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The Background: Einstein Static (ES)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)
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Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
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differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

The Background: Einstein Static (ES)

• originally introduced by Einstein in 1917 to construct a static solution of the 
GR field equations

• cosmological constant exactly balances energy content: Λ = 4π(ρ0+3p0) = 
4π(1+3w)ρ0 for perfect fluid 

• topology R×S3, metric:                                                         with fixed finite 
radius a0 (R = 3R = 6 / a02)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

The Background: Einstein Static (ES)

• originally introduced by Einstein in 1917 to construct a static solution of the 
GR field equations

• cosmological constant exactly balances energy content: Λ = 4π(ρ0+3p0) = 
4π(1+3w)ρ0 for perfect fluid 

• topology R×S3, metric:                                                         with fixed finite 
radius a0 (R = 3R = 6 / a02)

• abandoned when observations showed that the universe is expanding

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)

2

the viability of cosmological solutions in f(R) theories
[20–23]. Recently [24] it was argued that the sign of the
second derivative f,RR ≡ ∂2f/∂R2 determines whether
the theory approaches the general relativistic limit at
high curvatures, and it was shown that for f,RR > 0
the models are, in fact, stable. The stability of the de
Sitter solution in f(R) gravity has also been extensively
analyzed in the literature [25].

Motivated by the above discussion, the goal of this pa-
per is to first determine under what conditions an Ein-
stein Static solution exists in a general f(R) gravity the-
ory and investigate the stability of such solutions with
respect to general inhomogeneous and isotropic pertur-
bations.

II. EINSTEIN-STATIC UNIVERSES IN
FOURTH ORDER GRAVITY

In a completely general context, a fourth order theory
of gravity is obtained by adding terms involving RabRab

and RabcdRabcd to the standard Einstein Hilbert action.
However, it is now well known that if we use the Gauss
Bonnet theorem we can neglect the RabcdRabcd term [26].
Furthermore, if we take into account the high symmetry
of the FRW metric, the Lagrangian can be further sim-
plified. Specifically the variation of the term RabRab can
always be rewritten in terms of the variation of R2 [27].
It follows that the ”effective” fourth-order Lagrangian in
FRW cosmology only contains powers of R and we can,
with out loss of generality, write the action as

A =

∫

d4x
√
−g [f(R) − 2Λ + Lm] , (1)

where Lm represents the matter contribution and Λ is
the usual cosmological constant. The corresponding gen-
eralization of Einstein’s equations are

Gab + gab
Λ

f ′ = T T
ab =

T m
ab

f ′ + T R
ab , (2)

where f ′ = f(R),R. Here T T
ab is the total effective energy

momentum tensor, T m
ab is the energy momentum tensor

for standard matter and

T R
ab =

1

f ′

[

1

2
gab(f − Rf ′) + f ′

;cd(g
c
agd

b − gcdgab)

]

(3)

is the energy momentum tensor containing all the non-
GR curvature contributions, known as the ”curvature
fluid”.

The metric for a closed Einstein Static universe is given
by

ds2 = −dt2 + a2
0

[

dr2

1 − r2
+ r2dΩ2

]

. (4)

Here a0 is a constant and both the Ricci scalar R and the
curvature of the 3-space R̃ are equal and can be written

as

R = R̃ =
6

a2
0

. (5)

It is easily seen that an Einstein Static universe is expan-
sion, shear and rotation free, i.e.

Θ =0 , σab = 0, ωab = 0 . (6)

The total energy momentum tensor is given by

ρT =
1

f ′

[

ρm +
1

2
(Rf ′ − f)

]

pT =
1

f ′

[

pm −
1

2
(Rf ′ − f)

]

, (7)

where ρm and pm is the energy density and pressure of
standard matter.

Now the (t
t) component of Einstein’s equations gives

R

2
= ρT +

Λ

f ′ , (8)

while the trace of Einstein’s equations is

R − 4
Λ

f ′ = ρT − 3pT . (9)

Furthermore, from the Raychaudhuri equation we have
Rabuaub = 0, from which we obtain

ρT + 3pT = 2
Λ

f ′ . (10)

Using (8) and (10) we find

R = 3
[

ρT + pT
]

. (11)

Now using the components of total energy momentum
tensor (7), and assuming that the standard matter is a
barotropic perfect fluid with equation of state and sound-
speed parameters w and c2

s defined by

pm = wρm, −1 ≤ w ≤ 1 , c2
s = w , (12)

equation (11) becomes

Rf ′ = 3(1 + w)ρm . (13)

The LHS of the above equation cannot be zero for this
spacetime, because this would imply either a0 → ∞ or
the function f(R) = constant. Consequently, we cannot
have an Einstein Static universe without matter or with
w = −1.

It follows from (13) above, together with the trace
equation (9) and (7) that for an Einstein Static universe
to exist, the function f(R) needs to satisfy the following
differential equation:

Rf ′ −
3

2
(1 + w)f + 3Λ(1 + w) = 0 . (14)
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features of ES model

• ES maximizes entropy within family of FRW radiation models (Gibbons 1987)

• ES is the unique highest symmetry non-empty FRW model (Ellis 1967)

• ES is unstable against homogeneous linear perturbations (Eddington 1930) 

‣ expansion/contraction

‣ allows for transition from decelerated expansion to acceleration in ΛCDM 
cosmology

• ES is neutrally stable against inhomogeneous linear perturbations for w>1/5 
(Harrison 1967, Gibbons 1987, 1988, Barrow 2003)

‣ reason for this “Non-Newtonian” stability: maximum scale (finite “size” of 
the universe) => fluctuations oscillate rather than grow
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possible ES scenarios

• initial state: ES → inflation → decelerating phase → accelerating 
phase (“emergent universe”, Ellis & Maartens, 2002)

→ avoid initial singularity (and maybe quantum regime)

→ no horizon problem

• transient phase: BB → inflation → decelerating phase → ES (inflection 
point) → accelerating phase (DE/dS regime)

 → time for structure formation

‣ find orbits in the dynamical systems analysis corresponding to one 
of the scenarios above
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Outline

• why are we interested in the Einstein static (ES) model?

‣ historical review

• why modified gravity, in particular f(R)-gravity?

‣ derive basic field equations

• dynamical system analysis of FRW state space (including the ES model)

• briefly summarize linear covariant perturbations around the ES background

• compare and interpret the results obtained from the two approaches
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why modify GR?

• the “Standard” ΛCDM Model of cosmology fits observational data (CMB, LSS) 
very well if we assume that the universe is dominated by Dark Energy (74%) 
and Dark Matter (22%)

• shortcomings: dark matter and dark energy unexplained/ not observed 
directly

‣ ΛCDM model does not give theoretical explanation for late time acceleration 
==> it is more of an empirical fit to data

‣ must introduce scalar fields and/or fine-tuned cosmological constant for 
inflation and DE

‣  quantum regime?

• one option to avoid introducing dark components: modify theory of gravity 
itself on relevant scales

‣ interesting to note: unique status of GR was questioned by Weyl (1919) and 
Eddington (1922) by considering higher order invariants in the GR action
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Einstein Static models if f(R)-gravity

f(R)-gravity

• generalize Einstein-Hilbert action                                    

• R → function of Ricci scalar f(R)

‣ f(R) is good toy model:  simple, but has the nice feature of admitting 
late time accelerating models (alternative to DE) 

AEH =
∫

d4x
√
−gR
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linearized 1+3 eqs. around FRW

ȧ =
1
3
Θa ,

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃ (Friedman eq.),

˙ρm = −Θρm(1 + w) (energy conservation),

Aa = u̇a − w

w + 1
∇̃aρm

ρm
(momentum conservation),

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
2

(
ρT + 3pT

)
+

Λ
f ′ (generalized Raychaudhuri eq.),

σ̇ab = −2
3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉 (shear propagation),

Ėab = −ΘEab + curl(Hab)−
1
2

(
+pT

)
σab −

1
6
ΘΠab −

1
2
Π̇ab −

1
2
∇̃〈aqb〉 (gravito-electric propagation eq.),

Ḣab = −ΘHab − curl(Eab) +
1
2
curl(Πab) (gravito-magnetic propagation eq.),

ω̇a = −2
3
Θωa −

1
2
curl(Aa) (vorticity propagation),
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ȧ =
1
3
Θa ,

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃ (Friedman eq.),

˙ρm = −Θρm(1 + w) (energy conservation),

Aa = u̇a − w

w + 1
∇̃aρm

ρm
(momentum conservation),

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
2

(
ρT + 3pT

)
+

Λ
f ′ (generalized Raychaudhuri eq.),

σ̇ab = −2
3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉 (shear propagation),
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Ḣab = −ΘHab − curl(Eab) +
1
2
curl(Πab) (gravito-magnetic propagation),

ω̇a = −2
3
Θωa −

1
2
curl(Aa) (vorticity propagation).
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‣ for FRW background, A=ω=σ=0 and 
∇af=0 for all scalars f, and only the 
first 3 equations are non-zero

‣ linearized 1+3 eqs. fully characterize 
linear perturbations around FRW 
background

‣ ρT = ρm / f’+ ρR etc, where ρR contains 
the “curvature corrections”

• plus constraint equations

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃

˙ρm = −Θρm(1 + w)

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
2

(
ρT + 3pT

)
+

Λ
f ′

Aa = u̇a − w

w + 1
∇̃aρm

ρm

σ̇ab = −2
3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉

Ėab = −ΘEab + curl(Hab)−
1
2

(
+pT

)
σab

−1
6
ΘΠab −

1
2
Π̇ab −

1
2
∇̃〈aqb〉

Ḣab = −ΘHab − curl(Eab) +
1
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curl(Πab)
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3
Θωa −

1
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curl(Aa)
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linearized 1+3 eqs. around FRW

ȧ =
1
3
Θa ,

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃ (Friedman eq.),

˙ρm = −Θρm(1 + w) (energy conservation),

Aa = u̇a − w

w + 1
∇̃aρm

ρm
(momentum conservation),

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
2

(
ρT + 3pT

)
+

Λ
f ′ (generalized Raychaudhuri eq.),

σ̇ab = −2
3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉 (shear propagation),

Ėab = −ΘEab + curl(Hab)−
1
2

(
+pT

)
σab −

1
6
ΘΠab −

1
2
Π̇ab −

1
2
∇̃〈aqb〉 (gravito-electric propagation eq.),

Ḣab = −ΘHab − curl(Eab) +
1
2
curl(Πab) (gravito-magnetic propagation eq.),

ω̇a = −2
3
Θωa −

1
2
curl(Aa) (vorticity propagation),

ȧ =
1
3
Θa ,

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃ (Friedman eq.),

˙ρm = −Θρm(1 + w) (energy conservation),

Aa = u̇a − w

w + 1
∇̃aρm

ρm
(momentum conservation),

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
2

(
ρT + 3pT

)
+

Λ
f ′ (generalized Raychaudhuri eq.),

σ̇ab = −2
3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉 (shear propagation),

Ėab = −ΘEab + curl(Hab)−
1
2

(
+pT

)
σab −

1
6
ΘΠab −

1
2
Π̇ab −

1
2
∇̃〈aqb〉

(gravito-electric propagation),

Ḣab = −ΘHab − curl(Eab) +
1
2
curl(Πab) (gravito-magnetic propagation),

ω̇a = −2
3
Θωa −

1
2
curl(Aa) (vorticity propagation).

ȧ =
1
3
Θa ,

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃

˙ρm = −Θρm(1 + w)

Aa = u̇a − w

w + 1
∇̃aρm

ρm

Θ̇ = −1
3
Θ2 + ∇̃aAa −

1
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(
ρT + 3pT

)
+

Λ
f ′

σ̇ab = −2
3
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1
2
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1
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(
+pT

)
σab −

1
6
ΘΠab −

1
2
Π̇ab −
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2
∇̃〈aqb〉

Ḣab = −ΘHab − curl(Eab) +
1
2
curl(Πab)

ω̇a = −2
3
Θωa −

1
2
curl(Aa)

‣ for FRW background, A=ω=σ=0 and 
∇af=0 for all scalars f, and only the 
first 3 equations are non-zero

‣ linearized 1+3 eqs. fully characterize 
linear perturbations around FRW 
background

‣ ρT = ρm / f’+ ρR etc, where ρR contains 
the “curvature corrections”

• plus constraint equations

Θ2 = 3
[
ρT +

Λ
f ′

]
− 3

2
R̃

˙ρm = −Θρm(1 + w)

Θ̇ = −1
3
Θ2 + ∇̃aAa −
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(
ρT + 3pT

)
+
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Aa = u̇a − w
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ρm
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3
Θσab − Eab +

1
2
Πab + ∇̃〈aAb〉

Ėab = −ΘEab + curl(Hab)−
1
2

(
+pT

)
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−1
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ΘΠab −

1
2
Π̇ab −
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spatial 
curvature
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ES as a background model in f(R)-gravity

‣ review GR: fix w, Λ → fix a0, ρ0 (↔ R=3R)

• assume ES exist in  f(R) 

• use the background field equations

‣ f(R): fix w, Λ → fixes f(R) = a+b·Rn with n=3/2·(1+w), a=2Λ and b=b(n,w)

→ the cosmological constant effectively cancels

→ ES in general only exists for specific f(R) 

→ ES can exist for any R

‣ interesting constraint!
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Outline

• why are we interested in the Einstein static (ES) model?

‣ historical review

• why modified gravity, in particular f(R)-gravity?

‣ derive basic field equations

• dynamical systems analysis of the closed FRW state space (including the ES 
model)

• briefly summarize linear covariant perturbations around the ES background

• compare and interpret the results obtained from the two approaches
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Einstein Static models if f(R)-gravity

Dynamical Systems

• study stability of certain exact solutions within classes of exact solutions

• associate an abstract state space with the class of models considered
‣ each point corresponds to a possible state at some time

• dynamics of the state space described system of autonomous differential 
equations

• equilibrium points characterized by vanishing of all derivatives
‣ if the system is in this state once it will remain there forever
‣ correspond to solutions with special symmetries
‣ can be classified as sources (repellers), sinks (attractors) and saddles 

according to the sign if their eigenvalues (i.e. linearize the system around 
each equilibrium point)

+ F+ F- M-

dS-dS+

M

! = 0
!

 =
 0

!
 = 0E



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:

‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:

‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit

‣ must find a normalization that accomplishes this (see Goliath & Ellis, 1999)



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:

‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit

‣ must find a normalization that accomplishes this (see Goliath & Ellis, 1999)

• choose 



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:

‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit

‣ must find a normalization that accomplishes this (see Goliath & Ellis, 1999)

• choose 

‣ dynamical systems variables                     

x =
3Ṙ
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‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit

‣ must find a normalization that accomplishes this (see Goliath & Ellis, 1999)

• choose 

‣ dynamical systems variables                     
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(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Choice of variables for closed FRW models in f(R)

• basic concept:

‣ define dimensionless compact variables labeling each point in the state 
space, and a dimensionless well-defined time-variable measuring the 
“time” along each DS orbit

‣ must find a normalization that accomplishes this (see Goliath & Ellis, 1999)

• choose 

‣ dynamical systems variables                     

‣ time variable

‣ together with the normalization

′ ≡ d

dτ
≡ 1

D

d

dt
.

D ≡

√√√√
(

Θ +
3(n− 1)

2
Ṙ

R

)2

+
3
2
R̃

x =
3Ṙ

2RD
(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D
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Compactness of variables

• look at the class of FRW models with positive spatial curvature and R>0

x =
3Ṙ
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Compactness of variables

• look at the class of FRW models with positive spatial curvature and R>0

• re-write Friedman equation in terms of the new variables:

x =
3Ṙ

2RD
(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D

x2 + y + z = 1
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Compactness of variables

• look at the class of FRW models with positive spatial curvature and R>0

• re-write Friedman equation in terms of the new variables:

• from the definition of normalization D we get:

x =
3Ṙ

2RD
(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D

x2 + y + z = 1

(Q + x)2 + K = 1



Naureen Goheer, University of Cape Town

Einstein Static models if f(R)-gravity

Compactness of variables

• look at the class of FRW models with positive spatial curvature and R>0

• re-write Friedman equation in terms of the new variables:

• from the definition of normalization D we get:

• K, y, z ≥ 0 by definition ⇒ all variables are compact:

x =
3Ṙ

2RD
(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D

x2 + y + z = 1

(Q + x)2 + K = 1

x ∈ [−1, 1] , y ∈ [0, 1] z ∈ [0, 1] , Q ∈ [−2, 2] , K ∈ [0, 1] .
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Compactness of variables

• look at the class of FRW models with positive spatial curvature and R>0

• re-write Friedman equation in terms of the new variables:

• from the definition of normalization D we get:

• K, y, z ≥ 0 by definition ⇒ all variables are compact:

• five variables together with two constraints ⇒ three-dimensional system

x =
3Ṙ

2RD
(n− 1) , y =

3R

2nD2
(n− 1) , z =

3ρm

nRn−1D2
, K =

3R̃

2D2
, Q =

Θ
D

x2 + y + z = 1

(Q + x)2 + K = 1

x ∈ [−1, 1] , y ∈ [0, 1] z ∈ [0, 1] , Q ∈ [−2, 2] , K ∈ [0, 1] .
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The dynamical system

• the system is fully described by the equations

Q′ =
[
(3− n)x2 − n(y − 1)− 1

] Q2

3
+

[
(3− n)x2 − n(y − 1) + 1

] Qx

3
+

1
3

[
x2 − 1 +

ny

n− 1

]
,

y′ =
2yx2

3
(3− n)(x + Q) +

2xy

3

[
(n2 − 2n + 2)

n− 1
− ny

]
+

2
3
Qny(1− y) ,

x′ =
x3

3
(3− n)(Q + x) +

x2

3
[n(2− y)− 5] +

Qx

3
[n(1− y)− 3] +

1
3

[
n(n− 2)

n− 1
− n + 2

]
.
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The dynamical system

• the system is fully described by the equations

‣ find equilibrium points defined by Q’=y’=x’=0

Q′ =
[
(3− n)x2 − n(y − 1)− 1

] Q2

3
+

[
(3− n)x2 − n(y − 1) + 1

] Qx

3
+

1
3

[
x2 − 1 +

ny

n− 1

]
,

y′ =
2yx2

3
(3− n)(x + Q) +

2xy

3

[
(n2 − 2n + 2)

n− 1
− ny

]
+

2
3
Qny(1− y) ,

x′ =
x3

3
(3− n)(Q + x) +

x2

3
[n(2− y)− 5] +

Qx

3
[n(1− y)− 3] +

1
3

[
n(n− 2)

n− 1
− n + 2

]
.
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The dynamical system

• the system is fully described by the equations

‣ find equilibrium points defined by Q’=y’=x’=0

‣ to each equil. point, find the eigenvalues ⇒ local stability

Q′ =
[
(3− n)x2 − n(y − 1)− 1

] Q2

3
+

[
(3− n)x2 − n(y − 1) + 1

] Qx

3
+

1
3

[
x2 − 1 +

ny

n− 1

]
,

y′ =
2yx2

3
(3− n)(x + Q) +

2xy

3

[
(n2 − 2n + 2)

n− 1
− ny

]
+

2
3
Qny(1− y) ,

x′ =
x3

3
(3− n)(Q + x) +

x2

3
[n(2− y)− 5] +

Qx

3
[n(1− y)− 3] +

1
3

[
n(n− 2)

n− 1
− n + 2

]
.
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Equilibrium points

‣ recover all the points from standard Rn-gravity

‣ the line LC including the ES model is an artifact of the n-w 
correspondence - in Rn-gravity we only get a point, and no ES model

Point (Q, x, y) constraints Solution/Description

Nε (0, ε, 0) n ∈ [1, 3] Vacuum Minkowski

Lε (2ε, −ε, 0) n ∈ [1, 3] Vacuum Minkowski

Bε

(
ε

3−n εn−2
n−3 , 0

)
n ∈ [1, 2.5] Vacuum Minkowski

Vacuum, Flat, Acceleration#= 0
Aε

(
ε 2n−1
3(n−1) , ε

n−2
3(n−1) ,

8n2−14n+5
9(n−1)2

)
n ∈ [1.25, 3] Decelerating for P+ < n < 2

a(t) = a0 (a1 + k(n)t)−3k(n)

Line |Q| ≤ 1
2−n for n ∈ [1, P+] Non-Accelerating curved

LC
(
Q, −Q(n− 1), j(n)Q+n−1

n

)
|Q| ≤ 1√

3(n−1)
for n ∈ [P+, 3] a(t) = a2t + a3 , ρm(t) > 0
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Stability properties
point type range of n

(1, 5/4) (5/4, P+) (P+, 3/2) (3/2, 5/2) (5/2, 3)

A+ expanding – saddle sink

A− collapsing – saddle source

B± static saddle –

L+ static saddle source saddle

L− static saddle sink saddle

N+ static source

N− static sink

LCexp expanding sink sink (for Q < Qb) saddle

saddle (for Q > Qb)

ES static center saddle

LCcoll collapsing source source (for |Q| < Qb) saddle

saddle (for |Q| > Qb)

dust: w=0 (n=3/2)

radiation: w=1/3 (n=2)
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Stability properties

• for any equation of state, no expanding past attractor
‣ no BB scenario, only possible bounce or expansion after asymptotic initial 

Minkowski phase

point type range of n
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‣ no BB scenario, only possible bounce or expansion after asymptotic initial 

Minkowski phase
• ES point is unstable saddle for w>0, but neutrally stable center for -1/3<w<0 

• numerically found orbits linking collapsing decelerating model to expanding 
accelerating model via Einstein static point (bouncing solutions)
‣ recover the GR result but without the need of cosmological constant!
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Outline

• why are we interested in the Einstein static (ES) model?

‣ historical review

• why modified gravity, in particular f(R)-gravity?

‣ derive basic field equations

• dynamical systems analysis of the closed FRW state space (including the ES 
model)

• briefly summarize linear covariant perturbations around the ES background

• compare and interpret the results obtained from the two approaches



linear perturbations around ES 
(see Phys. Rev. D78:044011, 2008)

• define perturbation quantities that vanish for this background                        
⇒ gauge-invariant

• harmonic decomposition: use the trace-free symmetric tensor 
eigenfunctions of the spatial Laplace-Beltrami operator defined by    

• decompose into scalar, vector and tensor parts

• in each case, expand all first order quantities as

• note: for spatially closed models, the spectrum of eigenvalues is discrete 
k2 = n (n + 2), where the co-moving wave number n is n=1,2,3... ( n=1 is a 
gauge mode)
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(see Phys. Rev. D78:044011, 2008)

• define perturbation quantities that vanish for this background                        
⇒ gauge-invariant

• harmonic decomposition: use the trace-free symmetric tensor 
eigenfunctions of the spatial Laplace-Beltrami operator defined by    

• decompose into scalar, vector and tensor parts

• in each case, expand all first order quantities as

• note: for spatially closed models, the spectrum of eigenvalues is discrete 
k2 = n (n + 2), where the co-moving wave number n is n=1,2,3... ( n=1 is a 
gauge mode)

∇̃2Q = −k2

a2
0

Q , Q̇ = 0

X(t, x) =
∑

Xk(t)Qk(x)
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linear perturbations around ES

• ES neutrally stable against vector, tensor perturbations for all w, k

• ES neutrally stable against scalar perturbations for all k2 ≥ 8 if w > 0.21 

• the homogeneous mode (n=0) 

‣ was not considered previously, since it corresponds to a change in the 
background (reflecting the fact that the model is unstable against homog, 
perturbations and will expand/collapse)

‣ perturbations oscillate for w<0

‣ one growing and one decaying mode for w>0 

‣ perturbation constant in time for dust (w=0) => must include higher order 
terms

‣ exactly matches the results from the dynamical systems analysis
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Stability of Einstein Static

• homogeneous perturbations (dynamical systems and linear perturbations 
with n=0): 

‣ Einstein static point is unstable saddle for w>0

‣ ES is a neutrally stable center for -1/3<w<0

‣ must consider higher order perturbations for dust (w=0)

‣ contrast to GR, where ES is unstable for all -1/3<w<1

• inhomogeneous perturbations (linear perturbation theory (n>1)

‣ ES static stable against inhomogeneous perturbations if w > 0.21.. 

‣ similar  to GR, where same result hold for w > 1/5 = 0.2
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Summary

• while in GR a0 and R0  are fixed given w, Λ , suprisingly in f(R) ES only exists in 
general for the specific form of f(R) = a+b·Rn, with n=3/2·(1+w) (but a0 and R0  
not fixed)

• for w=1/3, the ES model is unstable against homogeneous perturbations, but 
stable against inhomogeneous perturbations

• in the closed FRW state space, we find 

‣ an accelerating future attractor without the need for a cosmological 
constant

‣ no expanding past attractor (=> NO Big Bang)

‣ orbits connecting the collapsing decelerating point to the expanding 
accelerating point via ES (=> bouncing solutions?) 


