Dissipative effects on MSSM inflation

26th Aug. '08 @COSM008

Kohei Kamada (RESCEU, The University of Tokyo, Japan) Collaboration with Jun'ichi Yokoyama

Introduction

>Inflation(Guth, Sato('81))

Solution of many cosmological problems WMAP results strongly support inflation. > MSSM (Minimal Supersymmetric Standard Model) flat direction Possible candidate for inflaton (MSSM inflation; Allahverdi et. al. ('06)) no need for extra fields beyond MSSM Severe fine-tuning of potential and initial condition Can interactions with other fields help these difficulties?

MSSM inflation

Flat direction

 ✓ Vacuum degenerate in the scalar potential (SUSY and renormalizable limit)
 ✓ Slightly lifted by SUSY-breaking effect and nonrenormalizable operator

 \rightarrow Flat potential

Inflaton candidate !

>MSSM inflation

✓ Potential including SUSY breaking effect and non-renormalizable operator $V(\phi)$

$$V(\phi) = \frac{1}{2}m^2\phi^2 - \frac{A\lambda\phi^6}{24M_G^6} + \frac{\lambda^2\phi^{10}}{32M_G^6}$$

\$\phi\$:parameterization of $\bar{u}\bar{d}\bar{d}$ flat direction
 $(\bar{u}_i^{\alpha} = \bar{d}_i^{\beta} = \bar{d}_k^{\gamma} = \frac{1}{\sqrt{2}}\phi)$

 $\sqrt{3}$

 $m \simeq 1 \text{TeV}$ $\lambda \simeq \mathcal{O}(1)$ M_G : reduced Planck mass $\checkmark \text{If } A^2 = 20m^2$, saddle point at $\phi_{c0} = \left(\frac{2AM_G^3}{5\lambda}\right)^{1/4} \simeq 10^{14.5} \text{GeV}$

 ϕ_{c0}

Ò

➢Fine-tuning

Requirement for inflation \checkmark Potential parameter: $\frac{A^2 - 20m^2}{20m^2} \sim \mathcal{O}(10^{-18})$
(to generate correct density perturbation) \checkmark Initial condition $\phi_i: \frac{\phi_i - \phi_{c0}}{\phi_{c0}} \sim \mathcal{O}(10^{-2})$

(Slow-roll region $\Delta \phi$: $\frac{\Delta \phi}{\phi_{c0}} \sim \mathcal{O}(10^{-10})$)

Can we relax these conditions using the dissipative effect?

Dissipative effect on the MSSM inflation

> Equation of motion in the dissipative

regime ('88 Yokoyama & Maeda)

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$

 Γ : dissipative coefficient

If $\Gamma \gg 3H$, slow-roll condition will change.

> Slow-roll condition

When dissipative coefficient is larger than Hubble parameter, slow-roll conditions change from usual form as follows :

Slow-roll parameters :

$$\epsilon \equiv \frac{M_G^2}{2} \left(\frac{V'}{V}\right)^2, \quad \eta \equiv M_G^2 \frac{V''}{V}, \quad \beta \equiv M_G^2 \frac{\Gamma' V'}{\Gamma V}$$

Slow-roll conditions :

$$\epsilon \ll r \quad \leftarrow \quad \ddot{a} > 0 \quad \text{and} \quad \dot{\phi}^2 \ll V(\phi) \qquad r \equiv \frac{\Gamma}{3H}$$
$$3|\eta - \beta| \ll r^2 \quad \leftarrow \quad \ddot{\phi} \ll \frac{\partial V(\phi)}{\partial \phi}$$

+ Consistency check.

 \rightarrow Decay product must be the subdominant component of the Universe.

Modification to the MSSM inflation

Slow-roll condition for $r < 10^5$

$$3|\eta - \beta| \ll r^2 \Rightarrow \frac{|\phi - \phi_{c0}|}{\phi_{c0}} \ll 10^{-10} r^2$$

 \Leftrightarrow cf.) no dissipation $\rightarrow |\phi - \phi_{c0}| \ll 10^{-10} \phi_{c0}$

Slow-roll region is enhanced!

Fine-tuning of the potential parameter and the initial condition is relaxed!

$$\begin{array}{l} \mbox{for } r \sim 10^4 \end{array} \begin{bmatrix} \frac{A^2 - 20m^2}{20m^2} \sim \mathcal{O}(10^{-4}) \\ \mbox{(condition for slow-roll region to emerge)} \\ \frac{\phi_i - \phi_{c0}}{\phi_{c0}} \sim \mathcal{O}(10^{-2}) \end{array}$$

2008/8/26

COSMO08@Wisconsin

Derivation of dissipative effect

>Interactions of inflaton

$$\begin{split} V_{\text{int}} = & h_1^2 (|\phi|^2 |\chi_1|^2 + |\phi|^2 |\chi_2|^2 + |\chi_1|^2 |\chi_2|^2) + h_1 h_2 (\phi \chi_2 y_1^* y_2^* + \text{H.c.}) \\ &+ h_2 (|\chi_1|^2 |y_1|^2 + |\chi_1|^2 |y_2|^2 + |y_1|^2 |y_2|^2) \\ &+ h_1 (\phi \bar{\psi}_{\chi} P_L \psi_{\chi} + \phi^* \bar{\psi}_{\chi} P_R \psi_{\chi}) + h_2 (\chi_1 \bar{\psi}_y P_L \psi_y + \chi_1^* \bar{\psi}_y P_R \psi_y) \,, \end{split}$$

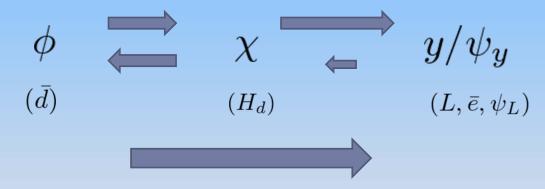
 χ acquires mass from the inflaton

 $egin{aligned} m_\chi &= h_1 |\phi| \ \Phi: ar{u} ar{d} ar{d} \ : (s) ext{quarks} \ X: Q, H_u, H_d: (s) ext{quarks} \& ext{Higgs(ino)s} \ Y: L, ar{e}: (s) ext{leptons} \end{aligned}$

>Energy dissipative process

('84 Morikawa & Sasaki, '01 Berera & Ramos, '06 Moss & Xiong)

The motion of inflaton φ → change the mass of other fields χ
→ particle production of these fields
→ decay to other fields causes dissipative effect



Energy dissipative channels exist!

Derivation of dissipative terms In-in(closed time path) formalism Generating functional

$$Z[J_{i}] = \left\langle \operatorname{in} \left| T_{-} \left\{ \exp \left[-i \int_{-\infty}^{\infty} dt \int d^{3}x J_{i-}(x)\phi_{i}(x) \right] \right\} \right|$$

$$\times T_{+} \left\{ \exp \left[i \int_{-\infty}^{\infty} dt \int d^{3}x J_{i+}(x)\phi_{i}(x) \right] \right\} \left| \operatorname{in} \right\rangle \equiv e^{iW[J_{i}]}$$

-branch
+branch
+branch

$$+ \infty$$

time
Effective action

$$\Gamma = W - \int dx J\phi$$

$$Effective equation of motion
$$\frac{\partial \Gamma}{\partial \phi_{\Delta}} \right|_{\phi_{\Delta}=0} = 0$$$$

>Effective action

$$\Gamma[\boldsymbol{\phi}] = S[\boldsymbol{\phi}] + \mathcal{X} + \mathcal{X} + \mathcal{Y} + \mathcal$$

With dressed propagator of χ (include the dissipative process)

>Equation of motion in the slow-roll limit

COSMO08@Wisconsin

Conclusion

- MSSM inflation is a candidate for low-energy inflation.
 Dissipative effect can relax the problems of
 - the MSSM inflation.
- ✓Using in-in formalism, we have derived the dissipative term in the equation of motion
- ✓ Dissipation coefficient can be larger than Hubble parameter.
 - (It depends on the Yukawa coupling and the
 - type of flat direction.)
- ✓ Slow-roll region can be <u>dramatically changed</u>. (enhanced!!)
- These effects can be the key to the realization of the MSSM inflation.