On a generally-covariant approach to the averaging problem in cosmology

Juliane Behrend ${ }^{1}$
Otto Nachtmann ${ }^{2}$ Thomas Richter ${ }^{2}$ lain A. Brown ${ }^{2}$ Georg Robbers ${ }^{2}$
${ }^{1}$ University of Ulm, Germany
${ }^{2}$ University of Heidelberg, Germany
Cosmo08, Madison, USA
August 28, 2008

(1) Introduction
(2) Averaging Problem
(3) Generally Covariant Averaging
(4) Conclusions

Introduction

- Universe is homogeneous and isotropic on large scales
\Rightarrow Use exact solution to Einstein equations (FLRW metric) to model the universe

Introduction

- Universe is homogeneous and isotropic on large scales
\Rightarrow Use exact solution to Einstein equations (FLRW metric) to model the universe
- CMB is isotropic with only small anisotropies
\Rightarrow Describe by linear perturbations about the FLRW solution

Introduction

- Universe is homogeneous and isotropic on large scales
\Rightarrow Use exact solution to Einstein equations (FLRW metric) to model the universe
- CMB is isotropic with only small anisotropies
\Rightarrow Describe by linear perturbations about the FLRW solution
- Astronomical observations (galaxy clustering and motions, gravitational lensing, CMB, type la supernovae, Lyman α, etc.)
\Rightarrow ^CDM model with 76% dark energy, 20% dark matter, and 4\% baryonic matter

Introduction

- Universe is homogeneous and isotropic on large scales
\Rightarrow Use exact solution to Einstein equations (FLRW metric) to model the universe
- CMB is isotropic with only small anisotropies
\Rightarrow Describe by linear perturbations about the FLRW solution
- Astronomical observations (galaxy clustering and motions, gravitational lensing, CMB, type la supernovae, Lyman α, etc.)
\Rightarrow ^CDM model with 76% dark energy, 20% dark matter, and 4\% baryonic matter
- Expansion of universe has started to accelerate when structure formation has grown increasingly non-linear on small scales
\Rightarrow Is dark energy the backreaction of the generation and evolution of inhomogeneities on the evolution of the background Cosmology?

The Averaging Problem

- Standard Cosmology based on

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

The Averaging Problem

- Standard Cosmology based on

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

- Einstein equations are nonlinear

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle \neq G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)
$$

The Averaging Problem

- Standard Cosmology based on

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

- Einstein equations are nonlinear

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle \neq G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)
$$

\Rightarrow We are using the wrong metric to describe the universe!

The Averaging Problem

- Standard Cosmology based on

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

- Einstein equations are nonlinear

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle \neq G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)
$$

\Rightarrow We are using the wrong metric to describe the universe!

- Correct equations

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

for some average $\langle A\rangle$ in a domain \mathcal{D}

The Averaging Problem

- Standard Cosmology based on

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

- Einstein equations are nonlinear

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle \neq G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)
$$

\Rightarrow We are using the wrong metric to describe the universe!

- Correct equations

$$
\left\langle G_{\mu \nu}\left(g_{\mu \nu}\right)\right\rangle=8 \pi G\left\langle T_{\mu \nu}\right\rangle+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

for some average $\langle A\rangle$ in a domain \mathcal{D}
\Rightarrow Modifications can in principle act as a dark enegy

$$
G_{\mu \nu}\left(\left\langle g_{\mu \nu}\right\rangle\right)=8 \pi G\left\langle T_{\mu \nu}\right\rangle+8 \pi G T_{\mu \nu}^{g}+\Lambda\left\langle g_{\mu \nu}\right\rangle
$$

- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

\Rightarrow Buchert equations [Buchert 00,01]

- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

\Rightarrow Buchert equations [Buchert 00,01]

- Backreaction is a small but non-vanishing effect [JB, Brown, Robbers 08, Li and Schwarz 07, Rasanen 08, Paranjape 08]
- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

\Rightarrow Buchert equations [Buchert 00,01]

- Backreaction is a small but non-vanishing effect [JB, Brown, Robbers 08, Li and Schwarz 07, Rasanen 08, Paranjape 08]
- Averaging process
- depends on the choice of slicing
- depends on choice of coordinate system
- cannot be used to average vector and tensor quantities
- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

\Rightarrow Buchert equations [Buchert 00,01]

- Backreaction is a small but non-vanishing effect [JB, Brown, Robbers 08, Li and Schwarz 07, Rasanen 08, Paranjape 08]
- Averaging process
- depends on the choice of slicing
- depends on choice of coordinate system
- cannot be used to average vector and tensor quantities
- Background free approach
- Decompose Einstein equations into a set of scalar equations and apply averaging process

$$
\langle A\rangle=\frac{1}{V} \int_{\mathcal{D}} A \sqrt{h} d^{3} \mathbf{x}
$$

\Rightarrow Buchert equations [Buchert 00,01]

- Backreaction is a small but non-vanishing effect [JB, Brown, Robbers 08, Li and Schwarz 07, Rasanen 08, Paranjape 08]
- Averaging process
- depends on the choice of slicing
- depends on choice of coordinate system
- cannot be used to average vector and tensor quantities
- Background free approach
\Rightarrow Need a generally covariant averaging process

Generally Covariant Averaging Process for the Metric

- Averaging Process must be independent of coordinate system
\Rightarrow Parallel transport tensor quantities along geodesics to the same point before averaging

Generally Covariant Averaging Process for the Metric

- Averaging Process must be independent of coordinate system
\Rightarrow Parallel transport tensor quantities along geodesics to the same point before averaging
- Decompose metric into a right-handed orthochronous Minkowski tetrad

$$
g_{\mu \nu}(x)=\eta_{\alpha \beta} E^{\alpha}{ }_{\mu}(x) E^{\beta}{ }_{\nu}(x)
$$

Generally Covariant Averaging Process for the Metric

- Averaging Process must be independent of coordinate system
\Rightarrow Parallel transport tensor quantities along geodesics to the same point before averaging
- Decompose metric into a right-handed orthochronous Minkowski tetrad

$$
g_{\mu \nu}(x)=\eta_{\alpha \beta} E^{\alpha}{ }_{\mu}(x) E^{\beta}{ }_{\nu}(x)
$$

- Find (up to global Lorentz-transformations) unique tetrad field, the maximally smooth tetrad field, by following Lagrangian

$$
\mathcal{L}_{\mathrm{MS}}=\left(D_{\mu} E^{\alpha}{ }_{\rho}\right)\left(D_{\nu} E^{\beta}{ }_{\lambda}\right) g^{\mu \nu} g^{\rho \lambda} \eta_{\alpha \beta}
$$

Parallel transport along geodesics $\mathcal{C}_{X_{0} X^{\prime}}$ realized by Wegner-Wilson line operator
$V\left(x^{\prime}, x_{0} ; \mathcal{C}_{x_{0} x^{\prime}}\right)=\mathcal{P} \exp \left[-\int_{\mathcal{C}_{x_{0} x^{\prime}}} d z^{\mu} \Gamma_{\mu}(z)\right]$
where $\Gamma_{\mu}(x)$ are four matrices with components $\left(\Gamma_{\mu}(x)\right)_{\nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}(x)$

Parallel transport along geodesics $\mathcal{C}_{x_{0} x^{\prime}}$ realized by Wegner-Wilson line operator
$V\left(x^{\prime}, x_{0} ; \mathcal{C}_{x_{0} x^{\prime}}\right)=\mathcal{P} \exp \left[-\int_{\mathcal{C}_{x_{0} x^{\prime}}} d z^{\mu} \Gamma_{\mu}(z)\right]$
where $\Gamma_{\mu}(x)$ are four matrices with components $\left(\Gamma_{\mu}(x)\right)_{\nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}(x)$
$\left\langle E^{\alpha}{ }_{\mu}\left(x_{0}\right)\right\rangle$
$=\int_{R} f\left(x_{0}, x^{\prime} ; \mathcal{C}_{x^{\prime} x_{0}}\right) \widehat{V}_{\mu}{ }^{\nu}\left(x_{0}, x^{\prime} ; \mathcal{C}_{x^{\prime} x_{0}}\right) E^{\alpha}{ }_{\nu}\left(x^{\prime}\right) \sqrt{-g\left(x^{\prime}\right)} d^{4} x^{\prime}$

Parallel transport along geodesics $\mathcal{C}_{x_{0} x^{\prime}}$ realized by Wegner-Wilson line operator
$V\left(x^{\prime}, x_{0} ; \mathcal{C}_{x_{0} x^{\prime}}\right)=\mathcal{P} \exp \left[-\int_{\mathcal{C}_{x_{0} x^{\prime}}} d z^{\mu} \Gamma_{\mu}(z)\right]$
where $\Gamma_{\mu}(x)$ are four matrices with components $\left(\Gamma_{\mu}(x)\right)_{\nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}(x)$
$\left\langle E^{\alpha}{ }_{\mu}\left(x_{0}\right)\right\rangle$

$$
=\int_{R} f\left(x_{0}, x^{\prime} ; \mathcal{C}_{x^{\prime} x_{0}}\right) \widehat{V}_{\mu}^{\nu}\left(x_{0}, x^{\prime} ; \mathcal{C}_{x^{\prime} x_{0}}\right) E^{\alpha}{ }_{\nu}\left(x^{\prime}\right) \sqrt{-g\left(x^{\prime}\right)} d^{4} x^{\prime}
$$

\Rightarrow Averaged metric:

$$
\left\langle g_{\mu \nu}(x)\right\rangle=\eta_{\alpha \beta}\left\langle E^{\alpha}{ }_{\mu}(x)\right\rangle\left\langle E^{\beta}{ }_{\nu}(x)\right\rangle
$$

Averaging the Metric of a Two-Sphere

Stereographic Projection:

- Metric: $g_{i j}=\left(\frac{2 a}{L}\right)^{4} \delta_{i j}$ where $L^{2}=4 a^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$

Averaging the Metric of a Two-Sphere

Stereographic Projection:

- Metric: $g_{i j}=\left(\frac{2 a}{L}\right)^{4} \delta_{i j}$ where $L^{2}=4 a^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$
- Maximally smooth dyad field:

$$
E^{a}{ }_{i}=\left(\frac{2 a}{L}\right)^{2} \delta_{a i}
$$

Averaging the Metric of a Two-Sphere

Stereographic Projection:

- Metric: $g_{i j}=\left(\frac{2 a}{L}\right)^{4} \delta_{i j}$ where $L^{2}=4 a^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$
- Maximally smooth dyad field:

$$
E^{a}{ }_{i}=\left(\frac{2 a}{L}\right)^{2} \delta_{a i}
$$

- Geodesics through origin:

$$
z^{i}(\tau)=2 a \tan \left(\frac{\tau}{2 a}\right) \frac{d z^{i}}{d \tau}(0)
$$

Averaging the Metric of a Two-Sphere

Stereographic Projection:

- Metric: $g_{i j}=\left(\frac{2 a}{L}\right)^{4} \delta_{i j}$ where $L^{2}=4 a^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$
- Maximally smooth dyad field:

$$
E^{a}{ }_{i}=\left(\frac{2 a}{L}\right)^{2} \delta_{a i}
$$

- Geodesics through origin:

$$
z^{i}(\tau)=2 a \tan \left(\frac{\tau}{2 a}\right) \frac{d z^{i}}{d \tau}(0)
$$

- Connector:
$\widehat{V}_{j}{ }^{i}\left(0, \tau ; \mathcal{C}_{\tau 0}\right)=\cos ^{-2}\left(\frac{\tau}{2 a}\right) \delta_{i j}$

Averaging the Metric of a Two-Sphere

Stereographic Projection:

- Metric: $g_{i j}=\left(\frac{2 a}{L}\right)^{4} \delta_{i j}$ where $L^{2}=4 a^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$
- Maximally smooth dyad field:

$$
E^{a}{ }_{i}=\left(\frac{2 a}{L}\right)^{2} \delta_{a i}
$$

- Geodesics through origin:

$$
z^{i}(\tau)=2 a \tan \left(\frac{\tau}{2 a}\right) \frac{d z^{i}}{d \tau}(0)
$$

- Connector:
$\widehat{V}_{j}{ }^{i}\left(0, \tau ; \mathcal{C}_{\tau 0}\right)=\cos ^{-2}\left(\frac{\tau}{2 a}\right) \delta_{i j}$
- Averaged metric:

$$
\left\langle g_{i j}(x)\right\rangle=g_{i j}(x)
$$

Averaging the Metric of a Perturbed Two-Sphere

- Perturb spherical coordinates with function $f(x, y, z)$
- Stereographic projection leads to perturbed metric:

$$
\left(g_{P}\right)_{i j}=(1+2 \eta f)\left(\frac{2 a}{L}\right)^{4} \delta_{i j}
$$

Averaging the Metric of a Perturbed Two-Sphere

- Perturb spherical coordinates with function $f(x, y, z)$
- Stereographic projection leads to perturbed metric:

$$
\left(g_{P}\right)_{i j}=(1+2 \eta f)\left(\frac{2 a}{L}\right)^{4} \delta_{i j}
$$

- Maximally Smooth Dyad Field:
- Reference dyad field $\widetilde{E}^{a}{ }_{i}$ with $\widetilde{E}^{a}{ }_{i} \widetilde{E}^{b}{ }_{j} \delta_{a b}=g_{i j}$
- Maximally smooth dyad $E^{a}{ }_{i}=U_{a b}(\phi(x)) \widetilde{E}^{b}{ }_{i}$

Averaging the Metric of a Perturbed Two-Sphere

- Perturb spherical coordinates with function $f(x, y, z)$
- Stereographic projection leads to perturbed metric:

$$
\left(g_{P}\right)_{i j}=(1+2 \eta f)\left(\frac{2 a}{L}\right)^{4} \delta_{i j}
$$

- Maximally Smooth Dyad Field:
- Reference dyad field $\widetilde{E}^{a}{ }_{i}$ with $\widetilde{E}^{a}{ }_{i} \widetilde{E}^{b}{ }_{j} \delta_{a b}=g_{i j}$
- Maximally smooth dyad $E^{a}{ }_{i}=U_{a b}(\phi(x)) \tilde{E}^{b}{ }_{i}$
- Solve $\delta S=0$ with $S=\int_{R} d^{2} x \sqrt{g}\left(D_{i} E^{a}{ }_{j}\right)\left(D_{k} E^{b}\right) g^{i k} g^{j l} \delta_{a b}$
- Introduce vector field $u^{k}=\left(D_{i} \widetilde{E}^{c}{ }_{j}\right) \widetilde{E}^{d}{ }_{1} \epsilon_{c d} g^{i k} g^{j l}$

Averaging the Metric of a Perturbed Two-Sphere

- Perturb spherical coordinates with function $f(x, y, z)$
- Stereographic projection leads to perturbed metric:

$$
\left(g_{P}\right)_{i j}=(1+2 \eta f)\left(\frac{2 a}{L}\right)^{4} \delta_{i j}
$$

- Maximally Smooth Dyad Field:
- Reference dyad field $\widetilde{E}^{a}{ }_{i}$ with $\widetilde{E}^{a}{ }_{i} \widetilde{E}^{b}{ }_{j} \delta_{a b}=g_{i j}$
- Maximally smooth dyad $E^{a}{ }_{i}=U_{a b}(\phi(x)) \tilde{E}^{b}{ }_{i}$
- Solve $\delta S=0$ with $S=\int_{R} d^{2} x \sqrt{g}\left(D_{i} E^{a}{ }_{j}\right)\left(D_{k} E^{b}\right) g^{i k} g^{j l} \delta_{a b}$
- Introduce vector field $u^{k}=\left(D_{i} \widetilde{E}^{c}{ }_{j}\right) \widetilde{E}^{d}{ }_{\mid \epsilon_{c d}} g^{i k} g^{j \mid}$

$$
\begin{array}{lc}
\Rightarrow & g^{i k}\left(\partial_{i} \partial_{k} \phi\right)=-\frac{1}{2} D_{k} u^{k} \text { on } R \\
\Rightarrow & \frac{\partial \phi}{\partial n}=-\frac{1}{2} n_{k} u^{k} \text { on } \partial R
\end{array}
$$

The Gaussian Shaped Perturbation

Gascoigne3D

The Gaussian Shaped Perturbation

Gascoigne3D

$$
\left(\frac{\partial^{2}}{\left(\partial x^{1}\right)^{2}}+\frac{\partial^{2}}{\left(\partial x^{2}\right)^{2}}\right) \phi\left(x^{1}, x^{2}\right)=0 \text { on } R
$$

Neumann boundary conditions on ∂R

$$
\frac{\partial \phi}{\partial n}=\eta \cos ^{-2}\left(\frac{r}{2 a}\right)\left(h(r, \gamma)+\frac{1}{2 a^{2}} \partial_{\gamma} \int_{0}^{r} f\left(s^{\prime}, \gamma\right) d s^{\prime}\right)
$$

R is the area inside ∂R given by

$$
\begin{aligned}
\alpha^{1}(\gamma) & =2 a \tan \left(\frac{r}{2 a}\right) \cos \gamma+\eta \frac{v(r, \gamma)}{\cos ^{2}\left(\frac{r}{2 a}\right)} \sin \gamma \\
& -\eta \frac{\cos \gamma}{\cos ^{2}\left(\frac{r}{2 a}\right)} \int_{0}^{r} f\left(s^{\prime}, \gamma\right) d s^{\prime} \\
\alpha^{2}(\gamma) & =2 a \tan \left(\frac{r}{2 a}\right) \sin \gamma-\eta \frac{v(r, \gamma)}{\cos ^{2}\left(\frac{r}{2 a}\right)} \cos \gamma \\
& -\eta \frac{\cos \gamma}{\cos ^{2}\left(\frac{r}{2 a}\right)} \int_{0}^{r} f(s, \gamma) d s^{\prime}
\end{aligned}
$$

The Gaussian Shaped Perturbation

Gascoigne3D

$$
\left(\frac{\partial^{2}}{\left(\partial x^{1}\right)^{2}}+\frac{\partial^{2}}{\left(\partial x^{2}\right)^{2}}\right) \phi\left(x^{1}, x^{2}\right)=0 \text { on } R
$$

Neumann boundary conditions on ∂R

$$
\frac{\partial \phi}{\partial n}=\eta \cos ^{-2}\left(\frac{r}{2 a}\right)\left(h(r, \gamma)+\frac{1}{2 a^{2}} \partial_{\gamma} \int_{0}^{r} f\left(s^{\prime}, \gamma\right) d s^{\prime}\right)
$$

R is the area inside ∂R given by

$$
\begin{aligned}
\alpha^{1}(\gamma) & =2 a \tan \left(\frac{r}{2 a}\right) \cos \gamma+\eta \frac{v(r, \gamma)}{\cos ^{2}\left(\frac{r}{2 a}\right)} \sin \gamma \\
& -\eta \frac{\cos \gamma}{\cos ^{2}\left(\frac{r}{2 a}\right)} \int_{0}^{r} f\left(s^{\prime}, \gamma\right) d s^{\prime} \\
\alpha^{2}(\gamma) & =2 a \tan \left(\frac{r}{2 a}\right) \sin \gamma-\eta \frac{v(r, \gamma)}{\cos ^{2}\left(\frac{r}{2 a}\right)} \cos \gamma \\
& -\eta \frac{\cos \gamma}{\cos ^{2}\left(\frac{r}{2 a}\right)} \int_{0}^{r} f(s, \gamma) d s^{\prime}
\end{aligned}
$$

where $h(\tau)=\left.\frac{\partial f}{\partial x^{2}}\right|_{\left(x^{1}, x^{2}\right)=\left(z^{1}(\tau), z^{2}(\tau)\right)} \frac{d z^{1}}{d \tau}(0)-\left.\frac{\partial f}{\partial x^{1}}\right|_{\left(x^{1}, x^{2}\right)=\left(z^{1}(\tau), z^{2}(\tau)\right)} \frac{d z^{2}}{d \tau}(0)$ and $v(\tau, \gamma)$ fulfills the differential equation $\quad \frac{d^{2} v(\tau, \gamma)}{d \tau^{2}}+\frac{v(\tau, \gamma)}{a^{2}}=\frac{h(\tau, \gamma)}{\cos ^{2}\left(\frac{\tau}{2 a}\right)}$

- Averaging effect in investigated example is too small
- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

$$
\text { - } \mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b}\left(t^{i} t^{j}+g^{i j} R s^{2}\right)
$$

- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

- $\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b}\left(t^{i} t^{j}+g^{i j} R s^{2}\right)$
- $\mathcal{L}=\left(L_{n} E^{a}{ }_{i}\right)\left(L_{n} E^{b}{ }_{j}\right) \delta_{a b} n^{i} n^{j}$
- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

- $\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b}\left(t^{i} t^{j}+g^{i j} R s^{2}\right)$
- $\mathcal{L}=\left(L_{n} E^{a}{ }_{i}\right)\left(L_{n} E^{b}{ }_{j}\right) \delta_{a b} n^{i} n^{j}$
- $\mathcal{L}=\left(L_{\xi} E^{a}{ }_{i}\right)\left(L_{\xi} E^{b}{ }_{j}\right) \delta_{a b} \xi^{i} \xi^{j}$
- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

- $\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b}\left(t^{i} t^{j}+g^{i j} R s^{2}\right)$
- $\mathcal{L}=\left(L_{n} E^{a}{ }_{i}\right)\left(L_{n} E^{b}{ }_{j}\right) \delta_{a b} n^{i} n^{j}$
- $\mathcal{L}=\left(L_{\xi} E^{a}{ }_{i}\right)\left(L_{\xi} E^{b}{ }_{j}\right) \delta_{a b} \xi^{i} \xi^{j}$
- Problem: Used Lagrangian is similar to the Lagrangian which defines the geodetic induced parallel field

$$
\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b} t^{i} t^{j}
$$

\Rightarrow Use different Lagrangian to define initial tetrad field:

- $\mathcal{L}=\left(L_{t} E^{a}{ }_{i}\right)\left(L_{t} E^{b}{ }_{j}\right) \delta_{a b}\left(t^{i} t^{j}+g^{i j} R s^{2}\right)$
- $\mathcal{L}=\left(L_{n} E^{a}{ }_{i}\right)\left(L_{n} E^{b}{ }_{j}\right) \delta_{a b} n^{i} n^{j}$
- $\mathcal{L}=\left(L_{\xi} E^{a}{ }_{i}\right)\left(L_{\xi} E^{b}{ }_{j}\right) \delta_{a b} \xi^{i} \xi^{j}$
\Rightarrow They all fail to define a dyad field that can be used to average the perturbed plane in the desired way

Conclusions and Outlook

- Once we have a suitable Lagrangian we have a generally covariant averaging process which can be used to smooth metrics in the framework of GR

Conclusions and Outlook

- Once we have a suitable Lagrangian we have a generally covariant averaging process which can be used to smooth metrics in the framework of GR
- Apply it to different perturbation functions to study their interaction with each other and with the background sphere

Conclusions and Outlook

- Once we have a suitable Lagrangian we have a generally covariant averaging process which can be used to smooth metrics in the framework of GR
- Apply it to different perturbation functions to study their interaction with each other and with the background sphere
- Apply it to three-sphere and three-plane corresponding to hypersurfaces of closed and flat FLRW models

Conclusions and Outlook

- Once we have a suitable Lagrangian we have a generally covariant averaging process which can be used to smooth metrics in the framework of GR
- Apply it to different perturbation functions to study their interaction with each other and with the background sphere
- Apply it to three-sphere and three-plane corresponding to hypersurfaces of closed and flat FLRW models
- Apply it to four-dimensional example which involves choice of boundary conditions on the congruence of light-like geodesics

Conclusions and Outlook

- Once we have a suitable Lagrangian we have a generally covariant averaging process which can be used to smooth metrics in the framework of GR
- Apply it to different perturbation functions to study their interaction with each other and with the background sphere
- Apply it to three-sphere and three-plane corresponding to hypersurfaces of closed and flat FLRW models
- Apply it to four-dimensional example which involves choice of boundary conditions on the congruence of light-like geodesics
\Rightarrow Apply averaging process to Cosmology and combine the two lines of research

