

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

COSMOLOGICAL PERTURBATIONS IN THE DGP SCENARIO

Sanjeev S. Seahra Department of Mathematics & Statistics University of New Brunswick, Canada

> in collaboration with: Antonio Cardoso, Kazuya Koyama and Fabio P Silva

arXiv: 0711.2563 [astro-ph]

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

braneworld models incorporate interesting ideas from string theory

- the universe has extra dimensions
- we live on a "brane"

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

braneworld models incorporate interesting ideas from string theory

- the universe has extra dimensions
- we live on a "brane"

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}} d^5 X \sqrt{-g} (R^{(5)} - 2\Lambda_5) + \frac{1}{2\kappa_4^2} \int_{\Sigma} d^4 x \sqrt{-\gamma} R^{(4)} + \int_{\Sigma} d^4 x \sqrt{-\gamma} (\mathcal{L}_m - \sigma)$$
5D bulk \mathcal{M}
brane tension/vacuum energy
ordinary matter
confined to the
brane
-4-surface Σ

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}} d^5 X \sqrt{-g} (R^{(5)} - 2\Lambda_5) + \frac{1}{2\kappa_4^2} \int_{\Sigma} d^4 x \sqrt{-\gamma} R^{(4)} + \int_{\Sigma} d^4 x \sqrt{-\gamma} (\mathcal{L}_m - \varphi)$$

Randall-Sundrum model

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

each model specified by a single length parameter

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

Braneworld models

DGP background geometry

- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

SA results

NB results

Summary

DGP background geometry

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

braneworld symmetry: we need to excise one half of the bulk and replace it with the mirror image of the other half

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP background geometry
 DGP and the ISW effect

Quasistatic approximation

Comparison to observations

Perturbative formalism

Numerical method

SA results

NB results

Summary

DGP background geometry

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

• DGP background geometry

Quasistatic approximation

Comparison to observations

SA results

NB results

Summary

DGP and the ISW effect
Perturbative formalism
Numerical method

DGP background geometry

• DGP background geometry

Quasistatic approximation

Comparison to observations

SA results

NB results

Summary

DGP and the ISW effect
Perturbative formalism
Numerical method

DGP background geometry

Numerical method

 SA results NB results

Summary

DGP background geometry

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP model lives in 5D flat space: $ds^2 = -r_c^2 du dv + v^2 d\mathbf{x}^2$

branch ambiguity: which half of bulk do we keep?

Perturbative formalism
 Numerical method

DGP and the ISW effect

Braneworld modelsDGP background geometry

- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

further constrain DGP by looking at perturbations

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

further constrain DGP by looking at perturbations

best done with the integrated Sachs-Wolfe (ISW) effect

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

further constrain DGP by looking at perturbations

best done with the integrated Sachs-Wolfe (ISW) effect

Earth

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

further constrain DGP by looking at perturbations best done with the integrated Sachs-Wolfe (ISW) effect

Earth

Braneworld models

DGP background geometry

• DGP and the ISW effect

- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP modifies late structure growth, which modifies ISW effect and leads to changes in...

DGP modifies late structure growth, which modifies ISW effect and leads to changes in...

Angular Scale 20 0.5° 0.2° 90 6000 TT Cross Power Spectrum 5000 A - COM All Data WMAP I((+1)C₁/2π (μK²) 000 000 000 CBI ACBAR **WMAP** 1000 science 0 TE Cross Power Spectrum 3 Reionization team (I+1)C₁/2π (µK²) 2 0 -1 1400 10 40 100 200 400 800 Multipole moment (1)

CMB power spectra

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP modifies late structure growth, which modifies ISW effect and leads to changes in...

- Braneworld modelsDGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

CMB power spectra

CMB-LSS cross correlation

DGP and the late time ISW effect

DGP modifies late structure growth, which modifies ISW effect and leads to changes in...

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

focus on normal branch:

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

DGP and the ISW effect

- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism

- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism

- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Quasistatic approximation

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

equations to solve

brane matter/geometry perturbations controlled by gauge invariant density perturbation:

$$\Delta + 2H\dot{\Delta} - rac{1}{2}\kappa_4^2
ho\gamma_2\Delta = -rac{\epsilon\gamma_4k^4}{4a^5}\Omega_1$$

boundary condition on
$$\Omega$$
:
 $(\mathbf{n} \cdot \nabla \Omega)_{\mathrm{b}} = -\frac{\epsilon \gamma_{1}}{2H} \ddot{\Omega}_{\mathrm{b}} + \frac{9\epsilon \gamma_{3}}{4} \dot{\Omega}_{\mathrm{b}}$
 $-\frac{3(\epsilon \gamma_{3}k^{2} + \gamma_{4}H^{2}a^{2})}{4Ha^{2}} \Omega_{\mathrm{b}} + \frac{3\epsilon r_{\mathrm{c}}\kappa_{4}^{2}\rho a^{3}\gamma_{4}}{2k^{2}} \Delta$

bulk geometry perturbation controlled by master variable Ω : $0 = \frac{\partial^2 \Omega}{\partial u \partial v} - \frac{3}{2v} \frac{\partial \Omega}{\partial u} + \frac{k^2 r_c^2}{4v^2} \Omega$

Quasistatic approximation

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

equations to solve

brane matter/geometry perturbations controlled by gauge invariant density perturbation:

$$\ddot{\Delta} + 2H\dot{\Delta} - \frac{1}{2}\kappa_4^2\rho\gamma_2\Delta = -\frac{\epsilon\gamma_4k^4}{4a^5}\Omega_{\rm b}$$

boundary condition on
$$\Omega$$
:
 $(\mathbf{n} \cdot \nabla \Omega)_{\mathrm{b}} = -\frac{\epsilon \gamma_{1}}{2H} \ddot{\Omega}_{\mathrm{b}} + \frac{9\epsilon \gamma_{3}}{4} \dot{\Omega}_{\mathrm{b}}$
 $-\frac{3(\epsilon \gamma_{3}k^{2} + \gamma_{4}H^{2}a^{2})}{4Ha^{2}} \Omega_{\mathrm{b}} + \frac{3\epsilon r_{\mathrm{c}}\kappa_{4}^{2}\rho a^{3}\gamma_{4}}{2k^{2}} \Delta$

bulk geometry perturbation controlled by master variable Ω : $0 = \frac{\partial^2 \Omega}{\partial u \partial v} - \frac{3}{2v} \frac{\partial \Omega}{\partial u} + \frac{k^2 r_c^2}{4v^2} \Omega$ Koyama & Maartens (2006) have devoloped a "quasistatic approximation" to solve this system

SA results

NB results

Summary

SA results

NB results

Summary

Braneworld models

Numerical method

SA results

NB results

Summarv

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

How good is the quasistatic approximation?

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

How good is the quasistatic approximation?

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation

- NB results
- Comparison to observations
- Summary

Normal branch results

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results

● NB results

- Comparison to observations
- Summary

- $\Omega_{r_c} = 1/4H_0^2 r_c^2 \rightarrow 0$ corresponds to Λ CDM limit ■ unlike SA branch, Φ_- is larger than Λ CDM
- curves are close to QS (not shown) for $k \gtrsim 0.01 \, h \, {\rm Mpc}^{-1}$

Normal branch results

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

Comparison to observations

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:

Comparison to observations

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:

concentrate on QS regime

Comparison to observations

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:

- concentrate on QS regime
- use fitting functions in place of simulation results (PPF formalism)

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:

- concentrate on QS regime
- use fitting functions in place of simulation results (PPF formalism)
- Giannantonio et al (2008):

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:

- concentrate on QS regime
- use fitting functions in place of simulation results (PPF formalism)

Giannantonio et al (2008):

considered normal branch in QS regime

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure
- curvature helps fit

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure
- curvature helps fit
- Fang et al (2008):

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure
- curvature helps fit
- Fang et al (2008):
 - concentrated on SA branch using PPF framework

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure
- curvature helps fit
- Fang et al (2008):
 - concentrated on SA branch using PPF framework
 - $k \lesssim 0.01 \, h \, {
 m Mpc}^{-1}$ DGP modes give rise to too much power in $l \lesssim 10$ CMB

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- direct solution for 5D perturbations too expensive for Boltzmann codes/Monte Carlo methods, instead:
 - concentrate on QS regime
 - use fitting functions in place of simulation results (PPF formalism)

- considered normal branch in QS regime
- current measurements cannot rule model out
 - improve observations of CMB-LSS cross-correlation applies more pressure
- curvature helps fit
- Fang et al (2008):
 - concentrated on SA branch using PPF framework
 - $k \lesssim 0.01 \, h \, {
 m Mpc}^{-1}$ DGP modes give rise to too much power in $l \lesssim 10$ CMB
 - self-acceleration is in trouble

Braneworld models

- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations

Summary

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

we have solved the bulk/brane linear perturbations equations in the DGP model

no additional approximations

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature
 - quasistatic approximation valid on scales $\lesssim 100\,{\rm Mpc}$

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature
 - quasistatic approximation valid on scales $\lesssim 100 \, {
 m Mpc}$
 - direct scaling solution gives sufficiently accurate results on all interesting scales

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature
 - quasistatic approximation valid on scales $\lesssim 100 \, {
 m Mpc}$
 - direct scaling solution gives sufficiently accurate results on all interesting scales
- perturbation results have been compared to observations

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature
 - quasistatic approximation valid on scales $\lesssim 100 \, {
 m Mpc}$
 - direct scaling solution gives sufficiently accurate results on all interesting scales
- perturbation results have been compared to observations
 - self-accelerating DGP is in trouble due to excess large scale power in CMB

- Braneworld models
- DGP background geometry
- DGP and the ISW effect
- Perturbative formalism
- Numerical method
- Quasistatic approximation
- SA results
- NB results
- Comparison to observations
- Summary

- no additional approximations
- results independent of bulk initial conditions
- tested other approximations in the literature
 - quasistatic approximation valid on scales $\lesssim 100\,{\rm Mpc}$
 - direct scaling solution gives sufficiently accurate results on all interesting scales
- perturbation results have been compared to observations
 - self-accelerating DGP is in trouble due to excess large scale power in CMB
 - normal branch still alive but future measures of ISW-LSS cross correlation will be more definitive