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Projects underway

* A detailed analysis of the dynamics of f(R) gravity.

Locate special exact solutions (fixed points)

Determine how these fixed points relate to each other.
For a given f(R) theory of gravity, determine the region of
phase-space compatible with observational constraints.

* The evolution of perturbations in f(R) gravity

Structure formation and gravitational waves,
Newtonian perturbations

Gravitational Lensing,

Growth function and CMB Anisotropies.

With Sante Carloni, Antonio Troisi,

Salvatore Capozziello, Kishore Ananda,
Jannie Leach and M. Abdelwahab.




1+3 covariant approach

* From the time-like flow u® we construct the projection onto
surfaces orthogonal to the flow: hap = gap + uas.

* Covariant convective derivative on scalar: f = u*V, f .
* Spatial covariant derivative: V,, f = h®,V, f.

* Kinematics of y?gives geometry of congruence of flow lines.
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Fourth order gravity

The class of models we will consider can be derived from the
classical action:

1= / o/ =g [f(R) + L] |,

Varying the action with respect to the metric gives the
following field equations:
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This last step is extremely important as it allows us to treat
4th order gravity as standard GR in the presence of two
effective fluids. It is this that makes using the covariant

approach particularly straightforward.




The energy-momentum tensor of the curvature “fluid” can
be decomposed as follows:

nk ;,[ (Rf' — f)—Of'R+ f'"V*R + f”ub?R},

1 . . 2 .2
R _ f, [ (f Rf) f//R‘I‘Sf”/RQ_'_g@f//R_gf//v2R+

. 1 .
-3 2 PO R, R — 5" abVR] ,

1 ~
Note no [f”’RV R+ f”V R — f”VaR] ,

f/
background

1
contribution. i}, = IV Vi B+ [V (B R+ 0w R

J\w

CESNMOOEY &
RANVERY GF%CJLJF’




Linearisation




The linear gravitational equations
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The linear conservation equations
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The background equations

Friedmann { H 2

Raychaudhuri {2 H -+ H? + 52 — _?

Conservation {,Um -+ BH(Mm -+ pm) =0,

R = —6 <2H2+H+£2) ,
a

But how do we find useful
background solutions?
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The dynamical systems approach
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A simple example: r" gravity

Point Coordinates (x, y, 2)

Scale Factor

A [0, 0, 0]
B [—1,0,0]

E=ur =

[2(1 — n),2(n — 1), 0]

[-1 — 3w, 0, —1 — 3u]
[1 — 3w, 0,2 — 3uw]
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Background quantities

If we choose point G: | § = Syt |

Then the background quantities can be easily calculated:
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Gravitational Waves

Linear gravitational waves are described by the transverse
trace-free degrees of freedom once scalars and vectors have
been switched off.

* The 1+3 covariant variables relevant for gravitational
waves are:

* The shear tensor

* The electric part of the Weyl tensor

* The Magnetic part of the Weyl tensor

* The evolution of these variables can be calculated in
general, but we will focus on their evolution in an almost

. — A
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The evolution of tensor perturbations are governed by three
propagation equations:

2 1
é-ab + g O Oab + Eab 27Tab 0 ’

. 1
Huyp + Hyp © + (curl B) g — §(curl7r)aj =0,

1i

(M—l_p) Oab 1 = G)'7"-a,b‘|_ ] — 07

: 1
Ep+ E,, © — (CUI’] H)ab + = 5

2

and three constraints:

VoH® =0, V,E®=0, H, = (curlo)g




Substituting for the “curvature fluid terms” and performing a
tensor harmonic decomposition we obtain two wave equations
for the shear and magnetic part of the Weyl tensor and a
relation determining the electric part of the Weyl tensor.
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We investigate the following cases:

* The mater dominated era (w=0) relevant to direct detectors.

* The radiation dominated era (w=1/3) which is relevant to
CMB constraints.

The physically relevant quantity is the dimensionless
expansion normalized sheer:
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Matter dominated era

In the case of dust, the long wavelength solution is

2n

k) — n a2 = ;

RN

e

1 15 2




Matter dominated era

In the case of dust, the long wavelength solution is
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Matter dominated era

In the case of dust, the long wavelength solution is
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Radiation dominated era

In the case of radiation, the long wavelength solution is
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Radiation dominated era

In the case of radiation, the long wavelength solution is
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Radiation dominated era

In the case of radiation, the long wavelength solution is
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General equation of state

In general, the long wavelength solution is
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General equation of state
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~ ~ 2n
E(k) _ Elt(2—2r) + Z2t(2n—1—3’r)' r = 3(1 _|_wm).

Region |
%, ~ decaying
2, ~ growing
Region IV
2, X, ~ decaying
Region Il
2, 2, ~growing

Region llI
2, ~growing

>, ~ decaying |

“. SeY-




Relation to the Bardeen method

Expanding in w.r.t. the Bardeen metric gives expressions for the
Covariant variables in terms of the TT metric perturbation.
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Substituting these into the expression for the trace free
part of the 3-Ricci tensor:

Gives the standard Bardeen tensor perturbation equation:

and putting the “curvature fluid” in gives:
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Conclusion

* Equations for tensor perturbations were derived and solved
for the matter and radiation eras in the long wavelength
limit.

Small departures from GR give significant modifications to

GWs, so in principle GWs can provide strong constraints to
FOG theories.

* Work is currently in progress to calculate the growth
function and the CMB B-mode tensor anisotropies. WATCH
THIS SPACE.
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