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MANY DIFFERENT MODELS FOR DARK ENERGY HAVE BEEN PROPOSED SO
FAR. WE WILL FOCUS ON THE ONES BASED ON FOURTH ORDER
GRAVITY (FOG)




FOURTH ORDER GRAVITY

IN HOMOGENEOUS AND ISOTROPIC
SPACETIMES A GENERAL ACTION FOR
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MATTER IS
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FOURTH ORDER GRAVITY

IN HOMOGENEOUS AND ISOTROPIC
SPACETIMES A GENERAL ACTION FOR

FOURTH ORDER GRAVITY IN PRESENCE OF
MATTER IS

A:/d%\/?gf(RH/d%\/TgLM.

VARYING WITH RESPECT TO THE METRIC
GIVES

f/(R)Rab ey %f(R)gab o f/(R);Cd (gcagdb gcdga,b) 1 T
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AND THE ‘“PRIME” DENOTES THE DERIVATIVE WITH RESPECT TO
THE RICCI SCALAR.
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1+3 COVARIANT APPROACH

GIVEN THE VECTOR FIELD ASSOCIATED TO A TIME-LIKE FLOW IN THE

MODEL:
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BIANCHI IDENTITIES

RICCI IDENTITIES
-
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THIS APPROACH HAS MANY ADVANTAGES:

—>

EQUIVALENT TO
THE EINSTEIN
EQNS

@ ITS VARIABLES HAVE A CLEAR PHYSICAL MEANING AT ANY
STAGE OF THE CALCULATIONS AND ARE GAUGE INVARIANT

@ THE TREATMENT OF BOTH THE EXACT AND THE LINEARIZED
THEORY IS CONSIDERABLY SIMPLIFIED

@ THE SAME VARIABLES CAN BE USED IN PERTURBING
DIFFERENT MODELS E.G ANISOTROPIC SPACETIMES ETC.

[T A
. IT IS EASILY ADAPTABLE TO ALTERNATIVE GRAVITY
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NOTE THE K STRUCTURE OF THESE EQUATIONS. IT WILL BE
IMPORTANT FOR OUR FINAL RESULTS.
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A SIMPLE EXAMPLE...
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LET US INVESTIGATE THE BEHAVIOR OF THE
PERTURBATIONS AROUND THIS POINT.




LARGE-SCALE DENSITY PERTURBATIONS




LARGE-SCALE DENSITY PERTURBATIONS

Am == Klt—l L KQ.L.(X—I—lw:O L tha_|wzo i




LARGE-SCALE DENSITY PERTURBATIONS

Afm T Klt_l -+ KQtO‘—I—|w:O e tha—|w:o i




LARGE-SCALE DENSITY PERTURBATIONS

Am == Klt—l L KQtOH_lw:O L tha_|wzo i

FOR O.33 < N<O.71 AND1 <N < 1.32 THE MODES

BECOME OSCILLATORY WITH NEGATIVE REAL PART

ONLY FOR DO THE MODES GROW AT A RATE LESS THAN THE
STANDARD GR GROWING MODE




LARGE-SCALE DENSITY PERTURBATIONS
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THE LONG WAVELENGTH PERTURBATIONS GROW FOR ALL VALUES
OF N, EVEN FOR AN ACCELERATED BACKGROUND!




THE MATTER POWER SPECTRUM

AN IMPORTANT QUANTITY TO CHARACTERIZED THE SMALL SCALE
PERTURBATIONS IN THE POWER SPECTRUM
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THIS QUANTITY TELLS US HOW THE FLUCTUATIONS OF MATTER
DEPEND ON THE WAVENUMBER AT A SPECIFIC TIME AND CARRIES
INFORMATIONS ON THE AMPLITUDE OF THE PERTURBATIONS.
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AN IMPORTANT QUANTITY TO CHARACTERIZED THE SMALL SCALE
PERTURBATIONS IN THE POWER SPECTRUM

(A (k1)Ap(k2)) = P(k1)d(ky + ko)

THIS QUANTITY TELLS US HOW THE FLUCTUATIONS OF MATTER
DEPEND ON THE WAVENUMBER AT A SPECIFIC TIME AND CARRIES
INFORMATIONS ON THE AMPLITUDE OF THE PERTURBATIONS.

IN GR THE POWER SPECTRUM ON LARGE SCALE IS CONSTANT,
WHILE ON SMALL SCALES IT IS SUPPRESSED DEPENDING ON THE

NATURE OF THE COSMOLOGICAL FLUID(S).

THE CASE OF DUST IS SPECIAL: PERTURBATIONS ARE
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THE SMALL SCALE PERTURBATIONS LOOSE POWER IN TIME (AND
THE LARGE SCALE ONES GROW)




EVOLUTION OF P(K) [N=1.4, w =0]

log P(k)

- B —0.001
N 1 §=10.01
I'”-. -

logqo K

0

THE SMALL SCALE PERTURBATIONS LOOSE POWER IN TIME (AND
THE LARGE SCALE ONES GROW)

OSCILLATIONS IN THE SPECTRUM START TO APPEAR AS \/\'\k "
THE UNIVERSE EVOLVES. -ly




THE CASE F(R)=R+aRN

THE ACTION IN THIS CASE READS

Al — /d4:13\/—g R+ aR™ + L]




THE CASE F(R)=R+aRN

THE ACTION IN THIS CASE READS

Al — /d4x\/—g R+ aR"™+ Ly

Coordinates (z, v, z, 2) Scale Factor
(0,0,0,0)
(—1,0,0,0)
EE e e
(1— 3w,0,0,2 — 3w)

{ = gt

a(t) = ag exp [£2v/3a7(2 — 3n)7 (¢t — to)] ,
Pils 2(11—n)

O (0555,0) a(t) = (t — to)
(4,0,5,0) ) Sl
(2= D () 2(1 —n),0) a(t) = /1 —2n(n—1) (t —to)

2(n—2) (5—4n)n #® 2n2ti?+1
( 2n—1 ° 2n2—3n+1° 2n2— 3n—|—1’0) i) = W= vy 1

2n
(_ 3(n— 17)7J(w+1)7 —471—2#;;3}4;—#[‘37 a(t) = ag (t — to) 3D

—4n+3w+3 —2(3w—|—4)n2+(9w—|—13)n—3(w—|—1))

2n2 ? 2n2

(0,—2,-1,0)




THE CASE F(R)=R+aRN

THE ACTION IN THIS CASE READS

Al — /d4x\/—g R+ aR"™+ Ly

Coordinates (z, v, z, 2) Scale Factor
(0,0,0,0)
(—1,0,0,0)
EE e e
(1— 3w,0,0,2 — 3w)

{ = gt

a(t) = ag exp [£2v/3a7(2 — 3n)7 (¢t — to)] ,
Pils 2(11—n)

O (0555,0) a(t) = (t — to)
(4,0,5,0) ) Sl
(2= D () 2(1 —n),0) a(t) = /1 —2n(n—1) (t —to)

2(n—2) (5—4n)n #® 2n2ti?+1
( 2n—1 ° 2n2—3n+1° 2n2— 3n—|—1’0) i) = W= vy 1

2n
(_ 3(n— 17)7J(w+1)7 —471—2#;;3}4;—#[‘37 a(t) = ag (t — to) 3D

—4n+3w+3 —2(3w—|—4)n2+(9w—|—13)n—3(w—|—1))

2n2 ? 2n2

(0,—2,-1,0)




THE MATTER POWER SPECTRUM
(S=1,N>1,W=0)

Log [P(K)] Log [P(k)]




THE MATTER POWER SPECTRUM
(S=1,N>1,Ww=0)

Log [P(k)] Log [P(k)] _

SAME FEATURES OF THE PREVIOUS EXAMPLE ARE INDEPENDENT OF
THE VALUES OF « I.E. THE VALUE OF THE COUPLING ONLY AFFECTS

THE DYNAMICS A"
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THE K-STRUCTURE OF THE PERTURBATION EQUATIONS IS
INDEPENDENT FROM THE THEORY OF GRAVITY,

THE INTERACTION BETWEEN FOURTH ORDER GRAVITY AND
MATTER IS MAXIMIZED AT CERTAIN SPECIFIC SCALES AND BECOMES
NEGLIGIBLE AT LARGE AND SMALL SCALES.
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(e )

WE DON’T KNOW
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THE K-STRUCTURE OF THE PERTURBATION EQUATIONS IS
INDEPENDENT FROM THE THEORY OF GRAVITY,

THE INTERACTION BETWEEN FOURTH ORDER GRAVITY AND
MATTER IS MAXIMIZED AT CERTAIN SPECIFIC SCALES AND BECOMES
NEGLIGIBLE AT LARGE AND SMALL SCALES.

WORK IN PROGRESS WITH OTHER MODELS.
PROBLEM: WE DON’T REALLY KNOW MUCH ABOUT THEIR
BACKGROUND.

IF VERIFIED, THIS RESULT WOULD CONSTITUTE A

CLEAR AND RELATIVELY EASY WAY TO PROBE
FOURTH ORDER GRAVITY ON COSMOLOGICAL SCALE.




CONCLUSIONS

® WE HAVE USED THE COVARIANT APPROACH '7:'5')
TO INVESTIGATE THE BEHAVIOR OF SCALAR
PERTURBATIONS FOR A GENERIC FOURTH
GRAVITY THEORY

if

® WE HAVE ANALYZED IN DETAIL SOME EXAMPLES GAINING A
DEEPER UNDERSTANDING OF THE FEATURES OF THE MATTER
ERA IN THIS FRAMEWORK .

@ THERE IS STRONG INDICATION THAT THE SPECTRUM OF THE
SCALAR PERTURBATIONS IN F(R)-GRAVITY PRESENTS A
CHARACTERISTIC SIGNATURE WHICH COULD BE A CRUCIAL
TEST OF THE VALIDITY OF THESE SCHEMES.
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