MSSM inflation

Sami Nurmi University of Helsinki

> Cosmo 08 August 26 2008

Outline

- ► Consider flat directions of the MSSM as inflaton candidates
- Known gauge couplings!
- Low inflationary scale, very flat potential required
- Constraints on the underlying supergravity model that determines the potential
- ▶ Try to find sugra models where the constraints are satisfied

Flat directions

- ► Supersymmetric vacuum degenerate, potential vanishes along flat directions
- ► Flatness lifted by susy breaking and non-renormalizable terms in the potential

MSSM inflation

- ▶ d = 6 flat directions **LLe** and **udd** candidates for the inflaton ¹
- ▶ After susy breaking the potential to lowest order becomes

$$V(\phi) = \frac{1}{2}m^{2}|\phi|^{2} - \frac{A\lambda}{6}|\phi|^{6} + \lambda^{2}|\phi|^{10}$$

lacksquare If $A^2=40m^2$, saddle point at $|\phi_0|\sim (m/M_P)^{1/4}M_P$

⇒ Inflation with:

$$\zeta \sim \left(rac{m}{M_P}
ight)^{1/2} N_*^2, \quad n_s \sim 1 - 4/N_*$$

▶ Low scale $H \sim 1 \text{ GeV}$, $A^2 = 40m^2$ must hold very precisely

¹[Allahverdi, Enqvist, Garcia-Bellido, Mazumdar]

What fixes $A^2 = 40m^2$?

- ► Sugra: $V = e^G(G^M G_M 3)$, $G = K + \ln |W|^2$
- ► Consider a model with ²

$$W = \hat{W} + \frac{\hat{\lambda}}{6}\phi^{6}$$

$$K = \hat{K}(h_{m}, h_{m}^{*}) + \hat{Z}_{2}(h_{m}, h_{m}^{*})|\phi|^{2} + \hat{Z}_{4}(h_{m}, h_{m}^{*})|\phi|^{4} + \dots$$

$$V = e^{G}(G^{M}G_{M}-3) = \frac{1}{2}m^{2}|\phi|^{2} - \frac{A\lambda}{6}|\phi|^{6} + \lambda^{2}|\phi|^{10} + \mathcal{O}(|\phi_{0}|^{12})$$

$$ightharpoonup A^2=40\,m^2$$
 reads $(K_m=\partial_{h_m}K,K^m=(K_{m\bar n})^{-1}K_{\bar n})$

$$\begin{aligned} &|\hat{K}^{m}\hat{K}_{m} - 6\hat{Z}_{2}^{-1}\hat{K}^{\bar{m}}\hat{Z}_{2\bar{m}} + 3|^{2} \\ &= 20(\hat{K}^{m}\hat{K}_{m} + \hat{K}^{m}\hat{K}^{\bar{n}}(\hat{Z}_{2}^{-2}\hat{Z}_{2m}\hat{Z}_{2\bar{n}} - \hat{Z}_{2}^{-1}\hat{Z}_{2m\bar{n}}) - 2) \end{aligned}$$

²[K. Enqvist, L. Mether, SN],[SN]

What fixes $A^2 = 40m^2$?

- ► Sugra: $V = e^G(G^M G_M 3)$, $G = K + \ln |W|^2$
- ► Consider a model with ²

$$W = \hat{W} + \frac{\hat{\lambda}}{6}\phi^{6}$$

$$K = \hat{K}(h_{m}, h_{m}^{*}) + \hat{Z}_{2}(h_{m}, h_{m}^{*})|\phi|^{2} + \hat{Z}_{4}(h_{m}, h_{m}^{*})|\phi|^{4} + \dots$$

$$V = e^{G}(G^{M}G_{M}-3) = \frac{1}{2}m^{2}|\phi|^{2} - \frac{A\lambda}{6}|\phi|^{6} + \lambda^{2}|\phi|^{10} + \mathcal{O}(|\phi_{0}|^{12})$$

$$ightharpoonup A^2=40 \, m^2 \ {
m reads} \ (K_m=\partial_{h_m}K,K^m=(K_{mar n})^{-1}K_{ar n})$$

$$\begin{aligned} &|\hat{K}^{m}\hat{K}_{m} - 6\hat{Z}_{2}^{-1}\hat{K}^{\bar{m}}\hat{Z}_{2\bar{m}} + 3|^{2} \\ &= 20(\hat{K}^{m}\hat{K}_{m} + \hat{K}^{m}\hat{K}^{\bar{n}}(\hat{Z}_{2}^{-2}\hat{Z}_{2m}\hat{Z}_{2\bar{n}} - \hat{Z}_{2}^{-1}\hat{Z}_{2m\bar{n}}) - 2) \end{aligned}$$

²[K. Enqvist, L. Mether, SN],[SN]

What fixes $A^2 = 40m^2$?

- ► Sugra: $V = e^G(G^MG_M 3)$, $G = K + \ln|W|^2$
- Consider a model with ²

$$W = \hat{W} + \frac{\hat{\lambda}}{6}\phi^{6}$$

$$K = \hat{K}(h_{m}, h_{m}^{*}) + \hat{Z}_{2}(h_{m}, h_{m}^{*})|\phi|^{2} + \hat{Z}_{4}(h_{m}, h_{m}^{*})|\phi|^{4} + \dots$$

►
$$V = e^G(G^MG_M - 3) = \frac{1}{2}m^2|\phi|^2 - \frac{A\lambda}{6}|\phi|^6 + \lambda^2|\phi|^{10} + \mathcal{O}(|\phi_0|^{12})$$

$$ightharpoonup A^2=40 \emph{m}^2$$
 reads $(\emph{K}_{\it m}=\partial_{\it h_m}\emph{K},\emph{K}^{\it m}=(\emph{K}_{\it m\bar{n}})^{-1}\emph{K}_{\bar{n}})$

$$|\hat{K}^{m}\hat{K}_{m} - 6\hat{Z}_{2}^{-1}\hat{K}^{\bar{m}}\hat{Z}_{2\bar{m}} + 3|^{2}$$

$$= 20(\hat{K}^{m}\hat{K}_{m} + \hat{K}^{m}\hat{K}^{\bar{n}}(\hat{Z}_{2}^{-2}\hat{Z}_{2m}\hat{Z}_{2\bar{n}} - \hat{Z}_{2}^{-1}\hat{Z}_{2m\bar{n}}) - 2)$$

²[K. Enqvist, L. Mether, SN],[SN]

Kähler potentials that yield $A^2 = 40m^2$

► Solved by:

$$K = \sum_{m} \beta_{m} \ln(h_{m} + h_{m}^{*}) + \kappa \prod_{m} (h_{m} + h_{m}^{*})^{\alpha_{m}} |\phi|^{2} + \dots$$

$$\alpha(36\alpha + 16 - 12\beta) + (\beta + 7)^2 = 0$$
, $\alpha = \sum \alpha_m$, $\beta = \sum \beta_m$

Includes for example the values

$\beta = \sum \beta_m$	$\alpha = \sum \alpha_m$
-7	0
-7	$-\frac{25}{9}$
-11	$-\frac{1}{9}$
-11	-4

Higher order corrections

Saddle point can be removed by higher order corrections

$$V = \underbrace{\frac{1}{2} m^2 |\phi|^2 - \frac{A\lambda}{6} |\phi|^6 + \lambda^2 |\phi|^{10}}_{\text{Leading order part } \mathcal{O}(|\phi_0|^{10})} + \mathcal{O}(|\phi_0|)^{12}$$

▶ Corrections $|\phi_0|^{12}$ and $|\phi_0|^{14}$ crucial, $|\phi_0|^{16}$ affects the spectral index

Kähler potentials for the MSSM inflation

▶ Potential flat enough close to $|\phi_0|$ if ³

$$K = \hat{K} + \hat{Z}_2 |\phi|^2 + \mu \hat{Z}_2^2 |\phi|^4 + \nu \hat{Z}_2^3 |\phi|^6 + \rho \hat{Z}_2^4 |\phi|^8 + \dots$$

where
$$\hat{K} = \sum_m \beta_m \ln(h_m + h_m^*)$$
, $\hat{Z}_2 = \kappa \prod_m (h_m + h_m^*)^{\alpha_m}$ and

$\beta = \sum \beta_m$	$\alpha = \sum \alpha_m$	$\gamma = \sum \alpha_m^2/\beta_m$	$\delta = \sum \alpha_m^3 / \beta_m^2$
- 7	0	$\frac{1}{4} - 3\mu$	δ
- 7	$-\frac{25}{9}$	$-\frac{46}{81} - \frac{22}{9}\mu$	$-\frac{2414}{16767} - \frac{628}{1863}\mu - \frac{2804}{207}\mu^2 + \frac{162}{23}\nu$
- 11	$-\frac{1}{9}$	$\frac{28}{81} - \frac{26}{9}\mu$	$\frac{6556}{69255} - \frac{3736}{7695}\mu - \frac{12596}{855}\mu^2 + \frac{162}{19}\nu$
- 11	-4	$-\frac{7}{8}-\frac{5}{2}\mu$	$-\frac{339}{1600} - \frac{73}{200}\mu - \frac{1371}{100}\mu^2 + \frac{36}{5}\nu$

³[Enqvist, Mether, SN],[SN]

▶ An example of the solutions:

$$K = -\ln\left(\prod_{m}(h_{m} + h_{m}^{*})^{-\beta_{m}} - \kappa\prod_{m}(h_{m} + h_{m}^{*})^{\alpha_{m} - \beta_{m}}|\phi|^{2}\right)$$

with

$$\beta_m = -1$$
, $\alpha_1 = 1$, $\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = -\frac{1}{4}$, $\alpha_6 = \alpha_7 = 0$

Conclusions

- MSSM inflation can be realized "naturally" in certain supergravity models
- Flat inflaton potential not accidental but a direct consequence of the supergravity model
- Requires a specific Kähler potential, to some extent motivated by various string theory compactifications
- ► Many open questions: initial conditions⁴, dynamics of the moduli fields⁵, loop corrections...

⁴[Allahverdi, Dutta, Mazumdar]

⁵[Lalak, Turzynski]