RICOCHET, COHERENT, MINER AND CONNIE COMPARISON

Source, Distance, Power, Flux, Background, Purpose

COHERENT	MINER	CONNIE	Ricochet
SNS Stopped Pions (Oak Ridge)	Reactor at Texas A&M	Reactor at Angra dos Reis	Chooz Reactor
	2 meters		~400 meters
<20 meters		30 meters	
	1 MW		8.54 GW (comes from
Not compared, higher	11 0 1	3.8 GW	two reactors)
neutrino energies (do	4×10^{11} v's cm ⁻² s ⁻¹	10	
not compare neutrino		$6 \times 10^{12} v' s \ cm^{-2} s^{-1}$	$8 \times 10^{10} v's cm^{-2}s^{-1}$
flux from pion decay)	$\sim 100 \ keV^{-1}kg^{-1}day^{-1}$	2000 I I I = 1 I = 1	ά Γι π−1ι −1ι −1
During a conference for	(Simulation)	3000 kev 'kg 'day	1.5 KeV Kg day
Purpose: Search for	_		(From Chooz and
conerent neutrino	Purpose: to observe	Purpose: Search for	EDELWEISS)
scattering	conerent neutrino	conerent neutrino	
	scattering and search	scattering	Purpose: Search for
	for sterile neutrinos		sterile neutrino via
			coherent neutrino
			scattering

Technology

COHERENT	MINER	CONNIE	Ricochet
Nal and CSI crystals Germanium Detectors	CDMS (Cryogenic Dark Matter Search) style germanium detectors	Array of charged coupled devices (CCDs)	Multiple Bolometric devices
Liquid Argon	High density concrete, copper foil, steel	Prototype – four 8 Mpix CCDs, mass of ~1 g, area of 6cm by 3 cm	Germanium semi- conductors Metallic zinc super- conductors
			CaWO ₄ cyrstals Using Helium3 to detect the background neutrons

Ideally Suited For

COHERENT	MINER	CONNIE	Ricochet
Discovery of coherent neutrino scattering	Searching for sterile neutrinos	Close-proximity nuclear monitoring	Pushing low energy technology for neutrino physics and dark
Core Collapse supernova neutrino detection		Discovery of coherent neutrino scattering	matter searches Nuclear reactor monitoring
Better understand the atmospheric and solar neutrinos energy ranges.			Possible extensions to new physics and sterile neutrino searches

Advantages

COHERENT	MINER	CONNIE	Ricochet
 Unique time signature (Difference from reactors) Higher recoil energies allow for detection with low threshold detectors Pulsation allows for a reduced background Uses established technology Operating for 2 years 	Control over power cycle The movable distance makes MINER ideal for searching for sterile neutrinos	Very low thresholds achieved (25 eV) Compact footprint Distance to reactor is variable They have run a prototype on site	 Utilizing multiple dark matter technologies, such as EDELWEISS, CRESST and superconducing metals Demonstrated low thresholds (<200 eV) No source correlated backgrounds (from low uranium and thorium contamination) Overburden (140 mwe) and large water shielding Utilizing existing Double Chooz infrastructure Strong international cooperation (US, France, Germany) Potential dark matter / dark forces sensitivity

Disadvantages

COHERENT	MINER	CONNIE	Ricochet
Cannot successfully detect lower energy neutrinos (like those that come from reactors) There are backgrounds from neutrino induced events (Neutrino induced Neutrons {NIN})	There are a lot of beam-correlated backgrounds to account and correct for (neutrons, muons, gamma rays)	Small mass target mass (5-50 g) High background Only two of the four CCDs were high enough quality to detect background in the prototype	Difficult to decipher between neutrino events and backgrounds, such as neutron radiation Competitors detectors have more advanced timelines Backgrounds: need to reach backgrounds near levels of
			EDELWEISS (demonstrated, but always challenging)

Sites used for information

- https://sites.duke.edu/coherent/files/2015/09/Coherent_PositionPaper.pdf
- https://arxiv.org/pdf/1609.02066.pdf
- http://iopscience.iop.org/article/10.1088/1742-6596/718/4/042009
- https://arxiv.org/pdf/1608.01565.pdf
- https://dspace.mit.edu/bitstream/handle/1721.1/105649/963850265-MIT.pdf?sequence=1