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✴ A detailed analysis of the dynamics of f(R) gravity.

• Locate special exact solutions (fixed points)
• Determine how these fixed points relate to each other. 
• For a given f(R) theory of gravity, determine the region of 

phase-space compatible with observational constraints.

✴ The evolution of perturbations in f(R) gravity

• Structure formation and gravitational waves,
• Newtonian perturbations 
• Gravitational Lensing,
• Growth function and CMB Anisotropies.

Projects underway

With Sante Carloni, Antonio Troisi, 
Salvatore Capozziello, Kishore Ananda , 
Jannie Leach and M. Abdelwahab.



✴ From the time-like flow      we construct the projection onto 
surfaces orthogonal to the flow:                               .                  

✴ Covariant convective derivative on scalar:                     .

✴ Spatial covariant derivative:                          .

✴ Kinematics of      gives geometry of congruence of flow lines.    

∇aub = −uau̇b + 1

3
Θhab + σab + ωab

acceleration expansion shear vorticity

Raychaudhuri equation.

u
a

hab = gab + uaub

ḟ = ua∇af

u
a

∇̃af = hb
a∇bf

Θ̇ + 1
3Θ2 + σabσ

ab − 2ωaωa − ∇̃au̇a + u̇au̇a + 1
2 (µtot + 3ptot) = 0

1+3 covariant approach



1+3 covariant 
approach to 
cosmology.

Cosmological 
models and their 
intergrability.

Linear perturbations 
of FRW models.

Electromagnetic 
fields in Cosmology

Dynamical 
systems analysis 
in cosmology.

Nonlinear 
perturbations of 
FRW models.

Perturbations of 
Bianchi models.

Perturbations of 
Black Holes.

Gravitational 
Lensing.
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If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
∫

d4x
√
−g

[
Λ + c0R + c1R

2 + c2RµνRµν
]

. (6)

In situations where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
∫

d4x
√
−g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f ′Gab = f ′
(

Rab −
1
2

gabR

)
= Tm

ab +
1
2
gab (R−Rf ′) +∇b∇af ′ − gab∇c∇cf ′ , (8)

where f = f(R), f ′ =
df(R)

dr
, and TM

µν =
2√
−g

δ(
√
−gLm)
δgµν

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f ′ and

TR
ab =

1
f ′

[
1
2
gab (R−Rf ′) +∇b∇af − gab∇c∇cf

]
, (10)

represent two effective “fluids”: the curvature “fluid” (associated with TR
ab) and the effective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “effective” fluids. This means that once the effective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these effective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess off–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the effective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single effective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f ′ − f ′′

f ′2 Tm
ab R;b , (11)

TR;b
ab =

f ′′

f ′2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
effective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the effective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that
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Fourth order gravity
The class of models we will consider can be derived from the 
classical action:

Varying the action with respect to the metric gives the 
following field equations:

This last step is extremely important as it allows us to treat 
4th order gravity as standard GR in the presence of two 
effective fluids. It is this that makes using the covariant 
approach particularly straightforward. 
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In the following, angle brackets applied to a vector denote the projection of this vector on the tangent 3-spaces

V〈a〉 = ha
bVb . (15)

Instead when applied to a tensor they denote the projected, symmetric and trace free part of this object

W〈ab〉 =
[
h(a

chb)
d − 1

3hcdhab

]
Wcd . (16)

Finally the spatial curl of a variable is

(curlX)ab = ηcd〈a ∇̃cX
b〉

d (17)

where εabc = udηabcd is the spatial volume.
The general propagation equations for these kinematic variables, for any spacetime corresponds to the so called

1+3 covariant equations [34] and are given in Appendix C.

C. Effective total energy-momentum tensors

The choice of the frame also allows us to obtain an irreducible decomposition of the stress energy momentum tensor.
In a general frame and for a general tensor Tab one obtains:

Tab = µuaub + phab + 2q(aub) + πab , (18)

where µ and p are the energy density and isotropic pressure, qa is the energy flux (qa = q〈a〉) and πab is the anisotropic
pressure (πab = π〈ab〉).

This decomposition can be applied to our effective energy momentum tensors. Relative to um
a we obtain

µtot = T tot
ab uaub = µ̃m + µR , ptot =

1
3
T tot

ab hab = p̃m + pR , (19)

qtot
a = −T tot

bc hb
auc = q̃ m

a + q R
a , πtot

ab = T tot
cd hc

<ahd
b> = π̃ m

ab + π R
ab , (20)

with

µ̃m =
µm

f ′ , p̃m =
pm

f ′ , q̃ m
a =

q m
a

f ′ , π̃ m
ab =

π m
ab

f ′ . (21)

Since we assume that standard matter is a perfect fluid, q m
a and π m

ab are zero, so that the last two quantities above
also vanish.

The effective thermodynamical quantities for the curvature “fluid” are

µR =
1
f ′

[
1
2
(Rf ′ − f)−Θf ′′Ṙ + f ′′∇̃2R + f ′′ u̇b∇̃R

]
, (22)

pR =
1
f ′

[
1
2
(f −Rf ′) + f ′′R̈ + 3f ′′′Ṙ2 +

2
3
Θf ′′Ṙ− 2

3
f ′′∇̃2R+

−2
3
f ′′′∇̃aR∇̃aR− 1

3
f ′′ u̇b∇̃R

]
, (23)

qR
a = − 1

f ′

[
f ′′′Ṙ∇̃aR + f ′′∇̃aṘ− 1

3
f ′′∇̃aR

]
, (24)

πR
ab =

1
f ′

[
f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R + σabṘ

]
. (25)

The twice contracted Bianchi Identities lead to evolution equations for µm, µR, qR
a :

µ̇m = −Θ (µm + pm) , (26)

µ̇R + ∇̃aqR
a = −Θ (µR + pR)− 2 (u̇aqR

a )− (σabπR
b a) + µm f ′′ Ṙ

f ′2 , (27)

q̇R
〈a〉 + ∇̃apR + ∇̃bπR

ab = − 4
3 Θ qR

a − σa
b qR

b − (µR + pR) u̇a − u̇b πR
ab − ηbc

a ωb qR
c + µm f ′′ ∇̃aR

f ′2 , (28)

{Note no 
background 
contribution.

The energy-momentum tensor of the curvature “fluid” can 
be decomposed as follows:

u
a

ua
R = −∇aR

Ṙ

So one can think of this 
as a curvature “fluid” 
moving relative to  ua



Linearisation

Exact equations valid 
in any spacetime.

Choose background 
spacetime: FRW.

Variables that vanish in 
chosen background are 
0(1) and GI.

Linearize by dropping 
all terms that are 0(2) 
and higher. 

Almost FRW model.

Θ̇ + 1
3Θ2 + σabσ

ab − 2ωaωa − ∇̃au̇a + u̇au̇a + 1
2 (µtot + 3ptot) = 0

Θ̇ + 1
3Θ2 − ∇̃au̇a + 1

2 (µtot + 3ptot) = 0
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B. Linearized equations

In the previous section we derived the exact nonlinear equations that govern the exact gravitational dynamics of
fourth order gravity relative to observers comoving with standard matter. These equations are fully covariant and
hold for any spacetime. Consequently, we can linearize these equations around any chosen background, avoiding
the need for choosing coordinates and dealing directly with physically well defined quantities, rather than metric
components [43]. These features, which are desirable in the GR case, become essential for the correct understanding
of the evolution of perturbations in fourth order gravity as well as in other kinds of alternative gravity theories [35].

In what follows we will choose a Friedamnn-Lemâıtre-Robertson-Walker (FLRW) metric as our background. We
make this choice for a number of different reasons. First of all the possibility of writing a general fourth order
Lagrangian as a simple function of the Ricci scalar is surely possible for this metric. Secondly, because most of the
work in GR perturbation theory has been performed for this background it makes a comparison of behavior of GR
and fourth order gravity more straightforward.

The Friedmann background is characterized by the vanishing of all inhomogeneous and anisotropic quantities qR
a ,πR

ab
and defines the order of the quantities appearing in the 1+3 equations and the linearization procedure. In particular,
the quantities that are zero in the background are considered first-order of in the linearization scheme. In addition,
the Stuart & Walker lemma ensures that since these quantities vanish in the background, they are automatically
gauge-invariant [36].

The cosmological equations for the background read:

Θ2 = 3µ̃m + 3µR − R̃

2
, (40)

Θ̇ + 1
3Θ2 + 1

2 (µ̃m + 3p̃m) + 1
2 (µR + 3pR) = 0 , (41)

µ̇m + Θ (µm + pm) = 0 , (42)

where µR and pR are the zero order energy density and pressure of the curvature fluid, R̃ is the 3-Ricci scalar and
R̃ = 6K/S2 with the spatial curvature index K = 0,±1.

Linearization of the exact propagation and constraint equations about this background then leads to the system:

Θ̇ + 1
3Θ2 − ∇̃aAa + 1

2 (µ̃m + 3p̃m) = − 1
2 (µR + 3pR) , (43)

ω̇a + 2Hωa + 1
2curlAa = 0 , (44)

σ̇ab + 2Hσab + Eab − ∇̃〈aAb〉 = −qR
a , (45)

Ėab + 3HEab − curlHab + 1
2 (µ̃m + p̃m)σab

= − 1
2 (µR + pR)σab − 1

2 π̇R
〈ab〉 − 1

2∇̃〈aqR
b〉 − 1

6ΘπR
ab , (46)

Ḣab + 3HHab + curlEab = 1
2curlπR

ab , (47)

∇̃bσab − curlωa − 2
3∇̃aΘ = −qR

a , (48)

curlσab + ∇̃〈aωb〉 −Hab = 0 , (49)

∇̃bEab − 1
3∇̃aµ̃m = − 1

2∇̃
bπR

ab + 1
3∇̃aµR − 1

3ΘqR
a , (50)

∇̃bHab − (µ̃m + p̃m)ωa = − 1
2curl qR

a + (µR + pR)ωa , (51)

∇̃aωa = 0 , (52)

together with the linearized conservation equations

µ̇m = −Θ (µm + pm) , (53)
∇̃apm = −(µm + pm) u̇a , (54)

µ̇R + ∇̃aqR
a = −Θ (µR + pR) + µm f ′′ Ṙ

f ′2 , (55)

q̇R
〈a〉 + ∇̃apR + ∇̃bπR

ab = − 4
3 Θ qR

a − (µR + pR) u̇a + µm f ′′ ∇̃aR

f ′2 , (56)

obtained from (26)–(29). Note that at first order the equation of the vorticity (52) is homogeneous i.e. the evolution of
the vorticity is decoupled. This will be important in the next section when we will derive the perturbations equations.
These equations provide the basis for a covariant and gauge-invariant description of perturbations of f(R) theories of
gravity.
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Propagation

Constraint

The linear gravitational equations
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, (40)

Θ̇ + 1
3Θ2 + 1

2 (µ̃m + 3p̃m) + 1
2 (µR + 3pR) = 0 , (41)

µ̇m + Θ (µm + pm) = 0 , (42)

where µR and pR are the zero order energy density and pressure of the curvature fluid, R̃ is the 3-Ricci scalar and
R̃ = 6K/S2 with the spatial curvature index K = 0,±1.

Linearization of the exact propagation and constraint equations about this background then leads to the system:

Θ̇ + 1
3Θ2 − ∇̃aAa + 1

2 (µ̃m + 3p̃m) = − 1
2 (µR + 3pR) , (43)

ω̇a + 2Hωa + 1
2curlAa = 0 , (44)

σ̇ab + 2Hσab + Eab − ∇̃〈aAb〉 = −qR
a , (45)

Ėab + 3HEab − curlHab + 1
2 (µ̃m + p̃m)σab

= − 1
2 (µR + pR)σab − 1

2 π̇R
〈ab〉 − 1

2∇̃〈aqR
b〉 − 1

6ΘπR
ab , (46)

Ḣab + 3HHab + curlEab = 1
2curlπR

ab , (47)

∇̃bσab − curlωa − 2
3∇̃aΘ = −qR

a , (48)

curlσab + ∇̃〈aωb〉 −Hab = 0 , (49)

∇̃bEab − 1
3∇̃aµ̃m = − 1

2∇̃
bπR

ab + 1
3∇̃aµR − 1

3ΘqR
a , (50)

∇̃bHab − (µ̃m + p̃m)ωa = − 1
2curl qR

a + (µR + pR)ωa , (51)

∇̃aωa = 0 , (52)

together with the linearized conservation equations

µ̇m = −Θ (µm + pm) , (53)
∇̃apm = −(µm + pm) u̇a , (54)

µ̇R + ∇̃aqR
a = −Θ (µR + pR) + µm f ′′ Ṙ

f ′2 , (55)

q̇R
〈a〉 + ∇̃apR + ∇̃bπR

ab = − 4
3 Θ qR

a − (µR + pR) u̇a + µm f ′′ ∇̃aR

f ′2 , (56)

obtained from (26)–(29). Note that at first order the equation of the vorticity (52) is homogeneous i.e. the evolution of
the vorticity is decoupled. This will be important in the next section when we will derive the perturbations equations.
These equations provide the basis for a covariant and gauge-invariant description of perturbations of f(R) theories of
gravity.
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Matter

Curvature

The linear conservation equations

3

If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
∫

d4x
√
−g

[
Λ + c0R + c1R

2 + c2RµνRµν
]

. (6)

In situations where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
∫

d4x
√
−g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f ′Gab = f ′
(

Rab −
1
2

gabR

)
= Tm

ab +
1
2
gab (R−Rf ′) +∇b∇af ′ − gab∇c∇cf ′ , (8)

where f = f(R), f ′ =
df(R)

dr
, and TM

µν =
2√
−g

δ(
√
−gLm)
δgµν

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f ′ and

TR
ab =

1
f ′

[
1
2
gab (R−Rf ′) +∇b∇af − gab∇c∇cf

]
, (10)

represent two effective “fluids”: the curvature “fluid” (associated with TR
ab) and the effective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “effective” fluids. This means that once the effective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these effective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess off–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the effective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single effective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f ′ − f ′′

f ′2 Tm
ab R;b , (11)

TR;b
ab =

f ′′

f ′2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
effective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the effective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that

The Bianchi identities:{
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represent the stress energy tensor of an effective fluid sometimes referred to as the
“curvature fluid” and

TM
µν =

1
f ′(R)

T̃M
µν (5)

represents an effective stress-energy tensor associated with standard matter.
The conservation properties of these effective fluids are given by the Bianchi

identities T ;ν
µν . When applied to the total stress energy tensor, these identities reveal

that if standard matter is conserved the total fluid is also conserved even though the
curvature fluid may in general possess off–diagonal terms [21, 26, 27]. In other words,
no matter how complicated the effective stress energy tensor TTOT

µν is, it will always be
divergence free if T̃M ;ν

µν = 0. When applied on the single effective tensors, the Bianchi
identities read

TM ;ν
µν =

T̃M ;ν
µν

f ′(R)
− f ′′(R)

f ′(R)2
T̃M

µν R;ν , (6)

TR;ν
µν =

f ′′(R)
f ′(R)2

T̃M
µν R;ν , (7)

the last expression being a consequence of total energy-momentum conservation. It
follows that the individual effective fluids are not conserved but exchange energy and
momentum. It is worth noting that even if the effective tensor associated with the
matter is not conserved, standard matter still follows the usual conservation equations
T̃M ;ν

µν = 0.
Let us now consider the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (8)

For this metric the action the field equations (4) reduce to

H2 +
k

a2
=

1
3f ′

{
1
2

[f ′R− f(R)]− 3Hḟ ′ + µm

}
,

2Ḣ + H2 +
k

a2
= − 1

f ′

{
1
2

[f ′R− f(R)] + f̈ ′ − 3Hḟ ′ + pm

}
,

(9)

and

R = −6
(

2H2 + Ḣ +
k

a2

)
, (10)

where H ≡ ȧ/a, f ′ ≡ df(R)
dR and the “dot” is the derivative with respect to t. The

system (9) is closed by the only non trivial Bianchi identity for T̃M
µν :

µ̇m + 3H(µm + pm) = 0 , (11)

which corresponds to the energy conservation equation for standard matter.

3. The dynamical system approach in fourth order gravity theories

Following early attempts (see for example [28]), the first extensive analysis of the
phase space of a fourth order gravity theory using the Dynamical Systems Approach
(DSA) as defined in [23] was given in [21]. Here the phase space of the power law model
f(R) = f0Rn was investigated in great detail and exact solutions were found and their
stability determined. Following this, several authors have applied a similar approach
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.......But how do we find useful                 
background solutions?

H2 +
k

S2
=

1
3f ′

{
1
2

[f ′R− f(R)]− 3Hḟ ′ + µm

}
,

2Ḣ + H2 +
k

S2
= − 1

f ′

{
1
2

[f ′R− f(R)] + f̈ ′ − 3Hḟ ′ + pm

}
,
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to other types of Lagrangians [29], and very recently this scheme was generalized in
[24]. In this paper we give a self consistent general technique that allows us to perform
a dynamical system analysis of any analytic fourth order theory of gravity in the case
of the FLRW spacetime.

The first step in the implementation of the Dynamical System Approach (DSA) is
the definition of the variables. Following [21], we introduce the general dimensionless
I changed µ with µm variables :

x =
ḟ ′

f ′H
, y =

R

6H2
, z =

f

6f ′H2
,

Ω =
µm

3f ′H2
, K =

k

a2H2
,

(12)

where µm represents the energy density of a perfect fluid that might be present in the
model ‖.

The cosmological equations (9) are equivalent to the autonomous system :
dx

dN = −x2 + (K + y + 1)x + 2K + 2z + Ω(−3w − 1) + 2,

dy

dN = 2y2 + (2K + xq + 4)y,

dz

dN = (2K − x + 2y + 4)z + xyq,

dΩ
dN = Ω(2K − x + 2y − 3w + 1),

dK

dN = 2K2 + (2y + 2)K,

(13)

where N = ln a is the logarithmic time. In addition we have the constraint equation

1 = −K − x− y + z + Ω , (14)

which can be used to reduce the dimension of the system. If one chooses to eliminate
K, the variable associated with the spatial curvature, we obtain

dx

dN = − 2x2 + (z − 2)x− 2y + 4z + Ω(x− 3w + 1),

dy

dN = y[2Ω + 2(z + 1) + x(q− 2)], (15)

dz

dN = 2z2 + (2Ω− 3x + 2)z + xyq,

dΩ
dN = Ω (2Ω− 3x + 2z − 3w − 1),

K = z + Ω− x− y − 1 .

The quantity q Sante fixed everything in the term of f ’ is defined, in analogy with [24],
as

q ≡
(

d log F

d log R

)−1

=
f ′

Rf ′′
. (16)

‖ In what follows we will consider only models containing a single fluid. The generalization to a
multi–fluid case is trivial: one has just to add a new variable Ω for each new type of fluid. This has
the consequence of increasing the number of dynamical equations and therefore, the dimension of the
phase space. However, since this generalization does not really add to the conceptual problem (at
least in terms of a local analysis), we will only consider a single fluid here.
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3. The dynamical system approach in fourth order gravity theories

Following early attempts (see for example [29]), the first extensive analysis of
cosmologies based on fourth order gravity theory using the DSA as defined in [24]
was given in [22]. Here the phase space of the power law model f(R) = χRn

was investigated in great detail and exact solutions were found and their stability
determined. Following this, several authors have applied a similar approach to other
types of Lagrangians [30], and very recently this scheme was generalized in [25]. In
this paper we give a self consistent general technique that allows us to perform a
dynamical system analysis of any analytic fourth order theory of gravity in the case
of the FLRW spacetime.

The first step in the implementation of the Dynamical System Approach is the
definition of the variables. Following [22], we introduce the general dimensionless
variables :

x =
ḟ ′

f ′H
, y =

R

6H2
, z =

f

6f ′H2
,

Ω =
µm

3f ′H2
, K =

k

a2H2
,

(13)

where µm represents the energy density of a perfect fluid that might be present in the
model ‖.

The cosmological equations (10) are equivalent to the autonomous system :
dx

dN
= ε (2K + 2z − x2 + (K + y + 1)x) + Ωε (−3w − 1) + 2,

dy

dN
= yε (2y + 2K + xq + 4),

dz

dN
= zε (2K − x + 2y + 4) + xε yq,

dΩ
dN

= Ωε (2K − x + 2y − 3w + 1),

dK

dN
= Kε (2K + 2y + 2),

(14)

where N = | ln a| is the logarithmic time and ε = |H|/H. In addition, we have the
constraint equation

1 = −K − x− y + z + Ω , (15)

which can be used to reduce the dimension of the system. If one chooses to eliminate
K, the variable associated with the spatial curvature, we obtain

dx

dN
= ε (4z − 2x2 + (z − 2)x− 2y) + Ωε (x− 3w + 1),

dy

dN
= yε [2Ω + 2(z + 1) + x(q− 2)], (16)

‖ In what follows we will consider only models containing a single fluid with a generic barotropic
index. This might be problematic in treating the dust case because the condition w = 0 might lead to
additional fixed points. This issue has been checked in our calculations and no change in the number
of fixed points has been found. In addition, the generalization to a multi–fluid case is trivial: one has
just to add a new variable Ω for each new type of fluid. This has the consequence of increasing the
number of dynamical equations and therefore, the dimension of the phase space. However, since this
generalization does not really add anything to the conceptual problem (at least in terms of a local
analysis).
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The case f (R) = Rn

In this model we have

A =

∫
d4x

√
−g [χRn + LM ] ,

where χ = 1 for n = 1.

Point Coordinates (x, y, z) Scale Factor

A [0, 0, 0] a = a0(t − t0)
B [−1, 0, 0] a = a0(t − t0)1/2 (only for n = 3/2)

C
[
2(n−2)
2n−1 , 4n−5

2n−1 , 0
]

a = a0 t
(1−n)(2n−1)

n−2

D [2(1− n), 2(n − 1)2, 0]

{
a = kt

2n2−2n−1
if k "= 0

a = a0t if k = 0

E [−1− 3ω, 0,−1− 3ω] a = a0(t − t0)
F [1− 3ω, 0, 2− 3ω] a = a0(t − t0)1/2 (only for n = 3/2)

G
[
− 3(n−1)(1+ω)

n , (n−1)[4n−3(ω+1)]

2n2
,

n(13+9ω)−2n2(4+3ω)−3(1+ω)

2n2

]
a = a0 t

2n
3(1+ω)

S Carloni Cosmology in Fourth Order Gravity

C

G

S = S0t
(1−n)(2n−1)

n−2

S = S0t
2n

3(1+w)

A simple example:      gravityRn

1.36<n<1.5
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effective matter energy density take the form:

Θ =
2n

t(ω + 1)
, (95)

R =
4n[4n− 3(ω + 1)]

3t2(ω + 1)2
, (96)

µR =
2(n− 1)[2n(3ω + 5)− 3(ω + 1)]

3t2(ω + 1)2
, (97)

pR =
2(n− 1)

[
n

(
6ω2 + 8ω − 2

)
− 3ω(ω + 1)

]

3t2(ω + 1)2
, (98)

µ =
(

3
4

)1−n

nχ

(
n(4n− 3(ω + 1))

t2(ω + 1)2

)n−1 4n2 − 2(n− 1)[2n(3ω + 5)− 3(ω + 1)]
3(ω + 1)2t2

. (99)

Substituting in the equations given above and passing to the long wavelength limit we obtain

∆̇m =
[
− 2n

w + 1
− 6(n− 1)n

n + 3(n− 1)w − 3
+ 1

]
∆m

t
− 3(w + 1)2

4S2
0 [n + 3(n− 1)w − 3]

C0 t1−
4n

3(w+1)

+
3(n− 1)(w + 1)2[n(6w + 8)− 15(w + 1)]

4[n + 3(n− 1)w − 3][4n− 3(w + 1)]
R t− 9(n− 1)(w + 1)3t2

4[n + 3(n− 1)w − 3][4n− 3(w + 1)]
" t2 , (100)

Ṙ = "+
8nw(4n− 3(w + 1))

3(w + 1)3
∆m

t3
, (101)

"̇ =
2n(4n− 3w − 3)

(w + 1)(n + 3(n− 1)w − 3)
C0

S2
0

t−
4n

3(w+1)−2 + 2
(

3n(n− 1)
n + 3(n− 1)w − 3

− n

w + 1
+ 2n− 4

)
"
t

+2
(
− 9n(n− 2)(n− 1)

n + 3(n− 1)w − 3
− 2n2 + 7n +

3n2(9n− 26) + 57
9(w + 1)(n− 1)

+
8n2(n− 2)

9(w + 1)2(n− 1)
− 6

)
R
t2

(102)

+
16n(4n + 3(n− 1)w − 3)(4n− 3(w + 1))

(
(9w(w + 1) + 8)n2 − (3w(9w + 8) + 13)n + 3(w + 1)(6w + 1)

)

27(n− 1)(w + 1)4(n + 3(n− 1)w − 3)
t4 ∆m ,

where C0 is the conserved value for the quantity C. The evolution of density perturbations can then be decoupled
via the third order equation

(n− 1)
...
∆m − (n− 1)

(
4nω

ω + 1
− 5

)
∆̈m

t
+D1(n, w)

∆̇m

t2
+D2(n, w)

∆m

t3
+D3(n, w) C0 t−

4n
3(ω+1)−1 = 0 (103)

where

D1(n) = −
2

(
−9(2(n− 1)n + 1)ω2 + 6n(n(4n− 7) + 1)ω + 18ω + n(4n(8n− 19) + 33) + 9

)

9(ω + 1)2
(104)

D2(n) =
2((2n− 1)ω − 1)(4n− 3(ω + 1))(3(ω + 1) + n(−9ω + n(6ω + 8)− 13))

9(ω + 1)3
(105)

D3(n) = −n(21ω − 6n(ω + 2) + 31)− 18(ω + 1)
6S2

0

(106)

This equation admits the general solution

∆m = K1t
2nω
ω+1−1 + K2t

α+ + K3t
α− −K4

C0

S2
0

t2−
4n

3(ω+1) , (107)

where

α± = −1
2

+
nω

ω + 1
±

√
(n− 1) (4(3ω + 8)2n3 − 4(3ω(18ω + 55) + 152)n2 + 3(ω + 1)(87ω + 139)n− 81(ω + 1))

6(n− 1)(ω + 1)2

(108)

K4 =
9(ω + 1)3(18(ω + 1) + n(−21ω + 6n(ω + 2)− 31))

8(n(6ω + 4)− 9(ω + 1)) (6(ω + 2)n3 − (9ω + 19)n2 − 3(ω + 1)(3ω + 1)n + 9(ω + 1)2)
. (109)

If we choose point G:
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The second of these equations is just the spatial Laplacian of the trace of the Einstein Field equations R = 3p− µ.

VI. EXAMPLE: Rn-GRAVITY

Let us now apply the equations derived in the above sections to the simplest example of fourth order theory of
gravity: Rn-gravity. The reason why we focus specifically on this toy I would erase here the adjective ”toy”
model is that it has the advantage to be relatively simple to be dealt with and ”, in addition, since whatever
analytic f(R)–Lagrangian can be developed by means of a power law series, investigating Rn-gravity means to deal with
a toy model capable of getting in touch with the dynamical consequences of higher order gravity terms into the evolution
equations. Furthermore, since Rn-gravity has been widely investigated both on the cosmological [5] and solar system
scales with interesting results [17], deepening such a model in relation with new physical issues represents a helpful
task in order to develop preliminary analisys of more general effective f(R)–Lagrangians. Actually, the evolution
of primordial perturbations and the formation of the observed large scale structure represents a fundamental test in
order to check the predictions descending by a certain gravity model. As a consequence, it is very useful to investigate
the evoution of cosmological perturbation in the case of a pure power law Ricci model as a first preliminary analysis
of the implications of higher order gravity models with respect to the formation and the evolution of structures.” In
Rn-gravity we have f(R) = χRn and ”so that” in place of ”and”? the action reads

A =
∫

d4x
√
−g [χRn + LM ] , (90)

where χ a the coupling constant with suitable dimensions and χ = 1 for n = 1.
If R #= 0 the field equations for this theory can be written as

Gab = χ−1 T̃M
ab

nRn−1
+ TR

ab (91)

where

T̃M
ab = χ−1 TM

ab

nRn−1
, (92)

TR
ab = (n− 1)

{
− R

2n
gab +

[
R;cd

R
+ (n− 2)

R;cR;d

R2

]
(gcagdb − gcdgab)

}
. (93)

The FLRW dynamics of this model has been investigated via a complete phase space analysis in [12]. This analisys
shows that for specific intervals of the parameter n there is a set of initial conditions with non zero measure for which
the cosmic histories include a transient decelerated phase which evolves towards an accelerated expansion one. This
first phase was argued to be suitable for the structure formation to take place.

In what follows we will analyze the evolution of the scalar perturbations during this phase in the long wavelength
limit. In this approximation the wavenumber k is considered to be so small that the wavelength λ = 2πS/k associated
with it is much larger than the Hubble radius. Equation (79) then implies that all the Laplacians can be neglected
and the spatial dependence of the perturbation variables can be factored out. It is also well known [37] that in this
limit and in spatially flat (K = 0) backgrounds the (85) reduces to Ċ = 0 i.e. the variable C is conserved so that the
number of perturbations equations can be reduced to three.

Let us now set the background to be the transient solution

S = S0t
2n

3(1+w) , k = 0 , µ = µ0t
−2n (94)

of [12]. The expansion, the Ricci scalar, the curvature fluid pressure, the curvature fluid energy density and the
Then the background quantities can be easily calculated:



Gravitational Waves
Linear gravitational waves are described by the transverse 
trace-free degrees of freedom once scalars and vectors have 
been switched off.

✴ The 1+3 covariant variables relevant for gravitational 
waves are:

✴ The shear tensor

✴ The electric part of the Weyl tensor

✴ The Magnetic part of the Weyl tensor

✴ The evolution of these variables can be calculated in 
general, but we will focus on their evolution in an almost 
FRW spacetime.
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where f is any scalar quantity; in particular

∇̃aµ = ∇̃ap = 0 ⇒ , u̇a = 0 . (29)

It follows that the governing equations for this background are

Θ̇ + 1
3Θ2 + 1

2 (µ + 3p) = 0 , (30)

R̃ = 2
[
− 1

3Θ2 + µ
]

, (31)

µ̇ + Θ (µ + p) = 0 . (32)

Now in order to describe small deviations from a FLRW spacetime we simply take all the quantities that are zero in
the background as being first order, and retain in the equations (Eq. (16)-(27)) only the terms that are linear in these
quantities, i.e. we drop all second order terms. This procedure corresponds to the linearization in the 1+3 covariant
approach and it greatly simplifies the system of equations. In particular, the scalar, vector and tensor parts of the
perturbations are decoupled, so that we are able to treat them separately. In what follows we will focus only on the
tensor perturbations.

B. The general linear tensor perturbation equations

The 1+3 covariant description of gravitational waves in the context of cosmology has been considered by [28]. The
linearized gravitational waves are described by the transverse and trace-free degrees of freedom once scalars have been
switched off. Therefore, focusing only on tensor perturbations the necessary evolution equations are

σ̇ab +
2
3

Θσab + Eab −
1
2
πab = 0 , (33)

Ḣab + Hab Θ + (curl E)ab −
1
2
(curl π)ab = 0 , (34)

Ėab + Eab Θ− (curl H)ab +
1
2

(µ + p) σab +
1
6
Θπab +

1
2
π̇ab = 0 , (35)

together with the conditions

∇̃bH
ab = 0 , ∇̃bE

ab = 0 , Hab = (curlσ)ab . (36)

Note that, since the linear tensor perturbations are frame-invariant, the structure of the equations does not depend
on the choice of 4-velocity ,ua. In the following, however, we shall choose the frame associated with standard matter
(ua = um

a ). The motivation for such a choice is the fact that real observers are attached to galaxies and these galaxies
follow the standard matter geodesics. Taking the time derivative of the above equations we obtain

σ̈ab − ∇̃2σ +
5
3

Θ σ̇ab +
(

1
9

Θ2 +
1
6
µ− 3

2
p

)
σab = π̇ab +

2
3

Θπab , (37)

Ḧab − ∇̃2Hab +
7
3

Θ Ḣab +
2
3

(
Θ2 − 3p

)
Hab = (curl π̇)ab +

2
3

Θ (curl π)ab , (38)

Ëab − ∇̃2Eab +
7
3

Θ Ėab +
2
3

(
Θ2 − 3p

)
Eab −

1
6
Θ (µ + p)

(
1 + 3 c2

s

)
σab

= −
[
1
2
π̈ab −

1
2
∇̃2πab +

5
6

Θ π̇ab +
1
3

(
Θ2 − µ

)
πab

]
, (39)
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(
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6
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)
σab = π̇ab +

2
3
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(
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(
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)
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The evolution of tensor perturbations are governed by three 
propagation equations:

and three constraints:
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where we assume that standard matter is a perfect fluid, i.e. qm
a = 0 and πm

ab = 0. The effective thermodynamical
quantities for the curvature fluid are

µR =
1
f ′

[
1
2
(Rf ′ − f)−Θf ′′Ṙ + f ′′∇̃2R + f ′′ u̇b∇̃R

]
, (58)

pR =
1
f ′

[
1
2
(f −Rf ′) + f ′′R̈ + f ′′′Ṙ2 +

2
3
Θf ′′Ṙ− 2

3
f ′′∇̃2R− 2

3
f ′′′∇̃aR∇̃aR− 1

3
f ′′ u̇b∇̃R

]
, (59)

qR
a = − 1

f ′

[
f ′′′Ṙ∇̃aR + f ′′∇̃aṘ− 1

3
f ′′∇̃aR

]
, (60)

πR
ab =

1
f ′

[
f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R− f ′′σabṘ

]
. (61)

The twice contracted Bianchi Identities lead to evolution equations for µm, µR, qR
a :

µ̇m = −Θ (µm + pm) , (62)

µ̇R + ∇̃aqR
a + Θ (µR + pR) + 2 (u̇aqR

a ) + (σabπR
b a) = µm f ′′ Ṙ

f ′2 , (63)

q̇R
〈a〉 + ∇̃apR + ∇̃bπR

ab + 4
3 Θ qR

a + σa
b qR

b + (µR + pR) u̇a + u̇b πR
ab + ηbc

a ωb qR
c = µm f ′′ ∇̃aR

f ′2 , (64)

and a relation connecting the acceleration u̇a to µm and pm follows from momentum conservation of standard matter:

∇̃apm = −(µm + pm) u̇a . (65)

Note that, as we have seen in the previous section the curvature fluid and the effective matter exchange energy and
momentum. The decomposed interaction terms in Eq. (22) and Eq. (62) are given by µm f ′′ ∇̃aR

f ′2 and µm f ′′ Ṙ
f ′2 .

It is easy to see that the curvature fluid is in general an imperfect fluid, i.e. has energy flux (qa) and anisotropic
pressure (πab). Since we are only interested in linear tensor perturbations, we need only be concerned with the tensor
anisotropic pressure, which is proportional to the shear, σab. We now present the second order evolution equations
resulting from the standard harmonic analysis of Eq.s (42)-(44) in the case of f(R) theories of gravity:

σ̈(k) +
(

5
3
Θ + Ṙ

f ′′

f ′

)
σ̇(k)+

{
1
9

Θ2 +
1
f ′

(
1
6
µm − 3

2
pm

)
+

k2

a2

−1
2
ΘṘ

f ′′

f ′ −
5
6

1
f ′ (f − f ′R)− Ṙ2

[
1
2

f ′′′

f ′ +
(

f ′′

f ′

)2
]
− 1

2
R̈

f ′′

f ′

}
σ(k) = 0, (66)

Ḧ(k) +
(

7
3
Θ + Ṙ

f ′′

f ′

)
Ḣ(k)+

{
2
3

Θ2 − 2
f ′ p

m +
k2

a2
− 1

3
ΘṘ

f ′′

f ′

− 1
f ′ (f − f ′R)− Ṙ2

[
f ′′′

f ′ +
(

f ′′

f ′

)2
]
− R̈

f ′′

f ′

}
H(k) = 0, (67)

E(k) = −σ̇(k) −
(

2
3
Θ +

1
2
Ṙ

f ′′

f ′

)
σ(k). (68)

For our purposes it will be particularly useful to consider these equations in the so-called Long Wavelength Limit.
In this limit the wavenumber k is considered to be so small that the wavelength λ = 2πa/k associated with it is
much larger than the Hubble radius. Eq. (41) then implies that all the Laplacians can be neglected and the spatial
dependence of the perturbation variables can be factored out.

V. TENSOR PERTURBATIONS IN Rn GRAVITY

To proceed, we must now fix our theory of gravity, i.e. we must choose the form of f(R). We will consider a toy
model (Rn-gravity) which is the simplest example of fourth order theory of gravity but exhibits many of the properties

Substituting for the “curvature fluid terms” and performing a 
tensor harmonic decomposition we obtain two wave equations 
for the shear and magnetic part of the Weyl tensor and a 
relation determining the electric part of the Weyl tensor.



We investigate the following cases:

Motivation
Extension of General Relativity

Tensor Perturbations in FOG
Summary and Conclusion

Kinematics of FOG
“Effective” Thermodynamics
Perturbation Equations
The case f (R) = Rn

The various cases

We will investigate the following cases:
The matter dominated era (ω = 0) which is relevant to direct
detectors.
The radiation dominated era (ω = 1/3) which is relevant to CMB
comstraints.

The physically relevant variable is the dimensionless expansion
normalized shear

Σ(k) =
σ(k)

H
.

K Ananda GW’s in Fourth Order Gravity

The physically relevant quantity is the dimensionless 
expansion normalized sheer:

✴ The mater dominated era (w=0) relevant to direct detectors.

✴ The radiation dominated era (w=1/3) which is relevant to 
CMB constraints.



Matter dominated era
In the case of dust, the long wavelength solution is
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the background and Σ̃i always grows indicating that this model is unstable with respect to tensor perturbations. In
the case of larger values of n, the Σ̃1 mode grows (decays) for n ! 1.366 (n " 1.366) and the Σ̃2 mode grows (decays)
for n < 1.25 (n > 1.25). This is consistent with the background dynamics in that all perturbation modes are decaying
when we have accelerated expansion (w < −1/3) in the background.

For the sake of completeness we present the results of the general case (k "= 0). The solutions are given in terms of
Bessel functions of the first and second kind (J and Y respectively).

σ(k) = t
(2n−1)(6n−7)

2(n−2)

[
A1J

(
s,

ktr

r

)
+ A2Y

(
s,

ktr

r

)]
, (83)

H(k) = t
(2n−1)(8n−9)

2(n−2)

[
A3J

(
s,

ktr

r

)
+ A4Y

(
s,

ktr

r

)]
, (84)

E(k) = A1t
12n2−22n+11

2(n−2)

[
n2 + 2n− 5

(2− n)
J

(
s,

ktr

r

)
+ ktrJ

(
s + 1,

ktr

r

)]
(85)

+A2t
12n2−22n+11

2(n−2)

[
n2 + 2n− 5

(2− n)
Y

(
s,

ktr

r

)
+ ktrY

(
s + 1,

ktr

r

)]
, (86)

where we have introduced the following parameters

r =
2n2 − 2n− 1

n− 2
, s = −1 +

3(2n− 3)
2(n− 2)r

. (87)

The normalized shear Σ is now of the form

Σ(k) = t
3(4n2−6n+1)

2(n−2)

[
Σ̃1J

(
s,

ktr

r

)
+ Σ̃2Y

(
s,

ktr

r

)]
. (88)

where both the Σ̃i modes grow (decay) for n ! 1.290 (n " 1.290).

B. The fluid case

We will now consider the case of tensor perturbations in the presence of matter which is described by a perfect
fluid with barotropic EOS index, wm. This class of theories then admits the following exact solution

a(t) = a0t
2n

3(1+wm) , K = 0, (89)

The expansion parameter is given by

Θ(t) =
2n

(1 + wm)t
. (90)

As in the previous case we restrict our attention to expanding models. Additionally, we are mainly interested in
the case where the perfect fluid describes dust (wm = 0) or radiation (wm = 1/3). This is due to the fact that these
cases are the most relevant when considering GW detection via the CMB or direct detectors, e.g. LISA and BBO. To
insure an expanding model we now require n > 0, provided wm > −1.

1. The dust case

We now investigate the evolution of tensor perturbations in the dust dominated era. The scale-factor is given by

a(t) = a0t
r, r =

2n

3
. (91)

The EOS of the total effective fluid (dust and the effective curvature fluid) is then

w = − (n− 1)
n

. (92)
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FIG. 2: The exponents of each mode of the solution for the normalized shear against n in the dust and radiation dominated
era’s. (a) The left panel represents the exponents of the mode in the dust dominated era. (b) The right panel represents the
exponents of the mode in the radiation dominated era. The black (grey) line represents the growing (decaying) mode. The
points represent the value of the exponents in the case of GR (n = 1).

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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the background and Σ̃i always grows indicating that this model is unstable with respect to tensor perturbations. In
the case of larger values of n, the Σ̃1 mode grows (decays) for n ! 1.366 (n " 1.366) and the Σ̃2 mode grows (decays)
for n < 1.25 (n > 1.25). This is consistent with the background dynamics in that all perturbation modes are decaying
when we have accelerated expansion (w < −1/3) in the background.

For the sake of completeness we present the results of the general case (k "= 0). The solutions are given in terms of
Bessel functions of the first and second kind (J and Y respectively).

σ(k) = t
(2n−1)(6n−7)

2(n−2)

[
A1J

(
s,

ktr

r

)
+ A2Y

(
s,

ktr

r

)]
, (83)

H(k) = t
(2n−1)(8n−9)

2(n−2)

[
A3J

(
s,

ktr

r

)
+ A4Y

(
s,

ktr

r

)]
, (84)

E(k) = A1t
12n2−22n+11

2(n−2)

[
n2 + 2n− 5

(2− n)
J

(
s,

ktr

r

)
+ ktrJ

(
s + 1,

ktr

r

)]
(85)

+A2t
12n2−22n+11

2(n−2)

[
n2 + 2n− 5

(2− n)
Y

(
s,

ktr

r

)
+ ktrY

(
s + 1,

ktr

r

)]
, (86)

where we have introduced the following parameters

r =
2n2 − 2n− 1

n− 2
, s = −1 +

3(2n− 3)
2(n− 2)r

. (87)

The normalized shear Σ is now of the form

Σ(k) = t
3(4n2−6n+1)

2(n−2)

[
Σ̃1J

(
s,

ktr

r

)
+ Σ̃2Y

(
s,

ktr

r

)]
. (88)

where both the Σ̃i modes grow (decay) for n ! 1.290 (n " 1.290).

B. The fluid case

We will now consider the case of tensor perturbations in the presence of matter which is described by a perfect
fluid with barotropic EOS index, wm. This class of theories then admits the following exact solution

a(t) = a0t
2n

3(1+wm) , K = 0, (89)

The expansion parameter is given by

Θ(t) =
2n

(1 + wm)t
. (90)

As in the previous case we restrict our attention to expanding models. Additionally, we are mainly interested in
the case where the perfect fluid describes dust (wm = 0) or radiation (wm = 1/3). This is due to the fact that these
cases are the most relevant when considering GW detection via the CMB or direct detectors, e.g. LISA and BBO. To
insure an expanding model we now require n > 0, provided wm > −1.

1. The dust case

We now investigate the evolution of tensor perturbations in the dust dominated era. The scale-factor is given by

a(t) = a0t
r, r =

2n

3
. (91)

The EOS of the total effective fluid (dust and the effective curvature fluid) is then

w = − (n− 1)
n

. (92)
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era’s. (a) The left panel represents the exponents of the mode in the dust dominated era. (b) The right panel represents the
exponents of the mode in the radiation dominated era. The black (grey) line represents the growing (decaying) mode. The
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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the background and Σ̃i always grows indicating that this model is unstable with respect to tensor perturbations. In
the case of larger values of n, the Σ̃1 mode grows (decays) for n ! 1.366 (n " 1.366) and the Σ̃2 mode grows (decays)
for n < 1.25 (n > 1.25). This is consistent with the background dynamics in that all perturbation modes are decaying
when we have accelerated expansion (w < −1/3) in the background.

For the sake of completeness we present the results of the general case (k "= 0). The solutions are given in terms of
Bessel functions of the first and second kind (J and Y respectively).

σ(k) = t
(2n−1)(6n−7)
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[
A1J

(
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)
+ A2Y

(
s,
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, (83)

H(k) = t
(2n−1)(8n−9)
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A3J

(
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ktr
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)
+ A4Y

(
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)]
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12n2−22n+11
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J

(
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)
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Y
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ktr
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where we have introduced the following parameters

r =
2n2 − 2n− 1

n− 2
, s = −1 +

3(2n− 3)
2(n− 2)r

. (87)

The normalized shear Σ is now of the form

Σ(k) = t
3(4n2−6n+1)

2(n−2)

[
Σ̃1J

(
s,

ktr

r

)
+ Σ̃2Y

(
s,

ktr

r

)]
. (88)

where both the Σ̃i modes grow (decay) for n ! 1.290 (n " 1.290).

B. The fluid case

We will now consider the case of tensor perturbations in the presence of matter which is described by a perfect
fluid with barotropic EOS index, wm. This class of theories then admits the following exact solution

a(t) = a0t
2n

3(1+wm) , K = 0, (89)

The expansion parameter is given by

Θ(t) =
2n

(1 + wm)t
. (90)

As in the previous case we restrict our attention to expanding models. Additionally, we are mainly interested in
the case where the perfect fluid describes dust (wm = 0) or radiation (wm = 1/3). This is due to the fact that these
cases are the most relevant when considering GW detection via the CMB or direct detectors, e.g. LISA and BBO. To
insure an expanding model we now require n > 0, provided wm > −1.

1. The dust case

We now investigate the evolution of tensor perturbations in the dust dominated era. The scale-factor is given by

a(t) = a0t
r, r =

2n

3
. (91)

The EOS of the total effective fluid (dust and the effective curvature fluid) is then

w = − (n− 1)
n

. (92)
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FIG. 2: The exponents of each mode of the solution for the normalized shear against n in the dust and radiation dominated
era’s. (a) The left panel represents the exponents of the mode in the dust dominated era. (b) The right panel represents the
exponents of the mode in the radiation dominated era. The black (grey) line represents the growing (decaying) mode. The
points represent the value of the exponents in the case of GR (n = 1).

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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Again, for the sake of completeness, in the general case (k != 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively).

σ(k) = t−(2r+1)/2

{
B1J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B2Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (100)

H(k) = t−(4r+1)/2

{
B3J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B4Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (101)

E(k) = B1t
−(2r+3)/2

{
2 (2r − 3)

3
J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rJ

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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Again, for the sake of completeness, in the general case (k != 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively).

σ(k) = t−(2r+1)/2

{
B1J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B2Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (100)

H(k) = t−(4r+1)/2

{
B3J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B4Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (101)

E(k) = B1t
−(2r+3)/2

{
2 (2r − 3)

3
J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rJ

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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Again, for the sake of completeness, in the general case (k != 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively).

σ(k) = t−(2r+1)/2

{
B1J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B2Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (100)

H(k) = t−(4r+1)/2

{
B3J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B4Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (101)

E(k) = B1t
−(2r+3)/2

{
2 (2r − 3)

3
J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rJ

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3/2. In the limit n → ∞
we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
2(2n + 3)

3t
σ̇(k) +

[
(8n− 6)

3t2
+ k2t−2r

]
σ(k) = 0, (93)

Ḧ(k) +
2(4n + 3)

3t
Ḣ(k) +

[
2(2n2 + 5n− 3)

3t2
+ k2t−2r

]
H(k) = 0, (94)

E(k) = −σ̇(k) − (n + 3)
3t

σ(k). (95)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = B1t
−2 + B2t

(1−2r), (96)

H(k) = B3t
−(r+2) + B4t

(1−2n), (97)

E(k) = −B1
(9 + n)

3
t−3 −B2

5n

3
t−2r, (98)

The normalized shear is given by

Σ(k) = Σ̃1t
−1 + Σ̃2t

2(1−r). (99)

The Σ̃1 mode is the decaying mode solution and is independent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The Σ̃2 mode grows (decays) for n < 3/2 (n > 3/2) and reduces to the GR
growing mode in the limit n → 1. This is consistent with the background dynamics in that all perturbation modes
are decaying when we have accelerated expansion (w < −1/3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode of the solutions given above as a function of n. The
black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents in the
case of GR (n = 1). For most of the values of n the perturbations grow slower in Rn-gravity than in GR. In fact
only for n < 1, does the Σ̃1 mode grow with a rate faster than the usual t2/3. In the case of GR, there is always a
growing tensor perturbation mode provided the background is not undergoing accelerated expansion. In the case of
Rn gravity, tensor perturbations grow at a slower rate, thus requiring a sufficiently decelerated expansion in order to
support a growing mode.
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Again, for the sake of completeness, in the general case (k != 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively).

σ(k) = t−(2r+1)/2

{
B1J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B2Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (100)

H(k) = t−(4r+1)/2

{
B3J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B4Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (101)

E(k) = B1t
−(2r+3)/2

{
2 (2r − 3)

3
J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rJ

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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Again, for the sake of completeness, in the general case (k != 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively).

σ(k) = t−(2r+1)/2

{
B1J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B2Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (100)

H(k) = t−(4r+1)/2

{
B3J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
+ B4Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]}
, (101)

E(k) = B1t
−(2r+3)/2

{
2 (2r − 3)

3
J

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rJ

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}

+B2t
−(2r+3)/2

{
2 (2r − 3)

3
Y

[
2r − 3

2 (r − 1)
,
kt(1−r)

(r − 1)

]
− kt−rY

[
1

2 (1− r)
,
kt(1−r)

(r − 1)

]}
, (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in the radiation dominated era. The results of this section
are especially relevant if one wishes to constrain f(R) models through their impact on the B-mode correlation on the
CMB. The scale-factor goes as

a(t) = a0t
r r =

n

2
. (103)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w = − (3n− 4)
3n

. (104)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 2. In the limit n→∞ we
have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
n + 4

2t
σ̇(k) +

[
(4− n) (n− 1)

2t2
+ k2t−2r

]
σ(k) = 0, (105)

Ḧ(k) +
3n + 4

2t
Ḣ(k) −

[
n (3n− 2)

t2
+ k2t−2r

]
H(k) = 0, (106)

E(k) = −σ̇(k) − 1
t
σ(k). (107)

In the long wavelength limit (k = 0), the above equations admit the following solutions

σ(k) = C1t
(1−2r) + C2t

(r−2), (108)

H(k) = C3t
(1−3r) + C4t

−2, (109)

E(k) = C1 (2r − 2) t−2r + C2 (1− r) t(r−3), (110)

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(r−1). (111)

The Σ̃1 mode grows for 0 < n < 2 and decays for n > 2. The Σ̃2 mode decays for the range 0 < n < 2 and grows
for n > 2. In Fig. 2(b) we have plotted the exponents of each mode of the solutions given above as a function of n.
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FIG. 3: The range of parameters for which the modes grow or decay as a function of n and wm The black thick line represents
the change from growth to decay for the Σ̃1 mode. The grey thick line represents the change from growth to decay for the Σ̃2

mode. The thin black line represents the GR case (n = 1). In region I, Σ̃1 decays and Σ̃2 grows. In region II, both modes
grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region IV, both modes decay.

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(2n−1−3r). (123)

The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents
in the case of GR (n = 1). For 0 < n < 2 the Σ̃1 mode grows and the Σ̃2 mode decays. In the range n > 2 the
modes change behavior in that the Σ̃1 mode decays and the Σ̃2 mode grows. Again, for most of the values of n the
perturbations grow slower in Rn-gravity than in GR and only for 0 < n < 1 and n > 4, does the Σ̃i modes grow with
a rate faster than the usual linear growth. The most interesting feature of the solutions in the radiation dominated
era is the possibility of growing modes even if the universe is in a state of accelerated expansion (n > 4). The impact
of these modes on the CMB, could allow one to constrain deviations from GR. However, one should also analyze the
evolution of perturbations on small scales. This analysis is beyond the scope of this paper and it is left to a future,
more detailed investigation.

In the general case (k != 0) the solutions are given in terms of Bessel functions of the first and second kind (J and
Y respectively).

σ(k) = t−(r+1)/2

{
C1J

[
3
2
,
kt(1−r)

(r − 1)

]
+ C2Y

[
3
2
,
kt(1−r)

(r − 1)

]}
, (112)

H(k) = t−(3r+1)/2

{
C3J

[
3
2
,
kt(1−r)

(r − 1)

]
+ C4Y

[
3
2
,
kt(1−r)

(r − 1)

]}
, (113)
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3. The generic large-scale case

Finally, we study the evolution of large-scale (k = 0) tensor perturbations in the presence of a general barotropic
fluid (thats is we will not fix wm except to state that wm > −1). To insure an expanding model we now require n > 0,
provided wm > −1. The scale-factor goes as

a(t) = a0t
r r =

2n

3 (1 + wm)
. (115)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w =
(wm + 1− n)

n
. (116)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3(wm + 1)/2. In the limit
n→∞ we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
10n + 6 (1 + wm) (1− n)

3 (1 + wm) t
σ̇(k) +

2 (3 + 3wm − 4n) (nwm − wm − 1)
3 (1 + wm)2 t2

σ(k) = 0, (117)

Ḧ(k) +
14n + 6 (1 + wm) (1− n)

3 (1 + wm) t
Ḣ(k) +

16n2 − 8n (wm + 1) + 6 (n− 1) (wm + 1) (wm + 1− 2n)
3 (1 + wm)2 t2

H(k) = 0, (118)

E(k) = −σ̇(k) − 4n + 3 (1 + wm) (1− n)
3 (1 + wm) t

σ(k). (119)

The solutions are then

σ(k) = D1t
(1−2r) + C2t

(2n−2−3r), (120)

H(k) = D3t
(1−3r) + D4t

2n−2−4r, (121)

E(k) = D1 (n− 2) t−2r + C2 (n− 1− r) t(2n−3−3r), (122)
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FIG. 3: The range of parameters for which the modes grow or decay as a function of n and wm The black thick line represents
the change from growth to decay for the Σ̃1 mode. The grey thick line represents the change from growth to decay for the Σ̃2

mode. The thin black line represents the GR case (n = 1). In region I, Σ̃1 decays and Σ̃2 grows. In region II, both modes
grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region IV, both modes decay.

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(2n−1−3r). (123)

The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.
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We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents
in the case of GR (n = 1). For 0 < n < 2 the Σ̃1 mode grows and the Σ̃2 mode decays. In the range n > 2 the
modes change behavior in that the Σ̃1 mode decays and the Σ̃2 mode grows. Again, for most of the values of n the
perturbations grow slower in Rn-gravity than in GR and only for 0 < n < 1 and n > 4, does the Σ̃i modes grow with
a rate faster than the usual linear growth. The most interesting feature of the solutions in the radiation dominated
era is the possibility of growing modes even if the universe is in a state of accelerated expansion (n > 4). The impact
of these modes on the CMB, could allow one to constrain deviations from GR. However, one should also analyze the
evolution of perturbations on small scales. This analysis is beyond the scope of this paper and it is left to a future,
more detailed investigation.

In the general case (k != 0) the solutions are given in terms of Bessel functions of the first and second kind (J and
Y respectively).
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3. The generic large-scale case

Finally, we study the evolution of large-scale (k = 0) tensor perturbations in the presence of a general barotropic
fluid (thats is we will not fix wm except to state that wm > −1). To insure an expanding model we now require n > 0,
provided wm > −1. The scale-factor goes as

a(t) = a0t
r r =

2n

3 (1 + wm)
. (115)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w =
(wm + 1− n)

n
. (116)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3(wm + 1)/2. In the limit
n→∞ we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
10n + 6 (1 + wm) (1− n)

3 (1 + wm) t
σ̇(k) +

2 (3 + 3wm − 4n) (nwm − wm − 1)
3 (1 + wm)2 t2

σ(k) = 0, (117)

Ḧ(k) +
14n + 6 (1 + wm) (1− n)

3 (1 + wm) t
Ḣ(k) +

16n2 − 8n (wm + 1) + 6 (n− 1) (wm + 1) (wm + 1− 2n)
3 (1 + wm)2 t2

H(k) = 0, (118)

E(k) = −σ̇(k) − 4n + 3 (1 + wm) (1− n)
3 (1 + wm) t

σ(k). (119)

The solutions are then

σ(k) = D1t
(1−2r) + C2t

(2n−2−3r), (120)

H(k) = D3t
(1−3r) + D4t

2n−2−4r, (121)

E(k) = D1 (n− 2) t−2r + C2 (n− 1− r) t(2n−3−3r), (122)
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grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region IV, both modes decay.

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(2n−1−3r). (123)

The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents
in the case of GR (n = 1). For 0 < n < 2 the Σ̃1 mode grows and the Σ̃2 mode decays. In the range n > 2 the
modes change behavior in that the Σ̃1 mode decays and the Σ̃2 mode grows. Again, for most of the values of n the
perturbations grow slower in Rn-gravity than in GR and only for 0 < n < 1 and n > 4, does the Σ̃i modes grow with
a rate faster than the usual linear growth. The most interesting feature of the solutions in the radiation dominated
era is the possibility of growing modes even if the universe is in a state of accelerated expansion (n > 4). The impact
of these modes on the CMB, could allow one to constrain deviations from GR. However, one should also analyze the
evolution of perturbations on small scales. This analysis is beyond the scope of this paper and it is left to a future,
more detailed investigation.

In the general case (k != 0) the solutions are given in terms of Bessel functions of the first and second kind (J and
Y respectively).
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3. The generic large-scale case

Finally, we study the evolution of large-scale (k = 0) tensor perturbations in the presence of a general barotropic
fluid (thats is we will not fix wm except to state that wm > −1). To insure an expanding model we now require n > 0,
provided wm > −1. The scale-factor goes as

a(t) = a0t
r r =

2n

3 (1 + wm)
. (115)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w =
(wm + 1− n)

n
. (116)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3(wm + 1)/2. In the limit
n→∞ we have w → −1. Substituting into Eq.’s (66)-(68) we obtain

σ̈(k) +
10n + 6 (1 + wm) (1− n)

3 (1 + wm) t
σ̇(k) +

2 (3 + 3wm − 4n) (nwm − wm − 1)
3 (1 + wm)2 t2

σ(k) = 0, (117)

Ḧ(k) +
14n + 6 (1 + wm) (1− n)

3 (1 + wm) t
Ḣ(k) +

16n2 − 8n (wm + 1) + 6 (n− 1) (wm + 1) (wm + 1− 2n)
3 (1 + wm)2 t2

H(k) = 0, (118)

E(k) = −σ̇(k) − 4n + 3 (1 + wm) (1− n)
3 (1 + wm) t

σ(k). (119)

The solutions are then

σ(k) = D1t
(1−2r) + C2t

(2n−2−3r), (120)

H(k) = D3t
(1−3r) + D4t

2n−2−4r, (121)

E(k) = D1 (n− 2) t−2r + C2 (n− 1− r) t(2n−3−3r), (122)
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FIG. 3: The range of parameters for which the modes grow or decay as a function of n and wm The black thick line represents
the change from growth to decay for the Σ̃1 mode. The grey thick line represents the change from growth to decay for the Σ̃2

mode. The thin black line represents the GR case (n = 1). In region I, Σ̃1 decays and Σ̃2 grows. In region II, both modes
grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region IV, both modes decay.

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(2n−1−3r). (123)

The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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mode. The thin black line represents the GR case (n = 1). In region I, Σ̃1 decays and Σ̃2 grows. In region II, both modes
grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region IV, both modes decay.

The normalized shear is given by

Σ(k) = Σ̃1t
(2−2r) + Σ̃2t

(2n−1−3r). (123)

The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The black (grey) lines represents the growing (decaying) mode and the points represent the value of the exponents
in the case of GR (n = 1). For 0 < n < 2 the Σ̃1 mode grows and the Σ̃2 mode decays. In the range n > 2 the
modes change behavior in that the Σ̃1 mode decays and the Σ̃2 mode grows. Again, for most of the values of n the
perturbations grow slower in Rn-gravity than in GR and only for 0 < n < 1 and n > 4, does the Σ̃i modes grow with
a rate faster than the usual linear growth. The most interesting feature of the solutions in the radiation dominated
era is the possibility of growing modes even if the universe is in a state of accelerated expansion (n > 4). The impact
of these modes on the CMB, could allow one to constrain deviations from GR. However, one should also analyze the
evolution of perturbations on small scales. This analysis is beyond the scope of this paper and it is left to a future,
more detailed investigation.

In the general case (k != 0) the solutions are given in terms of Bessel functions of the first and second kind (J and
Y respectively).
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3. The generic large-scale case

Finally, we study the evolution of large-scale (k = 0) tensor perturbations in the presence of a general barotropic
fluid (thats is we will not fix wm except to state that wm > −1). To insure an expanding model we now require n > 0,
provided wm > −1. The scale-factor goes as

a(t) = a0t
r r =

2n

3 (1 + wm)
. (115)

The EOS of the total effective fluid (radiation and the effective curvature fluid) is then

w =
(wm + 1− n)

n
. (116)

The EOS is divergent for n = 0 and we have accelerated expansion (w < −1/3) when n > 3(wm + 1)/2. In the limit
n→∞ we have w → −1. Substituting into Eq.’s (66)-(68) we obtain
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σ(k) = D1t
(1−2r) + C2t

(2n−2−3r), (120)

H(k) = D3t
(1−3r) + D4t

2n−2−4r, (121)

E(k) = D1 (n− 2) t−2r + C2 (n− 1− r) t(2n−3−3r), (122)
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The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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modes change behavior in that the Σ̃1 mode decays and the Σ̃2 mode grows. Again, for most of the values of n the
perturbations grow slower in Rn-gravity than in GR and only for 0 < n < 1 and n > 4, does the Σ̃i modes grow with
a rate faster than the usual linear growth. The most interesting feature of the solutions in the radiation dominated
era is the possibility of growing modes even if the universe is in a state of accelerated expansion (n > 4). The impact
of these modes on the CMB, could allow one to constrain deviations from GR. However, one should also analyze the
evolution of perturbations on small scales. This analysis is beyond the scope of this paper and it is left to a future,
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3. The generic large-scale case

Finally, we study the evolution of large-scale (k = 0) tensor perturbations in the presence of a general barotropic
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Σ(k) = Σ̃1t
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The Σ̃1 mode grows for n < 3(wm + 1)/2 and decays for n > 3(wm + 1)/2. The Σ̃2 mode decays for the range
n < (wm + 1)/2wm and grows for n > (wm + 1)/2wm. In Fig. 3 we have plotted the range of parameters for which
the modes grow or decay as a function of n and wm. This divides the parameter space into four regions. In region
I, Σ̃1 decays and Σ̃2 grows. In region II, both modes grow. In region III, Σ̃1 grows and Σ̃2 decays. Finally in region
IV, both modes decay. The most interesting feature of these solutions are those of region IV. As mentioned earlier
this particular model was also investigated as a possible explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration of the universe [12]. The authors found a good agreement
between this model and observational data when n = 3.5 in the presence of dust (wm = 0). However, from our analysis
we have found that such a choice of parameters ensures the absence of growing modes in the tensor perturbations.
Therefore, if we wish to use this model as an explanation for Dark Matter, we can use gravitational wave detectors
to severely constraint such theories.

VI. CONCLUSIONS

We have presented a mathematically well defined method of analyzing the evolution tensor perturbations of FLRW
backgrounds in fourth order gravity, providing a general template for the study of linear gravitational waves in this
context. The analysis is based on two important steps. Firstly, the recasting of the field equations for a generic fourth
order theory of gravity into a form which is equivalent to GR, plus two effective fluids (the curvature “fluid” and
the effective matter “fluid”). Secondly, using 1+3 covariant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations, the evolution of scalar perturbations was been presented
in [15] and the vector perturbations will be presented elsewhere [35]. Providing that one has a clear picture in mind
of the effective nature of the fluids involved, the approach above has the advantage of making the treatment of the
perturbations physically clear and mathematically rigorous.

Once the general perturbations equations were derived, we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dynamical systems analysis [11], we found exact solutions to the
perturbation equations both in a vacuum and in the presence of matter (dust and radiation). We presented both the
large-scale limit and full solutions, however, we restricted our discussions to the large-scale results. In Section VA
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The key property of linear perturbation theory of FLRW space-times, arising from the unicity of the splitting of (A4)
and (A5), is that in any vector and tensor equation the scalar, vector and tensor parts on each side are separately
equal, i.e. the scalar, vector and tensor components of the equations decouple.

All the quantities defined above can be decomposed in this way. However, before proceeding, one should note that
the quantities A,Bα,HL,HT

αβ , δ, vα change their values under a change of correspondence between the perturbed
“world” and the unperturbed background, i.e., under a gauge transformation. In order to have a gauge-invariant
theory one has to look for combinations of these quantities which are gauge invariant. Bardeen constructed such GI
variables to treat scalar and vector perturbations [21]. The quantities which are relevant to our analysis, παβ and
HTT

Tαβ (or the harmonically decomposed object H(2)
T ) are already GI.

The variables covariantly defined in the main text are, by themselves, exact quantities (defined in any space-time)
and are GI by themselves, therefore, to first order, we can express them as linear combinations of Bardeen’s GI
variables. In [24] these expansions are given in full generality. Here we will limit ourselves to a few examples, giving
only the tensor contributions and refer the reader to [24] for details.

The tensor part of the shear, trace-free part of the 3-Ricci tensor, the electric and magnetic parts of the Weyl tensor
are given by

σαβ = aH(2)
T

′Y (2)
αβ , (A12)

(3)Rαβ =
(
k2 + 2K

)
H(2)

T Y (2)
αβ , (A13)

Eαβ = −1
2

[
H(2)

T
′′ −

(
k2 + 2K

)
H(2)

T

]
Y (2)

αβ , (A14)

Hαβ = a−2H(2)
T

′Y (2)
(α

γ|δηβ)0γδ. (A15)

where the prime denotes derivative with respect to the conformal time η. The relations above can be used to give
an intrinsic physical and geometrical meaning to Bardeen’s variables, and also to recover his equations. For example,
combining our linearized expression for the trace-free part of the 3-Ricci tensor

(3)Rαβ = −Θ
3

(σαβ + ωαβ) + Eαβ +
1
2
παβ , (A16)

with the above expressions (Eq. A12-A14) gives Bardeen’s expression for the transverse and trace-free metric pertur-
bation evolution equation

H(2)
T

′′ + 2
a′

a
H(2)

T
′ +

(
k2 + 2K

)
H(2)

T = π, (A17)

where π is the harmonically decomposed anisotropic pressure. Substituting for π using Eq. 61 and Eq. A12 we find
the general evolution equation for tensor perturbations in fourth order gravity theories to be

H(2)
T

′′ +

[
2
a′

a
+

∂2f

∂R2

(
∂f

∂R

)−1

R′

]
H(2)

T
′ +

(
k2 + 2K

)
H(2)

T = 0, (A18)

where primes denote differentiation with respect to conformal time throughout this appendix.
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The key property of linear perturbation theory of FLRW space-times, arising from the unicity of the splitting of (A4)
and (A5), is that in any vector and tensor equation the scalar, vector and tensor parts on each side are separately
equal, i.e. the scalar, vector and tensor components of the equations decouple.

All the quantities defined above can be decomposed in this way. However, before proceeding, one should note that
the quantities A,Bα,HL,HT

αβ , δ, vα change their values under a change of correspondence between the perturbed
“world” and the unperturbed background, i.e., under a gauge transformation. In order to have a gauge-invariant
theory one has to look for combinations of these quantities which are gauge invariant. Bardeen constructed such GI
variables to treat scalar and vector perturbations [21]. The quantities which are relevant to our analysis, παβ and
HTT

Tαβ (or the harmonically decomposed object H(2)
T ) are already GI.

The variables covariantly defined in the main text are, by themselves, exact quantities (defined in any space-time)
and are GI by themselves, therefore, to first order, we can express them as linear combinations of Bardeen’s GI
variables. In [24] these expansions are given in full generality. Here we will limit ourselves to a few examples, giving
only the tensor contributions and refer the reader to [24] for details.

The tensor part of the shear, trace-free part of the 3-Ricci tensor, the electric and magnetic parts of the Weyl tensor
are given by
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where the prime denotes derivative with respect to the conformal time η. The relations above can be used to give
an intrinsic physical and geometrical meaning to Bardeen’s variables, and also to recover his equations. For example,
combining our linearized expression for the trace-free part of the 3-Ricci tensor

(3)Rαβ = −Θ
3

(σαβ + ωαβ) + Eαβ +
1
2
παβ , (A16)

with the above expressions (Eq. A12-A14) gives Bardeen’s expression for the transverse and trace-free metric pertur-
bation evolution equation
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where π is the harmonically decomposed anisotropic pressure. Substituting for π using Eq. 61 and Eq. A12 we find
the general evolution equation for tensor perturbations in fourth order gravity theories to be
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where primes denote differentiation with respect to conformal time throughout this appendix.
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Substituting these into the expression for the trace free 
part of the 3-Ricci tensor: 

Gives the standard Bardeen tensor perturbation equation: 

and putting the “curvature fluid” in gives: 



✴ Equations for tensor perturbations were derived and solved 
for the matter and radiation eras in the long wavelength 
limit.

✴ Small departures from GR give significant modifications to 
GWs, so in principle GWs can provide strong constraints to 
FOG theories.

✴ Work is currently in progress to calculate the growth 
function and the CMB B-mode tensor anisotropies. WATCH 
THIS SPACE.

Conclusion 



Please visit..........


