On the Stability of the Einstein Static Universe in f(R)-gravity

Naureen Goheer University of Cape Town

Outline

Naureen Goheer, University of Cape Town

• why are we interested in the Einstein static (ES) model?

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review
- why modified gravity, in particular f(R)-gravity?

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical system analysis of the closed FRW state space (including the ES model)

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical system analysis of the closed FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background

- why are we interested in the Einstein static (ES) model?
 - basic features, historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical system analysis of the closed FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background
- compare and interpret the results obtained from the two approaches

The Background: Einstein Static (ES)

Naureen Goheer, University of Cape Town

The Background: Einstein Static (ES)

 originally introduced by Einstein in 1917 to construct a static solution of the GR field equations

The Background: Einstein Static (ES)

- originally introduced by Einstein in 1917 to construct a static solution of the GR field equations
- cosmological constant exactly balances energy content: $\Lambda = 4\pi(\rho_0 + 3\rho_0) = 4\pi(1+3w)\rho_0$ for perfect fluid

The Background: Einstein Static (ES)

- originally introduced by Einstein in 1917 to construct a static solution of the GR field equations
- cosmological constant exactly balances energy content: $\Lambda = 4\pi(\rho_0 + 3\rho_0) = 4\pi(1+3w)\rho_0$ for perfect fluid

• topology
$$R \times S^3$$
, metric: $ds^2 = -dt^2 + a_0^2 \left[\frac{dr^2}{1 - r^2} + r^2 d\Omega^2 \right]$ with fixed finite radius $a_0 (R = {}^3R = 6 / a_0^2)$

The Background: Einstein Static (ES)

- originally introduced by Einstein in 1917 to construct a static solution of the GR field equations
- cosmological constant exactly balances energy content: $\Lambda = 4\pi(\rho_0 + 3\rho_0) = 4\pi(1+3w)\rho_0$ for perfect fluid

• topology $R \times S^3$, metric: $ds^2 = -dt^2 + a_0^2 \left[\frac{dr^2}{1 - r^2} + r^2 d\Omega^2 \right]$ with fixed finite radius $a_0 (R = {}^3R = 6 / a_0^2)$

abandoned when observations showed that the universe is expanding

features of ES model

Naureen Goheer, University of Cape Town

features of ES model

• ES maximizes entropy within family of FRW radiation models (Gibbons 1987)

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)
- ES is unstable against homogeneous linear perturbations (Eddington 1930)

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)
- ES is unstable against homogeneous linear perturbations (Eddington 1930)
 expansion/contraction

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)
- ES is unstable against homogeneous linear perturbations (Eddington 1930)
 - expansion/contraction
 - allows for transition from decelerated expansion to acceleration in ACDM cosmology

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)
- ES is unstable against homogeneous linear perturbations (Eddington 1930)
 - expansion/contraction
 - allows for transition from decelerated expansion to acceleration in ACDM cosmology
- ES is neutrally stable against inhomogeneous linear perturbations for w>1/5 (Harrison 1967, Gibbons 1987, 1988, Barrow 2003)

- ES maximizes entropy within family of FRW radiation models (Gibbons 1987)
- ES is the unique highest symmetry non-empty FRW model (Ellis 1967)
- ES is unstable against homogeneous linear perturbations (Eddington 1930)
 - expansion/contraction
 - allows for transition from decelerated expansion to acceleration in ΛCDM cosmology
- ES is neutrally stable against inhomogeneous linear perturbations for w>1/5 (Harrison 1967, Gibbons 1987, 1988, Barrow 2003)
 - reason for this "Non-Newtonian" stability: maximum scale (finite "size" of the universe) => fluctuations oscillate rather than grow

 initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)

- initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)
 - \rightarrow avoid initial singularity (and maybe quantum regime)

- initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)
 - \rightarrow <u>avoid initial singularity</u> (and maybe quantum regime)
 - → <u>no horizon problem</u>

- initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)
 - \rightarrow <u>avoid initial singularity</u> (and maybe quantum regime)
 - → <u>no horizon problem</u>
- transient phase: BB → inflation → decelerating phase → ES (inflection point) → accelerating phase (DE/dS regime)

- initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)
 - \rightarrow avoid initial singularity (and maybe quantum regime)
 - → <u>no horizon problem</u>
- transient phase: BB → inflation → decelerating phase → ES (inflection point) → accelerating phase (DE/dS regime)
 - → <u>time for structure formation</u>

- initial state: ES → inflation → decelerating phase → accelerating phase ("emergent universe", Ellis & Maartens, 2002)
 - \rightarrow avoid initial singularity (and maybe quantum regime)
 - → <u>no horizon problem</u>
- transient phase: BB → inflation → decelerating phase → ES (inflection point) → accelerating phase (DE/dS regime)
 - → <u>time for structure formation</u>
- find orbits in the dynamical systems analysis corresponding to one of the scenarios above

- why are we interested in the Einstein static (ES) model?
 - historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical system analysis of FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background
- compare and interpret the results obtained from the two approaches

why modify GR?

Naureen Goheer, University of Cape Town

why modify GR?

the "Standard" ACDM Model of cosmology fits observational data (CMB, LSS) very well if we assume that the universe is dominated by Dark Energy (74%) and Dark Matter (22%)

why modify GR?

- the "Standard" ΛCDM Model of cosmology fits observational data (CMB, LSS) very well if we assume that the universe is dominated by Dark Energy (74%) and Dark Matter (22%)
- shortcomings: dark matter and dark energy unexplained/ not observed directly
 - ACDM model does not give theoretical explanation for late time acceleration
 ==> it is more of an empirical fit to data
 - must introduce scalar fields and/or fine-tuned cosmological constant for inflation and DE
 - quantum regime?

why modify GR?

- the "Standard" ACDM Model of cosmology fits observational data (CMB, LSS) very well if we assume that the universe is dominated by Dark Energy (74%) and Dark Matter (22%)
- shortcomings: dark matter and dark energy unexplained/ not observed directly
 - ACDM model does not give theoretical explanation for late time acceleration
 => it is more of an empirical fit to data
 - must introduce scalar fields and/or fine-tuned cosmological constant for inflation and DE
 - quantum regime?
- one option to avoid introducing dark components: modify theory of gravity itself on relevant scales
 - interesting to note: unique status of GR was questioned by Weyl (1919) and Eddington (1922) by considering higher order invariants in the GR action

Naureen Goheer, University of Cape Town

f(R)-gravity

Naureen Goheer, University of Cape Town

f(R)-gravity

• generalize Einstein-Hilbert action
$$\mathcal{A}_{EH} = \int d^4x \sqrt{-g}R$$

f(R)-gravity

- generalize Einstein-Hilbert action $\mathcal{A}_{EH} = \int d^4x \sqrt{-g}R$
- $R \rightarrow \underline{\text{function of Ricci scalar}} f(R)$

f(R)-gravity

- generalize Einstein-Hilbert action $\mathcal{A}_{EH} = \int d^4x \sqrt{-g}R$
- $R \rightarrow \text{function of Ricci scalar} f(R)$
- f(R) is good toy model: simple, but has the nice feature of admitting late time accelerating models (alternative to DE)

linearized 1+3 eqs. around FRW

$$\begin{split} \Theta^2 &= 3 \left[\rho^T + \frac{\Lambda}{f'} \right] - \frac{3}{2} \tilde{R} \\ \rho^{\dot{m}} &= -\Theta \rho^m (1+w) \\ \dot{\Theta} &= -\frac{1}{3} \Theta^2 + \tilde{\nabla}^a A_a - \frac{1}{2} \left(\rho^T + 3p^T \right) + \frac{\Lambda}{f'} \\ A^a &= \dot{u}^a - \frac{w}{w+1} \frac{\tilde{\nabla}^a \rho^m}{\rho^m} \\ \dot{\sigma}_{ab} &= -\frac{2}{3} \Theta \sigma_{ab} - E_{ab} + \frac{1}{2} \Pi_{ab} + \tilde{\nabla}_{\langle a} A_{b \rangle} \\ \dot{E}_{ab} &= -\Theta E_{ab} + curl(H_{ab}) - \frac{1}{2} \left(+p^T \right) \sigma_{ab} \\ &\quad -\frac{1}{6} \Theta \Pi_{ab} - \frac{1}{2} \dot{\Pi}_{ab} - \frac{1}{2} \tilde{\nabla}_{\langle a} q_{b \rangle} \\ \dot{H}_{ab} &= -\Theta H_{ab} - curl(E_{ab}) + \frac{1}{2} curl(\Pi_{ab}) \\ \dot{\omega}_a &= -\frac{2}{3} \Theta \omega_a - \frac{1}{2} curl(A_a) \end{split}$$

• plus constraint equations

linearized 1+3 eqs. around FRW

$$\begin{split} \Theta^2 &= 3 \left[\rho^T + \frac{\Lambda}{f'} \right] - \frac{3}{2} \tilde{R} \\ \rho^{\dot{m}} &= -\Theta \rho^m (1+w) \\ \dot{\Theta} &= -\frac{1}{3} \Theta^2 + \tilde{\nabla}^a A_a - \frac{1}{2} \left(\rho^T + 3p^T \right) + \frac{\Lambda}{f'} \\ A^a &= \dot{u}^a - \frac{w}{w+1} \frac{\tilde{\nabla}^a \rho^m}{\rho^m} \\ \dot{\sigma}_{ab} &= -\frac{2}{3} \Theta \sigma_{ab} - E_{ab} + \frac{1}{2} \Pi_{ab} + \tilde{\nabla}_{\langle a} A_{b \rangle} \\ \dot{E}_{ab} &= -\Theta E_{ab} + curl(H_{ab}) - \frac{1}{2} \left(+p^T \right) \sigma_{ab} \\ &\quad -\frac{1}{6} \Theta \Pi_{ab} - \frac{1}{2} \dot{\Pi}_{ab} - \frac{1}{2} \tilde{\nabla}_{\langle a} q_{b \rangle} \\ \dot{H}_{ab} &= -\Theta H_{ab} - curl(E_{ab}) + \frac{1}{2} curl(\Pi_{ab}) \\ \dot{\omega}_a &= -\frac{2}{3} \Theta \omega_a - \frac{1}{2} curl(A_a) \end{split}$$

• plus constraint equations

Naureen Goheer, University of Cape Town

for FRW background, A=ω=σ=0 and
 ∇^af=0 for all scalars *f*, and only the
 first 3 equations are non-zero

linearized 1+3 eqs. around FRW

$$\begin{split} \Theta^2 &= 3 \left[\rho^T + \frac{\Lambda}{f'} \right] - \frac{3}{2} \tilde{R} \\ \rho^{in} &= -\Theta \rho^m (1+w) \\ \dot{\Theta} &= -\frac{1}{3} \Theta^2 + \tilde{\nabla}^a A_a - \frac{1}{2} \left(\rho^T + 3p^T \right) + \frac{\Lambda}{f'} \\ A^a &= \dot{u}^a - \frac{w}{w+1} \frac{\tilde{\nabla}^a \rho^m}{\rho^m} \\ \dot{\sigma}_{ab} &= -\frac{2}{3} \Theta \sigma_{ab} - E_{ab} + \frac{1}{2} \Pi_{ab} + \tilde{\nabla}_{\langle a} A_{b \rangle} \\ \dot{E}_{ab} &= -\Theta E_{ab} + curl(H_{ab}) - \frac{1}{2} \left(+p^T \right) \sigma_{ab} \\ &\quad -\frac{1}{6} \Theta \Pi_{ab} - \frac{1}{2} \dot{\Pi}_{ab} - \frac{1}{2} \tilde{\nabla}_{\langle a} q_{b \rangle} \\ \dot{H}_{ab} &= -\Theta H_{ab} - curl(E_{ab}) + \frac{1}{2} curl(\Pi_{ab}) \\ \dot{\omega}_a &= -\frac{2}{3} \Theta \omega_a - \frac{1}{2} curl(A_a) \end{split}$$

- for FRW background, A=ω=σ=0 and
 ∇^af=0 for all scalars *f*, and only the
 first 3 equations are non-zero
- linearized 1+3 eqs. fully characterize linear perturbations around FRW background

• plus constraint equations

linearized 1+3 eqs. around FRW

$$\begin{split} \Theta^2 &= 3 \left[\rho^T + \frac{\Lambda}{f'} \right] - \frac{3}{2} \tilde{R} \\ \rho^{in} &= -\Theta \rho^m (1+w) \\ \dot{\Theta} &= -\frac{1}{3} \Theta^2 + \tilde{\nabla}^a A_a - \frac{1}{2} \left(\rho^T + 3p^T \right) + \frac{\Lambda}{f'} \\ A^a &= \dot{u}^a - \frac{w}{w+1} \frac{\tilde{\nabla}^a \rho^m}{\rho^m} \\ \dot{\sigma}_{ab} &= -\frac{2}{3} \Theta \sigma_{ab} - E_{ab} + \frac{1}{2} \Pi_{ab} + \tilde{\nabla}_{\langle a} A_{b \rangle} \\ \dot{E}_{ab} &= -\Theta E_{ab} + curl(H_{ab}) - \frac{1}{2} \left(+p^T \right) \sigma_{ab} \\ &\quad -\frac{1}{6} \Theta \Pi_{ab} - \frac{1}{2} \dot{\Pi}_{ab} - \frac{1}{2} \tilde{\nabla}_{\langle a} q_{b \rangle} \\ \dot{H}_{ab} &= -\Theta H_{ab} - curl(E_{ab}) + \frac{1}{2} curl(\Pi_{ab}) \\ \dot{\omega}_a &= -\frac{2}{3} \Theta \omega_a - \frac{1}{2} curl(A_a) \end{split}$$

• plus constraint equations

- for FRW background, A=ω=σ=0 and
 ∇^af=0 for all scalars *f*, and only the first 3 equations are non-zero
- linearized 1+3 eqs. fully characterize linear perturbations around FRW background

• $\rho^T = \rho^m / f' + \rho^R$ etc, where ρ^R contains the "curvature corrections"

linearized 1+3 eqs. around FRW

- $\Theta^2 = 3 \left[\rho^T + \frac{\Lambda}{f'} \right] \frac{3}{2} \tilde{R} \longleftarrow \left| \begin{array}{c} \text{spatial} \\ \text{curvature} \end{array} \right|$ $\rho^{im} = -\Theta\rho^m(1+w)$ $\dot{\Theta} = -\frac{1}{3}\Theta^2 + \tilde{\nabla}^a A_a - \frac{1}{2}\left(\rho^T + 3p^T\right) + \frac{\Lambda}{f'}$ $A^a = \dot{u}^a - \frac{w}{w+1} \frac{\nabla^a \rho^m}{\rho^m}$ $\dot{\sigma}_{ab} = -\frac{2}{3}\Theta\sigma_{ab} - E_{ab} + \frac{1}{2}\Pi_{ab} + \tilde{\nabla}_{\langle a}A_{b\rangle}$ $\dot{E}_{ab} = -\Theta E_{ab} + curl(H_{ab}) - \frac{1}{2} \left(+p^T\right) \sigma_{ab}$ $-\frac{1}{6}\Theta\Pi_{ab} - \frac{1}{2}\dot{\Pi}_{ab} - \frac{1}{2}\tilde{\nabla}_{\langle a}q_{b\rangle}$ $\dot{H}_{ab} = -\Theta H_{ab} - curl(E_{ab}) + \frac{1}{2}curl(\Pi_{ab})$ $\dot{\omega}_a = -\frac{2}{3}\Theta\omega_a - \frac{1}{2}curl(A_a)$
- plus constraint equations

- for FRW background, A=ω=σ=0 and
 ∇^af=0 for all scalars *f*, and only the
 first 3 equations are non-zero
- linearized 1+3 eqs. fully characterize linear perturbations around FRW background
- $\rho^T = \rho^m / f' + \rho^R$ etc, where ρ^R contains the "curvature corrections"

► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$)

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations
- ► f(R): fix w, $\Lambda \rightarrow$ fixes $f(R) = a+b \cdot R^n$ with $n=3/2 \cdot (1+w)$, $a=2\Lambda$ and b=b(n,w)

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations
- ► f(R): fix w, $\Lambda \rightarrow$ fixes $f(R) = a+b \cdot R^n$ with $n=3/2 \cdot (1+w)$, $a=2\Lambda$ and b=b(n,w)
 - → the cosmological constant effectively cancels

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations
- ► f(R): fix w, $\Lambda \rightarrow$ fixes $f(R) = a+b \cdot R^n$ with $n=3/2 \cdot (1+w)$, $a=2\Lambda$ and b=b(n,w)
 - → the cosmological constant effectively cancels
 - \rightarrow ES in general only exists for specific *f*(*R*)

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations
- ► f(R): fix w, $\Lambda \rightarrow$ fixes $f(R) = a+b \cdot R^n$ with $n=3/2 \cdot (1+w)$, $a=2\Lambda$ and b=b(n,w)
 - → the cosmological constant effectively cancels
 - \rightarrow ES in general only exists for specific *f*(*R*)
 - \rightarrow ES can exist for any R

- ► review GR: fix w, $\Lambda \rightarrow fix a_0$, $\rho_0 \iff R=^3R$
- assume ES exist in *f(R)*
- use the background field equations
- ► f(R): fix w, $\Lambda \rightarrow$ fixes $f(R) = a+b \cdot R^n$ with $n=3/2 \cdot (1+w)$, $a=2\Lambda$ and b=b(n,w)
 - → the cosmological constant effectively cancels
 - \rightarrow ES in general only exists for specific *f*(*R*)
 - \rightarrow ES can exist for any R
- interesting constraint!

Outline

- why are we interested in the Einstein static (ES) model?
 - historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical systems analysis of the closed FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background
- compare and interpret the results obtained from the two approaches

Dynamical Systems

Naureen Goheer, University of Cape Town

Dynamical Systems

• study stability of certain exact solutions within classes of exact solutions

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time

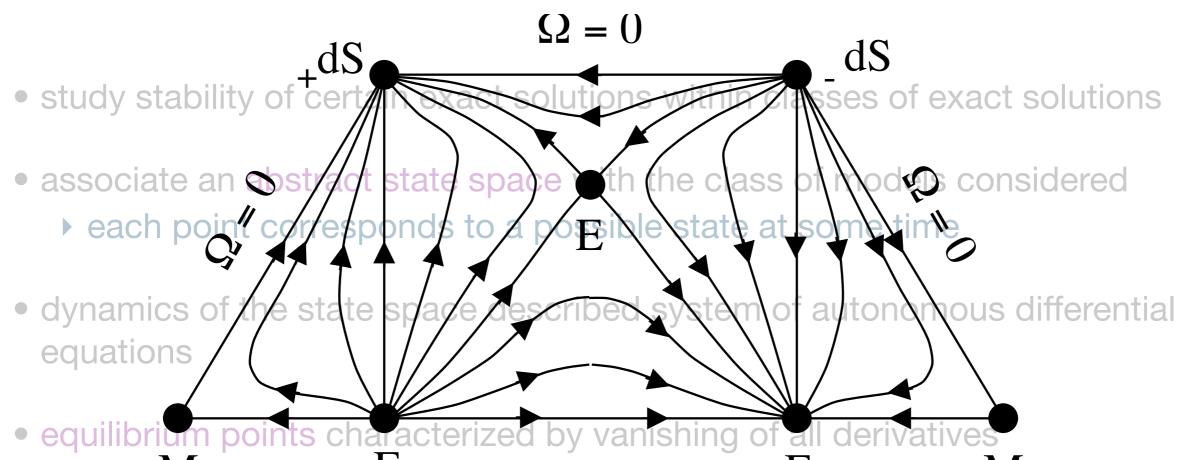
- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time
- dynamics of the state space described system of autonomous differential equations

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time
- dynamics of the state space described system of autonomous differential equations
- equilibrium points characterized by vanishing of all derivatives

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time
- dynamics of the state space described system of autonomous differential equations
- equilibrium points characterized by vanishing of all derivatives
 - If the system is in this state once it will remain there forever

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time
- dynamics of the state space described system of autonomous differential equations
- equilibrium points characterized by vanishing of all derivatives
 - If the system is in this state once it will remain there forever
 - correspond to solutions with special symmetries

- study stability of certain exact solutions within classes of exact solutions
- associate an abstract state space with the class of models considered
 - each point corresponds to a possible state at some time
- dynamics of the state space described system of autonomous differential equations
- equilibrium points characterized by vanishing of all derivatives
 - If the system is in this state once it will remain there forever
 - correspond to solutions with special symmetries
 - can be classified as sources (repellers), sinks (attractors) and saddles according to the sign if their eigenvalues (i.e. linearize the system around each equilibrium point)



- ▶ if the Mystem is in the Fis state once it will remain Fthere forever
- correspond to solutions with special symmetries
- can be classified as sources (repellers), sinks (attractors) and saddles according to the sign if their eigenvalues (i.e. linearize the system around each equilibrium point)

Choice of variables for closed FRW models in f(R)

Naureen Goheer, University of Cape Town

Choice of variables for closed FRW models in f(R)

• basic concept:

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit
 - must find a normalization that accomplishes this (see Goliath & Ellis, 1999)

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit
 - must find a normalization that accomplishes this (see Goliath & Ellis, 1999)
- choose

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit
 - must find a normalization that accomplishes this (see Goliath & Ellis, 1999)
- choose
 - dynamical systems variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

Naureen Goheer, University of Cape Town

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit
 - must find a normalization that accomplishes this (see Goliath & Ellis, 1999)
- choose
 - dynamical systems variables

$$x = \frac{3\dot{R}}{2RD}(n-1), \quad y = \frac{3R}{2nD^2}(n-1), \quad z = \frac{3\rho^m}{nR^{n-1}D^2}, \quad K = \frac{3\tilde{R}}{2D^2}, \qquad Q = \frac{\Theta}{D}$$

• time variable $' \equiv \frac{d}{d\tau} \equiv \frac{1}{D}\frac{d}{dt}.$

Naureen Goheer, University of Cape Town

- basic concept:
 - define dimensionless compact variables labeling each point in the state space, and a dimensionless well-defined time-variable measuring the "time" along each DS orbit
 - must find a normalization that accomplishes this (see Goliath & Ellis, 1999)
- choose
 - dynamical systems variables

$$x = \frac{3\dot{R}}{2RD}(n-1), \quad y = \frac{3R}{2nD^2}(n-1), \quad z = \frac{3\rho^m}{nR^{n-1}D^2}, \quad K = \frac{3\tilde{R}}{2D^2}, \qquad Q = \frac{\Theta}{D}$$

• time variable $' \equiv \frac{d}{d\tau} \equiv \frac{1}{D}\frac{d}{dt}$.
• together with the normalization $D \equiv \sqrt{\left(\Theta + \frac{3(n-1)}{2}\frac{\dot{R}}{R}\right)^2 + \frac{3}{2}\tilde{R}}$

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

look at the class of FRW models with positive spatial curvature and R>0

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

- look at the class of FRW models with positive spatial curvature and R>0
- re-write Friedman equation in terms of the new variables:

$$x^2 + y + z = 1$$

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

- look at the class of FRW models with positive spatial curvature and R>0
- re-write Friedman equation in terms of the new variables:

$$x^2 + y + z = 1$$

• from the definition of normalization *D* we get:

$$(Q+x)^2 + K = 1$$

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

- look at the class of FRW models with positive spatial curvature and R>0
- re-write Friedman equation in terms of the new variables:

$$x^2 + y + z = 1$$

• from the definition of normalization *D* we get:

$$(Q+x)^2 + K = 1$$

• *K*, *y*, $z \ge 0$ by definition \Rightarrow all variables are compact:

 $x\in\left[-1,1\right],y\in\left[0,1\right]$ $z\in\left[0,1\right],Q\in\left[-2,2\right],K\in\left[0,1\right]$.

Compactness of variables

$$x = \frac{3\dot{R}}{2RD}(n-1) , \quad y = \frac{3R}{2nD^2}(n-1) , \quad z = \frac{3\rho^m}{nR^{n-1}D^2} , \quad K = \frac{3\tilde{R}}{2D^2} , \qquad Q = \frac{\Theta}{D}$$

- look at the class of FRW models with positive spatial curvature and R>0
- re-write Friedman equation in terms of the new variables:

$$x^2 + y + z = 1$$

• from the definition of normalization *D* we get:

$$(Q+x)^2 + K = 1$$

• *K*, *y*, $z \ge 0$ by definition \Rightarrow all variables are compact:

 $x\in\left[-1,1\right],y\in\left[0,1\right]$ $z\in\left[0,1\right],Q\in\left[-2,2\right],K\in\left[0,1\right]$.

• five variables together with two constraints ⇒ three-dimensional system

The dynamical system

Naureen Goheer, University of Cape Town

The dynamical system

• the system is fully described by the equations

$$\begin{array}{lll} Q' &=& \left[(3-n)x^2 - n(y-1) - 1 \right] \frac{Q^2}{3} + \left[(3-n)x^2 - n(y-1) + 1 \right] \frac{Qx}{3} + \frac{1}{3} \left[x^2 - 1 + \frac{ny}{n-1} \right] \;, \\ y' &=& \frac{2yx^2}{3} (3-n)(x+Q) + \frac{2xy}{3} \left[\frac{(n^2 - 2n + 2)}{n-1} - ny \right] + \frac{2}{3} Qny(1-y) \;, \\ x' &=& \frac{x^3}{3} (3-n)(Q+x) + \frac{x^2}{3} \left[n(2-y) - 5 \right] + \frac{Qx}{3} \left[n(1-y) - 3 \right] + \frac{1}{3} \left[\frac{n(n-2)}{n-1} - n + 2 \right] \;. \end{array}$$

The dynamical system

• the system is fully described by the equations

$$\begin{array}{lll} Q' &=& \left[(3-n)x^2 - n(y-1) - 1 \right] \frac{Q^2}{3} + \left[(3-n)x^2 - n(y-1) + 1 \right] \frac{Qx}{3} + \frac{1}{3} \left[x^2 - 1 + \frac{ny}{n-1} \right] \;, \\ y' &=& \frac{2yx^2}{3} (3-n)(x+Q) + \frac{2xy}{3} \left[\frac{(n^2 - 2n + 2)}{n-1} - ny \right] + \frac{2}{3} Qny(1-y) \;, \\ x' &=& \frac{x^3}{3} (3-n)(Q+x) + \frac{x^2}{3} \left[n(2-y) - 5 \right] + \frac{Qx}{3} \left[n(1-y) - 3 \right] + \frac{1}{3} \left[\frac{n(n-2)}{n-1} - n + 2 \right] \;. \end{array}$$

▶ find equilibrium points defined by Q'=y'=x'=0

The dynamical system

• the system is fully described by the equations

$$\begin{array}{lll} Q' &=& \left[(3-n)x^2 - n(y-1) - 1 \right] \frac{Q^2}{3} + \left[(3-n)x^2 - n(y-1) + 1 \right] \frac{Qx}{3} + \frac{1}{3} \left[x^2 - 1 + \frac{ny}{n-1} \right] \;, \\ y' &=& \frac{2yx^2}{3} (3-n)(x+Q) + \frac{2xy}{3} \left[\frac{(n^2 - 2n + 2)}{n-1} - ny \right] + \frac{2}{3} Qny(1-y) \;, \\ x' &=& \frac{x^3}{3} (3-n)(Q+x) + \frac{x^2}{3} \left[n(2-y) - 5 \right] + \frac{Qx}{3} \left[n(1-y) - 3 \right] + \frac{1}{3} \left[\frac{n(n-2)}{n-1} - n + 2 \right] \;. \end{array}$$

- ▶ find equilibrium points defined by Q'=y'=x'=0
- ► to each equil. point, find the eigenvalues ⇒ local stability

Equilibrium points

Point	(Q, x, y)	constraints	Solution/Description
\mathcal{N}_ϵ	$(0, \ \epsilon, \ 0)$	$n \in [1,3]$	Vacuum Minkowski
\mathcal{L}_ϵ	$(2\epsilon, -\epsilon, 0)$	$n \in [1,3]$	Vacuum Minkowski
\mathcal{B}_{ϵ}	$\left(\frac{\epsilon}{3-n} \ \epsilon \frac{n-2}{n-3}, \ 0\right)$	$n \in [1, 2.5]$	Vacuum Minkowski
\mathcal{A}_ϵ	$\left(\epsilon \frac{2n-1}{3(n-1)}, \epsilon \frac{n-2}{3(n-1)}, \frac{8n^2-14n+5}{9(n-1)^2}\right)$	$n \in [1.25, 3]$	Vacuum, Flat, Acceleration $\neq 0$ Decelerating for $P_+ < n < 2$ $a(t) = a_0 (a_1 + k(n)t)^{-3k(n)}$
$\begin{array}{c} \text{Line} \\ \mathcal{LC} \end{array}$	$\left(Q, -Q(n-1), \frac{j(n)Q+n-1}{n}\right)$	$ Q \le \frac{1}{2-n} \text{ for } n \in [1, P_+]$ $ Q \le \frac{1}{\sqrt{3}(n-1)} \text{ for } n \in [P_+, 3]$	Non-Accelerating curved $a(t) = a_2 t + a_3 , \rho^m(t) > 0$

recover all the points from standard Rⁿ-gravity

the line *LC* including the ES model is an artifact of the n-w correspondence - in *Rⁿ*-gravity we only get a point, and no ES model

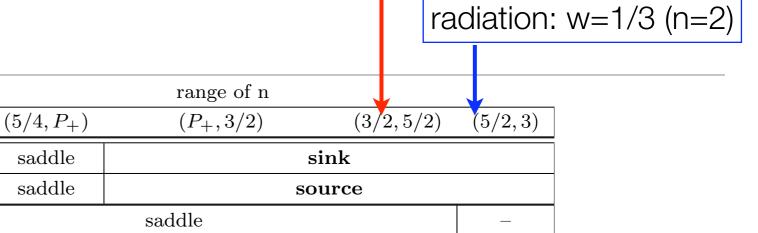
dust: w=0 (n=3/2)

Stability properties

point

type

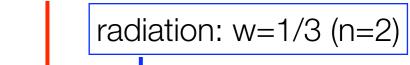
(1, 5/4)



\mathcal{A}_+	expanding		saddle	sink			
\mathcal{A}_{-}	collapsing	_	saddle	source			
\mathcal{B}_{\pm}	static		saddle –				
\mathcal{L}_+	static	saddle	source				
\mathcal{L}_{-}	static	saddle	sink sad				
\mathcal{N}_+	static	source					
\mathcal{N}_{-}	static	sink					
$\mathcal{LC}^{\mathrm{exp}}$	expanding	$sink sink (for Q < Q_b)$			sadd	lle	
		saddle (for $Q > Q_b$)					
ES	static	center			saddle		
$\mathcal{LC}^{\mathrm{coll}}$	collapsing	source so		source (for $ Q < Q_b$)	saddle		
		saddle (for $ Q > Q_b$)					

Naureen Goheer, University of Cape Town

dust: w=0 (n=3/2)

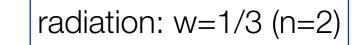


Stability properties

point	type	range of n					
		(1, 5/4)	$(5/4, P_+)$	$(P_+, 3/2)$	(3/2, 5/2)	(5/2, 3)	
\mathcal{A}_+	expanding	_	saddle	sin	ık		
\mathcal{A}_{-}	collapsing	—	saddle source				
\mathcal{B}_\pm	static		saddle				
\mathcal{L}_+	static	saddle		source		saddle	
\mathcal{L}_{-}	static	saddle			saddle		
\mathcal{N}_+	static	source					
\mathcal{N}_{-}	static		sink				
$\mathcal{LC}^{\mathrm{exp}}$	expanding	S	ink	sink (for $Q < Q_b$)	sadd	lle	
		saddle (for $Q > Q_b$)					
ES	static	center			saddle		
$\mathcal{LC}^{\mathrm{coll}}$	collapsing	SO	urce	source (for $ Q < Q_b$)	sado	lle	
				saddle (for $ Q > Q_b$)			

• for any equation of state, no expanding past attractor

dust: w=0 (n=3/2)



range of n point type (5/2,3)(3/2, 5/2)(1, 5/4) $(5/4, P_+)$ $(P_+, 3/2)$ expanding saddle sink \mathcal{A}_+ saddle \mathcal{A}_{-} collapsing ____ source \mathcal{B}_{\pm} saddle static _ \mathcal{L}_+ saddle saddle static source \mathcal{L}_{-} saddle sink static saddle \mathcal{N}_+ static source \mathcal{N}_{-} sink static $\mathcal{L}\overline{\mathcal{C}^{\mathrm{exp}}}$ sink (for $Q < Q_b$) expanding \mathbf{sink} saddle saddle (for $Q > Q_b$) \mathcal{ES} saddle static center $\mathcal{LC}^{\mathrm{coll}}$ source (for $|Q| < Q_b$) collapsing saddle source saddle (for $|Q| > Q_b$)

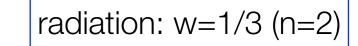
• for any equation of state, no expanding past attractor

Stability properties

 no BB scenario, only possible bounce or expansion after asymptotic initial Minkowski phase

Naureen Goheer, University of Cape Town

dust: w=0 (n=3/2)



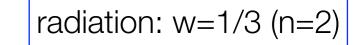
point type range of n (5/2,3)(1, 5/4) $(5/4, P_+)$ $(P_+, 3/2)$ (3/2, 5/2)expanding saddle sink \mathcal{A}_+ saddle collapsing \mathcal{A}_{-} ____ source \mathcal{B}_{\pm} saddle static \mathcal{L}_+ saddle saddle static source \mathcal{L}_{-} saddle sink static saddle \mathcal{N}_+ static source \mathcal{N}_{-} sink static \mathcal{LC}^{\exp} expanding \mathbf{sink} sink (for $Q < Q_b$) saddle saddle (for $Q > Q_b$) \mathcal{ES} saddle static center \mathcal{LC}^{coll} source (for $|Q| < Q_b$) collapsing saddle source saddle (for $|Q| > Q_b$)

• for any equation of state, no expanding past attractor

Stability properties

- no BB scenario, only possible bounce or expansion after asymptotic initial Minkowski phase
- ES point is unstable saddle for w>0, but neutrally stable center for -1/3<w<0

dust: w=0 (n=3/2)



point type range of n (5/2,3)(1, 5/4) $(5/4, P_+)$ $(P_+, 3/2)$ (3/2, 5/2)saddle sink expanding \mathcal{A}_+ saddle collapsing \mathcal{A}_{-} source \mathcal{B}_{\pm} saddle static \mathcal{L}_+ saddle saddle static source \mathcal{L}_{-} saddle sink static saddle \mathcal{N}_+ static source \mathcal{N}_{-} sink static \mathcal{LC}^{\exp} expanding sink (for $Q < Q_b$) saddle sink saddle (for $Q > Q_b$) ES saddle static center \mathcal{LC}^{coll} source (for $|Q| < Q_b$) collapsing saddle source saddle (for $|Q| > Q_b$)

• for any equation of state, no expanding past attractor

Stability properties

- no BB scenario, only possible bounce or expansion after asymptotic initial Minkowski phase
- ES point is unstable saddle for w>0, but neutrally stable center for -1/3<w<0
- numerically found orbits linking collapsing decelerating model to expanding accelerating model via Einstein static point (bouncing solutions)

dust: w=0 (n=3/2)

			rac	diation	: w=1/3	3 (n=2
	range of n					
$(5/4, P_+)$	$(P_+, 3/2)$	(3/2, 5)	5/2)	(5/2, 3)		
saddle		sink				
saddle		source				
	saddle			_		
				1 11		

\mathcal{A}_+	expanding	_	saddle	sink			
\mathcal{A}_{-}	collapsing	_	saddle	source			
\mathcal{B}_{\pm}	static			saddle		_	
\mathcal{L}_+	static	saddle	source				
\mathcal{L}_{-}	static	saddle	addle sink				
\mathcal{N}_+	static	source					
\mathcal{N}_{-}	static		sink				
$\mathcal{LC}^{\mathrm{exp}}$	expanding	sink sink (for $Q < Q_b$)			sadd	lle	
		saddle (for $Q > Q_b$)					
ES	static	center			sadd	lle	
$\mathcal{LC}^{\mathrm{coll}}$	collapsing	source		source (for $ Q < Q_b$)	saddle		
				saddle (for $ Q > Q_b$)			

• for any equation of state, no expanding past attractor

Stability properties

point

type

(1, 5/4)

- no BB scenario, only possible bounce or expansion after asymptotic initial Minkowski phase
- ES point is unstable saddle for w>0, but neutrally stable center for -1/3<w<0
- numerically found orbits linking collapsing decelerating model to expanding accelerating model via Einstein static point (bouncing solutions)
 - recover the GR result but without the need of cosmological constant!

Naureen Goheer, University of Cape Town

Outline

- why are we interested in the Einstein static (ES) model?
 - historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical systems analysis of the closed FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background
- compare and interpret the results obtained from the two approaches

linear perturbations around ES (see Phys. Rev. D78:044011, 2008)

- define perturbation quantities that vanish for this background
 ⇒ gauge-invariant
- harmonic decomposition: use the trace-free symmetric tensor eigenfunctions of the spatial Laplace-Beltrami operator defined by

- **decompose** into scalar, vector and tensor parts
- in each case, expand all first order quantities as
- note: for spatially closed models, the spectrum of eigenvalues is discrete k² = n (n + 2), where the co-moving wave number n is n=1,2,3... (n=1 is a gauge mode)

linear perturbations around ES (see Phys. Rev. D78:044011, 2008)

- define perturbation quantities that vanish for this background
 ⇒ gauge-invariant
- harmonic decomposition: use the trace-free symmetric tensor eigenfunctions of the spatial Laplace-Beltrami operator defined by

$$\tilde{\nabla}^2 Q = -\frac{k^2}{a_0^2} Q \ , \ \dot{Q} = 0$$

- decompose into scalar, vector and tensor parts
- in each case, expand all first order quantities as $X(t, \mathbf{x}) = \sum X^k(t)Q^k(\mathbf{x})$
- note: for spatially closed models, the spectrum of eigenvalues is discrete k² = n (n + 2), where the co-moving wave number n is n=1,2,3... (n=1 is a gauge mode)

linear perturbations around ES

- ES neutrally stable against vector, tensor perturbations for all w, k
- ES neutrally stable against scalar perturbations for all $k^2 \ge 8$ if w > 0.21
- the homogeneous mode (n=0)
 - was not considered previously, since it corresponds to a change in the background (reflecting the fact that the model is unstable against homog, perturbations and will expand/collapse)
 - perturbations oscillate for w<0</p>
 - one growing and one decaying mode for w>0
 - perturbation constant in time for dust (w=0) => must include higher order terms
 - exactly matches the results from the dynamical systems analysis

Outline

- why are we interested in the Einstein static (ES) model?
 - historical review
- why modified gravity, in particular f(R)-gravity?
 - derive basic field equations
- dynamical systems analysis of the closed FRW state space (including the ES model)
- briefly summarize linear covariant perturbations around the ES background
- compare and interpret the results obtained from the two approaches

Stability of Einstein Static

Naureen Goheer, University of Cape Town

Stability of Einstein Static

 homogeneous perturbations (dynamical systems and linear perturbations with n=0):

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>
 - must consider higher order perturbations for dust (w=0)

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>
 - must consider higher order perturbations for dust (w=0)
 - contrast to GR, where ES is unstable for all -1/3<w<1</p>

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>
 - must consider higher order perturbations for dust (w=0)
 - contrast to GR, where ES is unstable for all -1/3<w<1</p>
- **inhomogeneous** perturbations (linear perturbation theory (n>1)

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>
 - must consider higher order perturbations for dust (w=0)
 - contrast to GR, where ES is unstable for all -1/3<w<1</p>
- inhomogeneous perturbations (linear perturbation theory (n>1)
 - ES static stable against inhomogeneous perturbations if w > 0.21..

- homogeneous perturbations (dynamical systems and linear perturbations with n=0):
 - Einstein static point is unstable saddle for w>0
 - ES is a neutrally stable center for -1/3<w<0</p>
 - must consider higher order perturbations for dust (w=0)
 - contrast to GR, where ES is unstable for all -1/3<w<1</p>
- inhomogeneous perturbations (linear perturbation theory (n>1)
 - ES static stable against inhomogeneous perturbations if w > 0.21..
 - similar to GR, where same result hold for w > 1/5 = 0.2

Summary

Naureen Goheer, University of Cape Town

Summary

• while in **GR** a_0 and R_0 are fixed given w, Λ , suprisingly in f(R) ES only exists in general for the specific form of $f(R) = a+b \cdot R^n$, with $n=3/2 \cdot (1+w)$ (but a_0 and R_0 not fixed)

- while in GR a₀ and R₀ are fixed given w, Λ, suprisingly in f(R) ES only exists in general for the specific form of f(R) = a+b · Rⁿ, with n=3/2 · (1+w) (but a₀ and R₀ not fixed)
- for w=1/3, the ES model is unstable against homogeneous perturbations, but stable against inhomogeneous perturbations

- while in GR a₀ and R₀ are fixed given w, Λ, suprisingly in f(R) ES only exists in general for the specific form of f(R) = a+b · Rⁿ, with n=3/2 · (1+w) (but a₀ and R₀ not fixed)
- for w=1/3, the ES model is unstable against homogeneous perturbations, but stable against inhomogeneous perturbations
- in the closed FRW state space, we find

- while in GR a₀ and R₀ are fixed given w, Λ, suprisingly in f(R) ES only exists in general for the specific form of f(R) = a+b · Rⁿ, with n=3/2 · (1+w) (but a₀ and R₀ not fixed)
- for w=1/3, the ES model is unstable against homogeneous perturbations, but stable against inhomogeneous perturbations
- in the closed FRW state space, we find
 - an accelerating future attractor without the need for a cosmological constant

- while in GR a₀ and R₀ are fixed given w, Λ, suprisingly in f(R) ES only exists in general for the specific form of f(R) = a+b · Rⁿ, with n=3/2 · (1+w) (but a₀ and R₀ not fixed)
- for w=1/3, the ES model is unstable against homogeneous perturbations, but stable against inhomogeneous perturbations
- in the closed FRW state space, we find
 - an accelerating future attractor without the need for a cosmological constant
 - no expanding past attractor (=> NO Big Bang)

- while in GR a₀ and R₀ are fixed given w, Λ, suprisingly in f(R) ES only exists in general for the specific form of f(R) = a+b · Rⁿ, with n=3/2 · (1+w) (but a₀ and R₀ not fixed)
- for w=1/3, the ES model is unstable against homogeneous perturbations, but stable against inhomogeneous perturbations
- in the closed FRW state space, we find
 - an accelerating future attractor without the need for a cosmological constant
 - no expanding past attractor (=> NO Big Bang)
 - orbits connecting the collapsing decelerating point to the expanding accelerating point via ES (=> bouncing solutions?)