}\left(2+3\epsilon_1+rac{3}{2}\,\epsilon_2+3\delta_1
ight)$$

《曰》 《圖》 《臣》 《臣》

æ

• wavelength must be smaller than the sound horizon $k^2/\gamma^2 \gg z''/z$ • and: evolution of the sound speed must be adiabatic !

$$\frac{Q}{\omega^2} \simeq \frac{a^2 H^2 \gamma^2}{2k^2} \left(\delta_1 - \epsilon_1 \delta_1 + \delta_1 \delta_2 + \frac{1}{2} \delta_1^2 \right)$$

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

Perturbations

Calculating the scalar power spectrum

Expand the spectrum around a pivot scale $k_{\rm P}$:

$$\mathcal{P}_{\zeta}(k) = \mathcal{A}_{\zeta}(k_{\mathrm{P}}) \sum_{n=0}^{+\infty} rac{a_n}{n!} \ln^n \left(rac{k}{k_{\mathrm{P}}}
ight)$$

• physical spectrum independent of $k_{\rm P}$: recursion for $a_{n+1} = f(a_n)$

- **goal:** obtain $a_n = a_n(\epsilon_i, \delta_i)$ from uniform approximation
- if a_0 is known at $\mathcal{O}(p)$ in slow-roll, a_n is known at $\mathcal{O}(p+n)$

Schwarz and Terrero-Escalante (2004)

イロト イ団ト イヨト イヨト

Calculating the scalar power spectrum

Expand the spectrum around a pivot scale $k_{\rm P}$:

$$\mathcal{P}_{\zeta}(k) = \mathcal{A}_{\zeta}(k_{\mathrm{P}}) \sum_{n=0}^{+\infty} rac{a_n}{n!} \ln^n\left(rac{k}{k_{\mathrm{P}}}
ight)$$

• physical spectrum independent of $k_{\rm P}$: recursion for $a_{n+1} = f(a_n)$

- **goal:** obtain $a_n = a_n(\epsilon_i, \delta_i)$ from uniform approximation
- if a_0 is known at $\mathcal{O}(p)$ in slow-roll, a_n is known at $\mathcal{O}(p+n)$

Schwarz and Terrero-Escalante (2004)

イロト イポト イヨト イヨト

coeff	quantity	order
$a_0(k_{ m P})$	amplitude	ϵ_i, δ_i
$a_1(k_{\rm P})$	index $n_{ m S}-1$	$\epsilon_i^2, \delta_i^2, \epsilon_i \delta_i$
-(-)		17 17 1
$a_{2}(k_{\rm P})$	running α_{S}	$\epsilon_{i}^{k}\delta_{i}^{l}, k+l=3$
· 2(1)	8 0007 0414 0007 0007	

k- / DBI inflationary Power Spectra & WMAP5

Loren

Calculating the scalar power spectrum

Expand the spectrum around a pivot scale $k_{\rm P}$:

$$\mathcal{P}_{\zeta}(k) = \mathcal{A}_{\zeta}(k_{\mathrm{P}}) \sum_{n=0}^{+\infty} rac{a_n}{n!} \ln^n\left(rac{k}{k_{\mathrm{P}}}
ight)$$

• physical spectrum independent of $k_{\rm P}$: recursion for $a_{n+1} = f(a_n)$

- **goal:** obtain $a_n = a_n(\epsilon_i, \delta_i)$ from uniform approximation
- if a_0 is known at $\mathcal{O}(p)$ in slow-roll, a_n is known at $\mathcal{O}(p+n)$

Schwarz and Terrero-Escalante (2004)

coeff	quantity	order	
$a_0(k_{ m P})$	amplitude	ϵ_i, δ_i	Note:
$a_1(k_{ m P})$	index $\mathit{n}_{ m S}-1$	$\epsilon_i^2, \delta_i^2, \epsilon_i \delta_i$	amplitude at $\mathcal{O}(0)$ suffices for $n_{ m S}$ at $\mathcal{O}(1)$
$a_2(k_{ m P})$	running $lpha_{ m S}$	$\epsilon_i^k \delta_i^l, \ k+l=3$	《曰》《曰》《言》《言》 [] []
enz, Martin & Ringev	val arXiv:0807.2414, 0807.3037		

		Scalar Spectrum		
Solving t	he mode o	equation		

Using $z''/z = (
u^2 - 1/4)/\eta^2$, write the mode equation as

$$\mathbf{v}_{\mathbf{k}}^{\prime\prime} + \left[\mathbf{c}_{\mathbf{s}}^{2}\mathbf{k}^{2} - \frac{1}{\eta^{2}}\left(\nu^{2} - \frac{1}{4}\right)\right]\mathbf{v}_{\mathbf{k}} = \mathbf{0}$$

where $u^2(\eta) \simeq 9/4 + 3\epsilon_1 + 3/2\,\epsilon_2 + 3\delta_1$

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

		Scalar Spectrum		
Solving t	he mode o	equation		

Using $z''/z = (
u^2 - 1/4)/\eta^2$, write the mode equation as

$$\mathsf{v}_{\mathsf{k}}^{\prime\prime} + \left[\mathsf{c}_{\mathrm{s}}^{2}\mathsf{k}^{2} - \frac{1}{\eta^{2}}\left(\nu^{2} - \frac{1}{4}\right)\right]\mathsf{v}_{\mathsf{k}} = \mathsf{0}$$

where $u^2(\eta) \simeq 9/4 + 3\epsilon_1 + 3/2\epsilon_2 + 3\delta_1$

Three distinct situations:

 $c_{\rm s} \equiv 1$ standard case Bessel function solutions ($\delta_1 = 0!$)

		Scalar Spectrum		
Solving t	he mode o	equation		

Using $z''/z = (\nu^2 - 1/4)/\eta^2$, write the mode equation as

$$\mathbf{v}_{\mathbf{k}}^{\prime\prime} + \left[\mathbf{c}_{\mathbf{s}}^{2}\mathbf{k}^{2} - \frac{1}{\eta^{2}}\left(\nu^{2} - \frac{1}{4}\right)\right]\mathbf{v}_{\mathbf{k}} = \mathbf{0}$$

where $u^2(\eta) \simeq 9/4 + 3\epsilon_1 + 3/2\,\epsilon_2 + 3\delta_1$

Three distinct situations:

		Scalar Spectrum		
Solving t	he mode o	equation		

Using $z''/z = (\nu^2 - 1/4)/\eta^2$, write the mode equation as

$$\mathsf{v}_{\mathsf{k}}^{\prime\prime} + \left[\mathsf{c}_{\mathrm{s}}^{2}\mathsf{k}^{2} - \frac{1}{\eta^{2}}\left(\nu^{2} - \frac{1}{4}\right)\right]\mathsf{v}_{\mathsf{k}} = \mathsf{0}$$

where $u^2(\eta) \simeq 9/4 + 3\epsilon_1 + 3/2\,\epsilon_2 + 3\delta_1$

Three distinct situations:

 $\begin{array}{ll} c_{\rm s} \equiv 1 & \mbox{standard case} & \mbox{Bessel function solutions } (\delta_1 = 0!) \\ \left| \frac{Q}{\omega^2} \right| \ll 1 & \mbox{adiabaticity} & v_k = \sqrt{\frac{1}{2c_{\rm s}k}} \, \exp\left[-ik \int^{\eta} {\rm d}\tau \, c_{\rm s}(\tau) \right] \\ c_{\rm s} = c_{\rm s}(\eta) & \mbox{general case} & \mbox{solve with uniform approximation} \end{array}$

		Scalar Spectrum		
Uniform	approxima	ation		

General mode equation solved by

Habib et al. (2002, 2004)

◆□ > ◆□ > ◆□ > ◆□ > ● □

"turning point": where $k\eta_* = -rac{
u_*}{c_{\mathrm{s}*}}$

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

k- / DBI inflation	Perturbations	Scalar Spectrum	Tensor Spectrum	WMAP5 Constraints	Conclusions
Uniform a	approxima	ation			

General mode equation solved by

Habib et al. (2002, 2004)

3

		Scalar Spectrum		
Uniform	approxima	ation		

After expansion around $-k_{\rm P}\eta_{\rm P} = 1/c_{\rm s}(k_{\rm P})$, the spectrum at $\mathcal{O}(\epsilon_i, \delta_i)$ is:

$$\mathcal{P}_{\zeta} = \underbrace{\frac{H^2 \gamma}{\pi m_{\mathrm{Pl}}^2 \epsilon_1} (18e^{-3})}_{A_{\zeta}(k_{\mathrm{P}})} \times \underbrace{[1 - 2(D+1)\epsilon_1 - D\epsilon_2 + (D+2)\delta_1]}_{a_0 \operatorname{at} \mathcal{O}(\epsilon_i, \delta_i)}$$

intrinsic error
 $\sim 10\% \operatorname{of}$
uniform app.
where $D \equiv 1/3 - \ln 3$

		Scalar Spectrum		
Uniform	approxima	ation		

After expansion around $-k_{\rm P}\eta_{\rm P} = 1/c_{\rm s}(k_{\rm P})$, the spectrum at $\mathcal{O}(\epsilon_i, \delta_i)$ is:

$$\mathcal{P}_{\zeta} = \underbrace{\frac{H^2 \gamma}{\pi m_{\mathrm{Pl}}^2 \epsilon_1} (18e^{-3})}_{A_{\zeta}(k_{\mathrm{P}})} \times \underbrace{[1 - 2(D+1)\epsilon_1 - D\epsilon_2 + (D+2)\delta_1]}_{a_0 \operatorname{at} \mathcal{O}(\epsilon_i, \delta_i)}$$
intrinsic error
$$\sim 10\% \operatorname{of}_{uniform app.}$$
w $D = 1/2$ is 2

where $D \equiv 1/3 - \ln 3$

 a_0 at $\mathcal{O}(1)$, hence a_1 at $\mathcal{O}(2) \Rightarrow n_{\rm S} - 1$ at NNL:

$$\begin{split} n_{\rm S}-1 &= -2\epsilon_1 - \epsilon_2 + \delta_1 \\ &- 2\epsilon_1^2 + 3\epsilon_1\delta_1 - (2D+3)\epsilon_1\epsilon_2 - D\epsilon_2\epsilon_3 + \epsilon_2\delta_1 - \delta_1^2 + (D+2)\delta_1\delta_2 \end{split}$$

		Scalar Spectrum		
Uniform	approxima	ation		

After expansion around $-k_{\rm P}\eta_{\rm P} = 1/c_{\rm s}(k_{\rm P})$, the spectrum at $\mathcal{O}(\epsilon_i, \delta_i)$ is:

$$\mathcal{P}_{\zeta} = \underbrace{\frac{H^2 \gamma}{\pi m_{\mathrm{Pl}}^2 \epsilon_1} (18e^{-3})}_{A_{\zeta}(k_{\mathrm{P}})} \times \underbrace{[1 - 2(D+1)\epsilon_1 - D\epsilon_2 + (D+2)\delta_1]}_{a_0 \operatorname{at} \mathcal{O}(\epsilon_i, \delta_i)}$$
intrinsic error
$$\sim 10\% \operatorname{of}_{uniform \operatorname{app.}}$$

where $D \equiv 1/3 - \ln 3$

 a_0 at $\mathcal{O}(1)$, hence a_1 at $\mathcal{O}(2) \Rightarrow n_{\rm S} - 1$ at NNL:

$$\begin{array}{ll} n_{\rm S}-1 &=& -2\epsilon_1-\epsilon_2+\delta_1 \\ && -2\epsilon_1^2+3\epsilon_1\delta_1-(2D+3)\epsilon_1\epsilon_2-D\epsilon_2\epsilon_3+\epsilon_2\delta_1-\delta_1^2+(D+2)\delta_1\delta_2 \end{array}$$

Can go on to calculate $\alpha_{\rm S}$ at third order...

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

		Tensor Spectrum	
A note o	n tensors		

Tensor perturbations are not affected by $c_{\rm s} \neq 1$ since they do not couple to the matter sector.

But:

If we want the same $k_{\rm P}$ for scalars and tensors, there is a subtle effect:

$$\mathcal{P}_{h} = \frac{16H^{2}}{\pi m_{\mathrm{Pl}}^{2}} \left(18e^{-3}\right) \left[1 - 2\left(D + 1 + \ln\frac{1}{c_{\mathrm{s}}}\right)\epsilon_{1} - 2\epsilon_{1}\ln\frac{k}{k_{\mathrm{P}}}\right]$$

Spectral index unchanged: $\mathbf{n}_{\mathsf{T}} = -2\epsilon_1$

But the tensor to scalar ratio is now: ${f r}=16c_{
m s}\epsilon_1=rac{16\epsilon_1}{\gamma}$

		Tensor Spectrum	
A note o	n tensors		

Tensor perturbations are not affected by $c_{\rm s} \neq 1$ since they do not couple to the matter sector.

But:

If we want the same $k_{\rm P}$ for scalars and tensors, there is a subtle effect:

$$\mathcal{P}_{h} = \frac{16H^{2}}{\pi m_{\mathrm{Pl}}^{2}} \left(18e^{-3}\right) \left[1 - 2\left(D + 1 + \ln\frac{1}{c_{\mathrm{s}}}\right)\epsilon_{1} - 2\epsilon_{1}\ln\frac{k}{k_{\mathrm{P}}}\right]$$

Spectral index unchanged: $\mathbf{n}_{\mathsf{T}} = -2\epsilon_1$

But the tensor to scalar ratio is now: ${f r}=16c_{
m s}\epsilon_1=rac{16\epsilon_1}{\gamma}$

Standard case: two parameters (ϵ_1, ϵ_2) k-inflation case: four parameters ($c_s, \epsilon_1, \epsilon_2, \delta_1$)

WMAP5 and k- / DBI inflation – w/o non-gaussianities

Reminder: standard case

 $n_{\rm S} - 1 = -2\epsilon_1 - \epsilon_2$ $r = 16\epsilon_1$

WMAP3 limits:

Martin and Ringeval (2006) $\epsilon_1 < 0.022, \ \left|\epsilon_2\right| < 0.07$

[for WMAP5, see Alabidi and Lidsey (2008)]

《口》《聞》 《臣》 《臣》

1

WMAP5 and k- / DBI inflation – w/o non-gaussianities

Reminder: standard case

$$n_{
m S} - 1 = -2\epsilon_1 - \epsilon_2$$

 $r = 16\epsilon_1$

WMAP3 limits:

Martin and Ringeval (2006) $\epsilon_1 < 0.022, \; |\epsilon_2| < 0.07$

[for WMAP5, see Alabidi and Lidsey (2008)]

k-inflation:

$$n_{\rm S} - 1 = -2(\epsilon_1 - \delta_1)$$
$$-(\epsilon_2 + \delta_1)$$
$$r = 16c_{\rm s}\epsilon_1$$

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

-2

log(c ε)

WMAP5 and k- / DBI inflation – w/o non-gaussianities

-4

-3 -2 -1 log(ε,)

0.2

0.

2 + ô1

Reminder: standard case

 $n_{\rm S} - 1 = -2\epsilon_1 - \epsilon_2$ $r = 16\epsilon_1$

WMAP3 limits:

Martin and Ringeval (2006) $\epsilon_1 < 0.022, |\epsilon_2| < 0.07$

[for WMAP5, see Alabidi and Lidsey (2008)]

ී)bo -0. -0.2 -0.2 -0.1 0.92 0.9 0.94 0.96 0.98 $\varepsilon_1 - \delta_1$ $1 - 2(\varepsilon_1 - \delta_2) - (\varepsilon_2 + \delta_3)$ 0.92 0.94 0.96 0.98 0.0 1.02 -4 -3 $1 - 2(\varepsilon_1 - \delta_1) - (\varepsilon_2 + \delta_1)$ log(ε_)

k-inflation:

 $egin{array}{rcl} n_{
m S}-1&=&-2(\epsilon_1-\delta_1)\ &&-(\epsilon_2+\delta_1)\ &&r&=&16c_{
m s}\epsilon_1 \end{array}$

 ϵ_1 not limited by WMAP5 $\log(c_{\rm s}\epsilon_1) < -2.3$

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

WMAP5 and DBI inflation – w/ non-gaussianities

For DBI:
$$c_{\rm s}=1/\gamma$$
 and

$$f_{
m NL}^{
m eq} = rac{35}{108} \left(1-\gamma^2
ight) \!+\! \mathcal{O}(\epsilon_i,\delta_i)$$

Chen et al. (2006)

Use WMAP5 bound

$$-151 \leq f_{
m NL}^{
m eq} \leq 256$$

as a flat prior for γ^2 .

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037

			Conclusions
Conclusic	ons		

- The uniform approximation is a generic method to obtain scalar and tensor perturbation spectra at next-to-leading order.
- This gives $n_{\rm S} 1$ at $\mathcal{O}(2)$ and $\alpha_{\rm S}$ at $\mathcal{O}(3)$, in terms of the new (ϵ_i, δ_i) hierarchy.
- Choosing k inside the sound horizon initially is not enough to ensure adiabaticity. Evolution of c_s enters.
- Instead of 2 parameters (ε₁, ε₂), there are now 4 (c_s, ε₁, ε₂, δ₁).
 WMAP5 does not constrain these separately, only combinations.
- Non-gaussianities help break this degeneracy. Future measurements?

Not in this talk, but in the paper: method applied to DBI power law, KKLMMT, chaotic Klebanov-Strassler (+ constant term) inflation

			Conclusions
 Lot 1 (1) - Lot 1 (1) 	difference and		

 $\delta_1 \sim \mathcal{O}(10)$ initially WKB condition

$$egin{array}{rcl} Q \ & \simeq & \displaystyle rac{a^2 H^2 \gamma^2}{2k^2} igg(\delta_1 \ & \ & -\epsilon_1 \delta_1 + \delta_1 \delta_2 + \displaystyle rac{1}{2} \delta_1^2 igg) \end{array}$$

not satisfied at early times

Spectral features on large scales possible!

			Conclusions
Backup 2	2		

$$n_{\rm S} - 1 \equiv \left(\frac{\mathrm{d}\ln \mathcal{P}_{\zeta}}{\mathrm{d}\ln k}\right)_{k=k_{\rm P}} = \frac{a_1}{a_0}$$
$$\alpha_{\rm S} = \left(\frac{\mathrm{d}^2\ln \mathcal{P}_{\zeta}}{\mathrm{d}(\ln k)^2}\right)_{k=k_{\rm P}} = \frac{a_2}{a_0} - \frac{a_1^2}{a_0^2}$$

・ロト・(部・・ヨト・ヨー・)への

Lorenz, Martin & Ringeval arXiv:0807.2414, 0807.3037