DAMA and WIMP dark

matter

10 914

Kathryn Zurek University of Wisconsin, Madison

> COSMO August 2008

Frank Petriello, KZ, arXiv: 0806.3989 Dan Hooper, FP, KZ, Marc Kanionkowsi arXiv: 0808:2464

The WIMP paradigm

HEPAP LHC/ILC Subpanel (2006) [band width from k = 0.5 - 2, S and P wave]

 $\Gamma_{ann} \lesssim H$

5-year WMAP+BAO+SN

 $\Omega_c h^2 = 0.114 \pm 0.003$

 $\Omega h^2 \approx \frac{2 \times 10^{-10} {\rm GeV^{-2}}}{\langle \sigma v \rangle}$

 $\sigma \approx \frac{g^4}{(1 \text{ TeV})^2}$

 $q \approx 1$

 $\frac{v}{-} \approx 10^{-3}$

WIMPs at EWSB scale!

 $\Delta m_h^2 \approx \Lambda^2 \lesssim m_h^2$

 $\Rightarrow \Lambda \approx 1 \text{ TeV}$

Fits other theoretical prejudices

Theoretical prejudice

Natural with hidden sector+SUSY

Could explain INTEGRAL 511 keV photons

DAMA and annual modulation

Rate:
$$R_i = R_i^0 + S_i^1 \cos[\omega(t - t_0)]$$

 $t_0 = \text{June 2nd}, \quad \omega = \frac{2\pi}{1 \text{ year}}$

Only direct detection experiment to claim observation

NaI scintillator

Brief history of DAMA signal

DAMA '98-99, 14962 kg-days

Energy (keV)	S。 (cpd/kg/keV)	S _{m,k} (cpd/kg/keV)
2-3	0.54 ± 0.15	0.018 ± 0.009
3-4	0.23 ± 0.08	0.012 ± 0.004
4-5	0.09 ± 0.04	0.006 ± 0.002
5-6	0.04 ± 0.02	0.003 ± 0.001

Analyzed with constraint $m_{DM} \ge 25 \text{ GeV}$

Region ruled out by CDMS, Eidelweiss

Light WIMPS before...

Petriello, KZ '08

DAMA '08, 0.82 ton-years

Energy	$S_i^1 (\text{cpd/kg/keVee})$
2-4 keVee	0.0223 ± 0.0027
2-5 keVee	0.0178 ± 0.0020
2-6 keVee	0.0131 ± 0.0016
6-14 keVee	0.0009 ± 0.0011

 Several new results (7 keV CDMS silicon, CoGeNT) seem to close the light-WIMP window

However...

Channeling

DAMA '08

$$\frac{dE_{ion}}{dx}(E) = \frac{dE_{ion-n}}{dx}(E) + \frac{dE_{ion-e}}{dx}(E)$$

Ions moving down crystal "channel" interact with electrons only: $q \approx 1$

Channeling

Does it occur in other experiments?

Mahapatra, CDMS '08

 Looks like background, would be removed by cuts; reanalysis?
Need crystal structure (CDMS, CoGeNT, KIMS)

Does it occur at all?

MeV range: Newman, Smith, Steigart '60; Luntz, Bartram '68; Altman, Dietrich, Murray, Rock '73; Birkmire, Murray, Luntz '77; Graichen et al. '02

Dedicate data taking to determine?

...Light WIMPs after

 $E_{thresh} = 7 \text{ keV (Na)}, 22 \text{ keV (I)}$

 $E_{thresh} = 2 \text{ keV}$

DAMA spectrum

Latest DAMA results binned in 0.5 keV

Is the 2-2.5 keV bin a hint of structure?

Full spectral analysis

Spin-dependent scattering

Seems a region with spin-dependent scattering is consistent with both 2-bin, full spectrum

Spin-dependent constraints Super-K has 1.6 GeV muon threshold Each line assume 100% annihilation to final state Hooper, FP, Zurek, Kamionkowski '08 10^{-32} 10-32 XENON XENON 10^{-34} 10-34 COUPP COUPP $(^{2}m_{\rm b})^{10^{-36}}$ (2² m) 10⁻³⁶ Total rate Total rate Gs^{'d} 10⁻³⁸ DAMA allowe DAMA allowed 10^{-40} 10^{-40} 3 5 10 20 10 20 m_{DM} (GeV) m_{DM} (GeV)

Can have >1% annihilation only to electrons, muons, or light quarks; model-building challenge (FCNC)

Spin-independent constraints

Spin-independent: $\sigma_{direct} \sim A^2$, $\Gamma_{cap} \sim 1$ Spin-dependent: $\sigma_{direct} \sim 1$, $\Gamma_{cap} \sim 1$

Conclusions

- Possible consistency of <10 GeV WIMP with direct detection
- Depends crucially on whether structure is beginning to appear in 2-2.5 keV bin
- Strong constraints on DAMA region from WIMP annihilation; spin-dependent region especially severe (<1% annihilation to neutrinos, taus, charms, bottoms)
- Evade SuperK constraints if DM does NOT self-annihilate (in progress, Kaplan, Luty, KZ)

Conclusions

Does channeling occur with keV nuclear recoils? if not, forget about light WIMP explanation Low threshold experiments!

