Activities Update Sep 13, 2017

Shaun Alsum

Neutron Background Simulations - LUX

 Determine how many background events passing golden-event cuts may be due to neutron interactions

The Simulation

Simulated energy deposits from neutrons originating from the PMTs and from the PTFE

Clustering

 Clustered energy depositions that would be too close together for the detector to distinguish between them.

Simulate Detector Response

• Determine the amount of S1 and S2 measured from each cluster

Map from Real Space to readout space

 Electric fields drift electrons, changing the positions of the read-out electrons from their interaction locations.

Implement cuts

 There's a whole litany of them, I won't include them in this presentation

Results

From all of run04...

- .16 from PMTs
- .016 from PTFE

Time bin 1: 46.766 live days. 17.67 PMT emitted neutrons single scatter ratio: 0.00141287

Time bin 1: 46.766 live days. 1.22 PTFE emitted neutrons single scatter ratio: 0.00208515

Time bin 2: 46.731 live days. 17.66 PMT emitted neutrons single scatter ratio: 0.00135149

Time bin 2: 46.731 live days. 1.22 PTFE emitted neutrons single scatter ratio: 0.00195149

Time bin 3: 91.552 live days. 34.59 PMT emitted neutrons single scatter ratio: 0.0011604

Time bin 3: 91.552 live days. 2.38 PTFE emitted neutrons single scatter ratio: 0.00177327

Time bin 4: 146.923 live days. 55.51 PMT emitted neutrons single scatter ratio: 0.00123663

Time bin 4: 146.923 live days. 3.82 PTFE emitted neutrons single scatter ratio: 0.00187525

Effective Field Theory Analysis - LUX

The Idea

• An interaction can have the arbitrary form:

 $\mathcal{L}_{\text{int}} = \chi \mathcal{O}_{\chi} \chi N \mathcal{O}_N N.$

- We generally consider the case where O_x=O_N=[identity] (spin independent) because this naively should be dominant for low momentum-transfer interactions
- In general, however, we can consider any operator that satisfies all known symmetries.

The Idea continued

• There are 5 quantities that are Galilean invariant.

- I, iq, v^I, S_x, S_N

• These can be combined into 16 operators

$$\begin{array}{rcl} \mathcal{O}_{1} &=& 1_{\chi} 1_{N} \\ \mathcal{O}_{2} &=& (v^{\perp})^{2} \\ \mathcal{O}_{3} &=& i \vec{S}_{N} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right) \\ \mathcal{O}_{4} &=& \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{5} &=& i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right) \\ \mathcal{O}_{6} &=& (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) (\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{7} &=& \vec{S}_{N} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{8} &=& \vec{S}_{\chi} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{9} &=& i \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{10} &=& i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{11} &=& i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \end{array}$$

$$\begin{split} \mathcal{O}_{12} &= \vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{v}^{\perp}) \\ \mathcal{O}_{13} &= i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_N \cdot \frac{\vec{q}}{m_N}) \\ \mathcal{O}_{14} &= i(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \vec{v}^{\perp}) \\ \mathcal{O}_{15} &= -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N}) \\ \mathcal{O}_{16} &= -((\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \frac{\vec{q}}{m_N}). \end{split}$$

The Idea continued more

• These different operators can give rise to different recoil energy spectra according to

$$\frac{dR}{dE_R} = \frac{\rho_0}{32\pi m_\chi^3 m_p^2} \int_{v > v_{min}} \frac{f(\vec{v})}{v} (c_i^{(N)})^2 \sum_{k=\mathcal{M}, \Sigma^{\prime\prime}, \Sigma^{\prime}, \Delta, \Phi^{\prime\prime}, \widetilde{\Phi}^{\prime}} a_{iik} F_k^{(N,N)}$$

Where the quantity represented by the sum is O_i broken into calculable nuclear form factors.

• Want to put limits on c_i^(N)

The process

- Compare calculated spectra with observed.
 - Interference between operators is forbidden in most cases, so we can test 1 at a time.
 - Inteference between the proton and neutron operators is not, however, forbidden.
 Nevertheless, we still begin by doing these 1 at a time for simplicity.

Some sample neutron spectra

Generated using a mathematica package created for this purpose.

n-p Inteference Demonstration

Integration into the PLR limit code

- The limits code main file is "SIRun4.cxx" – This calls "ImportSignalModel 5D"
- ImportSignalModel_5D is in "ImportSignalModel.h" and creates a "RooSignalPDF" object
 - ws-

>factory(TString::Format("SignalPDF::nrPop%d(mWimp,S1,log10S2,r,phi,drift,G2Var,NoNuisPar am,%d,%d)",tt,tt,(int)useAnalyticIntegration));

- Confusing, right?
- RooSignalPDF creates a 1D histogram and fills it using a function called "FillWimpHist"
- I have replaced FillWimpHist with "FillWimpHistEFT"

FillWimpHistEFT

- Opens a file called o#c.dat, where # is the operator number, and c is either 'p' for proton, or 'n' for neutron.
- These files are tables of integrated rates in predefined bins and WIMP masses generated using mathematica.
- Parses the tables using the input WIMP mass, operator number, etc. to grab the correct data
- Fills the histogram with the appropriate values

Rate tables.

- Rates are calculated using a variety of WIMP masses, for only spin ½ WIMPS.
- Each operator (28 of them, 14x2) is its own table.

System Test Phase II - LZ

 Large Vessel designed to test the LZ field generating grids in Xe gas.

Gas Circulation

Assist in concept, design, and construction of Phase II/Gas Test gas system

PMT connections

PMT array test assembly

- 43 bent sheet metal pieces
- Ensure they fit correctly and withstand manipulation and stress
- Thorough cleaning

