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varying with respect to the metric 
gives

where

and the “prime” denotes the derivative with respect to 
the Ricci scalar. 
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DE and FOG

So one needs to develop new techniques to be able to 
unfold their properties

Why Fourth order gravity is an interesting 
model for DE?
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This approach has many advantages:

its variables have a clear physical meaning at any 
stage of the calculations and are gauge invariant

the treatment of both the exact and the linearized 
theory is considerably simplified

the same variables can be used in perturbing 
different models e.g anisotropic spacetimes etc.

it is easily adaptable to alternative gravity
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Let us investigate the behavior of the 
perturbations around this point.
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Let us now focus on the case of dust (w = 0). The above solution becomes

∆m = K1t
−1 + K2t

α+|w=0 + K3t
α−|w=0 −K4

C0

S2
0

t2−
4n
3 , (110)

where

α±|w=0 = −1
2
±

√
(n− 1)(n(32n(8n− 19) + 417)− 81)

6(n− 1)
, (111)

K4|w=0 =
9(n(12n− 31) + 18)

8(4n− 9) (12n3 − 19n2 − 3n + 9)
. (112)

A graphical representation of the behavior of the exponent of the modes in (110) as n changes is given in Figure 1.
This solution has many interesting features. For 0.33 < n < 0.71 and 1 < n < 1.32 [? ] the modes tα±|w=0 become
oscillatory. However since the real part of the exponents α±|w=0 is always negative the oscillation are damped and
bound to become subdominant at late times. The appearance of this kind of modes is not associated with any
peculiar behavior of the thermodynamic quantities in the background i.e. none of the energy condition are violated
for the values of n which are associated with the oscillations. The nature of these oscillations is then an higher order
phenomenon. Here we will not undertake a detailed investigation of the origin of these modes, such a study will be
left for a future work. Also, for most of the values of n the perturbations grow faster in Rn-gravity than in GR. In
fact only for 1.32 ≤ n < 1.43 all the modes grow with a rate slower than t2/3.

Probably the most striking feature of the solutions (110) and (107) is that the long wavelength perturbations grow
for every value of n, even if the universe is in a state of accelerated expansion (see Figure 1). This is somehow expected
from the fact that in [12] the fixed point representing our background is unstable for every value of the parameters.
However, the consequence of this feature is quite impressive because it implies that in Rn gravity large scale structures
can in principle also be formed in accelerating backgrounds. This is not possible in General Relativity, where it is
well known that as soon as the deceleration parameter becomes positive the modes of the ∆ solutions (or density
contrast) are both decreasing. The suppression of perturbations due to the presence of classical forms of Dark Energy
(DE) is one of the most important sources of constraints on the nature of DE itself. Our example shows that if one
considers DE as a manifestation of the non-Einsteinian nature of the gravitational interaction on large scales, there
is the possibility to have an accelerated expanding background that is compatible with the growth of structures. Of
course, in order to better understand this effect, one should also analyze the evolution of perturbations on small scales.
However this analysis is beyond the scope of this paper and it is left to left to a future, more detailed investigation.

In the limit n→ 1 two of the modes of (107) reproduce the two classical modes t2/3 and t−1 typical of GR, but the
other two diverge. At first glance this might be surprising but it does not represent a real pathology of the model. In
fact equation (103) reduces to a first order differential equation when n = 1. Therefore in this case the two modes in
the solution can be discarded and GR is recovered.

From the system (100) we can also obtain the solution for the other scalars:

R = K5t
2nw
w+1−3 + K6t

β+ + K7t
β− −K8

C0

S2
0

t−
4n

3(w+1) (113)

$ = K9t
2nw
w+1−1 + K10t

γ+ + K11t
γ− −K12

C0

S2
0

t−
4n

3(w+1)−1 (114)

where

β± = α± − 2 , (115)
γ± = α± − 3 (116)

and the constants K5, ..K12 are all functions of K1, ..K4. These expressions are rather complicated and will not be
given here. It is interesting that these quantities have an oscillatory behavior for the same values of n for which ∆m

is oscillating. Also for these quantities the oscillating modes are always decreasing.
Finally it is useful to derive and expression for the Newtonian potential ΦN given in (64) which for our background

takes the form

ΦN =
4nS2

0K1t
2wn
w+1+ 4n

3(w+1)−3

3(w + 1)2
+

4n (2nw − (w + 1)α−) S2
0K2t

4n
3(w+1)+β−

3(w + 1)3

+
4n (2nω − (w + 1)α+) S2

0K3t
4n

3(w+1)+β+

3(w + 1)3
+

9(w + 1)3 − 16n(2n + 3(n− 1)w − 3)K4

18(ω + 1)3
C0 . (117)
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✦ For 0.33 < n < 0.71 and 1 < n < 1.32 the modes 
become oscillatory with negative real part

✦Only for 1.32 < n < 1.43 do the modes grow at a rate less than the 
standard GR growing mode
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The long wavelength perturbations grow for all values 
of n, even for an accelerated background!
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fact equation (103) reduces to a first order differential equation when n = 1. Therefore in this case the two modes in
the solution can be discarded and GR is recovered.

From the system (100) we can also obtain the solution for the other scalars:

R = K5t
2nw
w+1−3 + K6t

β+ + K7t
β− −K8

C0

S2
0

t−
4n

3(w+1) (113)

$ = K9t
2nw
w+1−1 + K10t

γ+ + K11t
γ− −K12

C0

S2
0

t−
4n

3(w+1)−1 (114)

where

β± = α± − 2 , (115)
γ± = α± − 3 (116)

and the constants K5, ..K12 are all functions of K1, ..K4. These expressions are rather complicated and will not be
given here. It is interesting that these quantities have an oscillatory behavior for the same values of n for which ∆m

is oscillating. Also for these quantities the oscillating modes are always decreasing.
Finally it is useful to derive and expression for the Newtonian potential ΦN given in (64) which for our background

takes the form

ΦN =
4nS2

0K1t
2wn
w+1+ 4n

3(w+1)−3

3(w + 1)2
+

4n (2nw − (w + 1)α−) S2
0K2t

4n
3(w+1)+β−

3(w + 1)3

+
4n (2nω − (w + 1)α+) S2

0K3t
4n

3(w+1)+β+

3(w + 1)3
+

9(w + 1)3 − 16n(2n + 3(n− 1)w − 3)K4

18(ω + 1)3
C0 . (117)

Large-scale density perturbations

n



This quantity tells us how the fluctuations of matter 
depend on the wavenumber  at a specific time and carries 
informations on the amplitude of the perturbations.

The Matter Power Spectrum

〈∆m(k1)∆m(k2)〉 = P (k1)δ(k1 + k2)

An important quantity to characterized the small scale 
perturbations in the power spectrum 



This quantity tells us how the fluctuations of matter 
depend on the wavenumber  at a specific time and carries 
informations on the amplitude of the perturbations.

The Matter Power Spectrum

〈∆m(k1)∆m(k2)〉 = P (k1)δ(k1 + k2)

An important quantity to characterized the small scale 
perturbations in the power spectrum 

In GR the power spectrum on large scale is constant, 
while on small scales it is suppressed depending on the 
nature of the cosmological fluid(s).

The case of dust is special: perturbations are scale 
invariant.
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n = 1.6
n = 1.7

At large and small scales the spectrum is invariant.

Oscillations can occur around a specific 
value of k depending on the parmareter “n”.

The effect of fourth 
order gravity is then 
evident only around a 
specific value of k.
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Evolution of P(k) [n=1.4, w =0]

The small scale perturbations loose power in time (and 
the Large scale ones grow)
Oscillations in the spectrum start to appear as 
the universe evolves.
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The Case F(R)=R+αRn

Point Coordinates (x, y, z, Ω) Scale Factor
A (0, 0, 0, 0) a(t) = (t− t0)
B (−1, 0, 0, 0) a(t) = a0 (t− t0)

1/2

C (−1− 3w, 0, 0,−1− 3w) a(t) = (t− t0)
D (1− 3w, 0, 0, 2− 3w) a(t) = a0 (t− t0)

1/2

E∗ (0,−2,−1, 0)

{
a(t) = a0,
a(t) = a0 exp

[
±2
√

3αγ(2− 3n)γ(t− t0)
]
,

γ = 1
2(1−n)

F (2, 0, 2, 0) a(t) = (t− t0)
G (4, 0, 5, 0) a(t) = a0 (t− t0)

1/2

H (2(1− n), 2n(n− 1), 2(1− n), 0) a(t) =
√

1− 2n(n− 1) (t− t0)

I∗
(

2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 , 5−4n
2n2−3n+1 , 0

)
a(t) = a0 (t− t0)

2n2−3n+1
2−n

L
(
− 3(n−1)(w+1)

n , −4n+3w+3
2n , a(t) = a0 (t− t0)

2n
3(w+1)

−4n+3w+3
2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)

2n2

)

A =
∫

d4x
√
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Same features of the previous example are independenT of 
the values of α i.e. the value of the coupling only affects 
the dynamics
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Is this result general?

IF verified, this result would constitute a 
clear and relatively easy way to probe
fourth order gravity on cosmological scale.

✴ The k-structure of the perturbation equations is 
independent from the theory of gravity,

✴ the interaction between fourth order gravity and 
matter is maximized at certain specific scales and becomes 
negligible at large and small scales.

We don’t know 
(yet), BUT....

WORK IN PROGRESS with other models.
PROBLEM: we don’t really know much about their 
background. 



Conclusions

We have analyzed in detail some examples gaining a 
deeper understanding of the features of the matter 
era in this framework .

There is strong indication that the spectrum of the 
scalar perturbations in f(R)-gravity presents a 
characteristic signature which could be a crucial 
test of the validity of these schemes.

We have used the  covariant approach 
to investigate the behavior of scalar 
perturbations for a generic fourth 
gravity theory
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