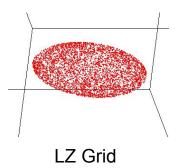

Phase II Geometry

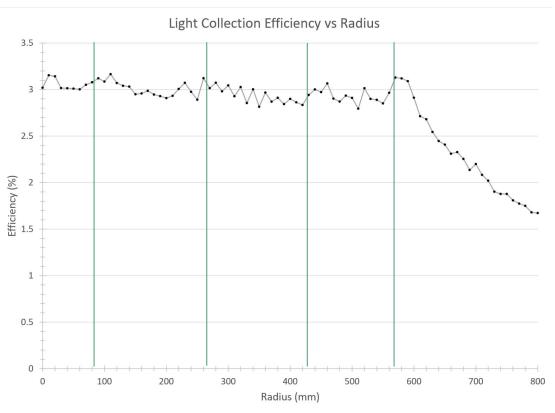
Oliver Hitchcock


Current State of Phase II Geometry

- Components implemented
 - Inner steel cryostat
 - Reflective AIMgF2 wall, bottom, & top
 - Reflectivity = .88
 - Specular lobe constant = 0
 - Specular spike constant = 0
 - Backscatter constant = 0
 - Efficiency = 1
 - Inner Gaseous Xenon Space
 - LZ Grid
 - LUX R8778 PMTs (inner array)

Crude visualizations using Baccarat e- particle source

GXe space



Light Collection Efficiency

- 100,000 7ev photons @ each point
- 88% reflective AIMgF2 everywhere
- 20% reflective Grid
- 20cm Grid-PMT separation

Future: Quantum Efficiency

"LUX R8778 PMTs feature a measured average 33% quantum efficiency and 90% collection efficiency " - arXiv:1205.2272

Cable Making

HV Ends

HV and DB25

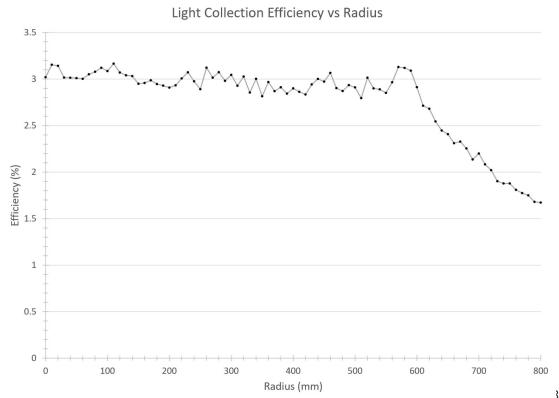
Cable 301/302

All 8 cables finished and packaged

Backup Slides

Summer Review:

- Created a working, simplified phase 2 geometry
- Performed initial optical simulations of light collection efficiency
- Phase I Internal Cable Making
- Began playing around with HTCondor


Semester Goals

- More Optical Simulations with BACCARAT
 - Change specular coefficients
 - Take into account quantum efficiency
 - Signal reconstruction sims
- Fix issues with HTCondor
 - Can't get an output
- Increase Complexity of Phase II geometry
 - More Components
 - More Macro level commands
- Get better at
 - C++
 - ROOT
 - Python

Light Collection Efficiency

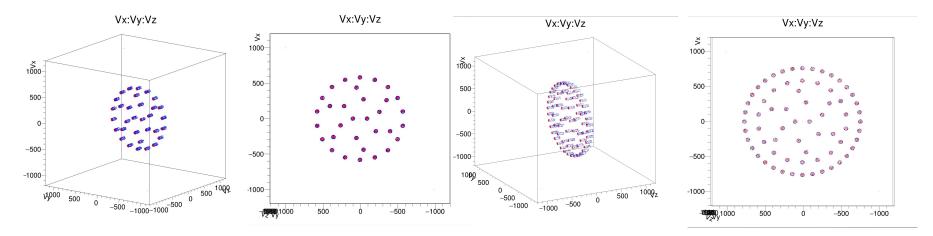
- 100,000 7ev photons
- 88% reflective AIMgF2 everywhere
- 20% reflective Grid
- 20cm Grid-PMT separation

Done Last Week:

- Changed optical properties of AIMgF2
 - Modified to be more like a metal than a diffuse reflector
- Finished geometry for optical sim usage
 - Updated dimensions
 - AIMgF2 reflective surfaces
 - Inner PMT array in place
 - Bottom Grid in place (Hijacked from LZGrid.cc)
- Made a new macro lightCollection.mac
 - 10,000 7 eV optical photons
 - Isotropic point source

Next Steps

- Finalize macro
 - More photons
 - \circ \quad Modify photon source position to .5 cm above floor
 - Potentially switch value for recordLevelOptPhot
- Write analysis code
- Start optical simulations
 - Simulate same situations as Rachel's sims
 - Try to recreate format of Rachel's plots for easy comparison
- Other Suggestions?


Goal

Design Phase II System Test detector geometries for use in simulations.

R8778 PMT Arrays

Blue is steel PMT body, red is PMT window

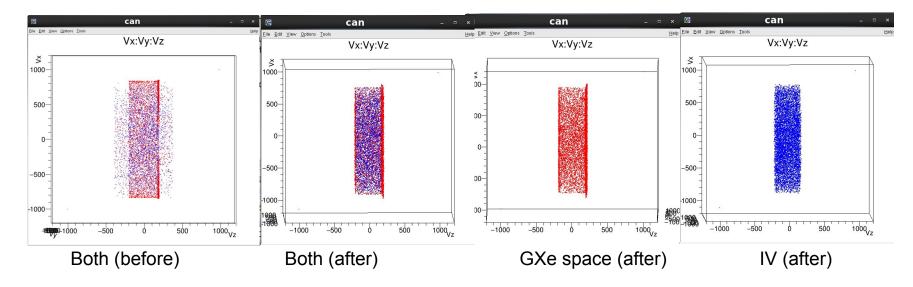
Inner array

Inner + Outer array

Plan

- Study Phase I and LZ geometries
- 2. Design simplified geometry
- 3. Increase complexity of geometry
 - a. Add optical surfaces
 - b. Add PMT's
 - c. Other features
- 4. Work towards final Phase II geometry
 - a. More components, most realistic
- 5. Work on macros for Phase II

AIMgF2


Accessed with: CoatingAIMgF2(), GXeAIMgF2Surface()

- Defines a new material with many of the same properties of Aluminum but with reflectivity of AIMgF2 (approximation)
- Defines <u>AIMgF2 MaterialPropertiesTable</u> (followed format of Teflon)
 - Reflectivity = .88
 - Specular lobe constant = 0
 - Specular spike constant = 0
 - Backscatter constant = 0
 - Efficiency = 1
- Creates a boundary surface for the gas Xe AIMgF2 interface with above properties

Any other suggestions for improvement?

2 Component Visualization

• All particles accounted for and within defined geometry

• Error caused by overlap in geometry dimensions