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Introduction
Universe is homogeneous and isotropic on large scales

⇒ Use exact solution to Einstein equations (FLRW metric) to
model the universe

CMB is isotropic with only small anisotropies
⇒ Describe by linear perturbations about the FLRW solution

Astronomical observations (galaxy clustering and motions,
gravitational lensing, CMB, type Ia supernovae, Lyman α,
etc.)

⇒ ΛCDM model with 76% dark energy, 20% dark matter, and
4% baryonic matter

Expansion of universe has started to accelerate when structure
formation has grown increasingly non-linear on small scales

⇒ Is dark energy the backreaction of the generation and evolution of
inhomogeneities on the evolution of the background Cosmology?
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The Averaging Problem

Standard Cosmology based on

Gµν(〈gµν〉) = 8πG 〈Tµν〉+ Λ 〈gµν〉

Einstein equations are nonlinear

〈Gµν(gµν)〉 6= Gµν(〈gµν〉)

⇒ We are using the wrong metric to describe the universe!

Correct equations

〈Gµν(gµν)〉 = 8πG 〈Tµν〉+ Λ 〈gµν〉
for some average 〈A〉 in a domain D

⇒ Modifications can in principle act as a dark enegy

Gµν(〈gµν〉) = 8πG 〈Tµν〉+ 8πGT g
µν + Λ 〈gµν〉
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Decompose Einstein equations into a set of scalar equations
and apply averaging process

〈A〉 = 1
V

∫
D A

√
hd3x

⇒ Buchert equations [Buchert 00,01]

Backreaction is a small but non-vanishing effect
[JB, Brown, Robbers 08, Li and Schwarz 07, Rasanen 08, Paranjape 08]

Averaging process

depends on the choice of slicing
depends on choice of coordinate system
cannot be used to average vector and tensor quantities

Background free approach

⇒ Need a generally covariant averaging process
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Generally Covariant Averaging Process for the Metric

Averaging Process must be independent of coordinate system

⇒ Parallel transport tensor quantities along geodesics to the
same point before averaging

Decompose metric into a right-handed orthochronous
Minkowski tetrad

gµν(x) = ηαβEα
µ(x)Eβ

ν(x)

Find (up to global Lorentz-transformations) unique tetrad
field, the maximally smooth tetrad field, by following
Lagrangian

LMS =
(
DµEα

ρ

)(
DνE

β
λ

)
gµνgρληαβ
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Parallel transport along geodesics Cx0x ′

realized by Wegner-Wilson line operator

V (x ′, x0; Cx0x ′) = P exp
[
−

∫
Cx0x′

dzµ Γµ(z)
]

where Γµ(x) are four matrices with
components (Γµ(x))λ

ν = Γλ
µν(x)

〈Eα
µ(x0)〉

=
∫
R f (x0, x

′; Cx ′x0)V̂µ
ν(x0, x

′; Cx ′x0)E
α

ν(x
′)
√
−g(x ′) d4x ′

⇒ Averaged metric:

〈gµν(x)〉 = ηαβ 〈Eα
µ(x)〉

〈
Eβ

ν(x)
〉
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Averaging the Metric of a Two-Sphere

Stereographic Projection:

θ
a

r

φ

z

x2

x1

Metric: gij = (2a
L )4δij where

L2 = 4a2 + (x1)2 + (x2)2

Maximally smooth dyad field:

E a
i = (2a

L )2δai

Geodesics through origin:

z i (τ) = 2a tan( τ
2a)dz i

dτ (0)

Connector:

V̂j
i (0, τ ; Cτ0) = cos−2( τ

2a)δij

Averaged metric:

〈gij(x)〉 = gij(x)

8 / 13
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Averaging the Metric of a Perturbed Two-Sphere

Perturb spherical coordinates with function f (x , y , z)

Stereographic projection leads to perturbed metric:

(gP)ij = (1 + 2ηf )(2a
L )4δij

Maximally Smooth Dyad Field:

Reference dyad field Ẽ a
i with Ẽ a

i Ẽ
b
j δab = gij

Maximally smooth dyad E a
i = Uab(φ(x))Ẽ b

i

Solve δS = 0 with S =
∫
R

d2x
√

g (DiE
a
j)(DkE

b
l)g

ikg jlδab

Introduce vector field uk = (Di Ẽ
c
j)Ẽ

d
lεcdg ikg jl

⇒ g ik(∂i∂kφ) = − 1
2
Dku

k on R

⇒ ∂φ
∂n

= − 1
2
nku

k on ∂R
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i

Solve δS = 0 with S =
∫
R

d2x
√

g (DiE
a
j)(DkE

b
l)g

ikg jlδab

Introduce vector field uk = (Di Ẽ
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The Gaussian Shaped Perturbation

Gascoigne3D

(
∂2

(∂x1)2
+ ∂2

(∂x2)2

)
φ(x1, x2) = 0 on R

Neumann boundary conditions on ∂R
∂φ
∂n

= η cos−2( r
2a

)(h(r , γ)+ 1
2a2 ∂γ

∫ r

0
f (s ′, γ)ds ′)

R is the area inside ∂R given by

α1(γ) = 2a tan( r
2a

) cos γ + η v(r,γ)

cos2( r
2a

)
sin γ

−η cos γ
cos2( r

2a
)

∫ r

0
f (s ′, γ)ds ′

α2(γ) = 2a tan( r
2a

) sin γ − η v(r,γ)

cos2( r
2a

)
cos γ

−η cos γ
cos2( r

2a
)

∫ r

0
f (s, γ)ds ′

where h(τ) = ∂f
∂x2

∣∣
(x1,x2)=(z1(τ),z2(τ))

dz1

dτ
(0)− ∂f

∂x1

∣∣
(x1,x2)=(z1(τ),z2(τ))

dz2

dτ
(0)

and v(τ, γ) fulfills the differential equation d2v(τ,γ)

dτ2 + v(τ,γ)

a2 = h(τ,γ)

cos2( τ
2a

)
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(x1,x2)=(z1(τ),z2(τ))

dz2

dτ
(0)

and v(τ, γ) fulfills the differential equation d2v(τ,γ)

dτ2 + v(τ,γ)

a2 = h(τ,γ)

cos2( τ
2a

)
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Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LtE
a
i )

(
LtE

b
j

)
δabt

i t j

⇒ Use different Lagrangian to define initial tetrad field:

L = (LtE
a
i )

(
LtE

b
j

)
δab

(
t i t j + g ijRs2

)
L = (LnE

a
i )

(
LnE

b
j

)
δabn

inj

L = (LξE
a
i )

(
LξE

b
j

)
δabξ

iξj

. . .

⇒ They all fail to define a dyad field that can be used to average
the perturbed plane in the desired way
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Conclusions and Outlook

Once we have a suitable Lagrangian we have a generally
covariant averaging process which can be used to smooth
metrics in the framework of GR

Apply it to different perturbation functions to study their
interaction with each other and with the background sphere

Apply it to three-sphere and three-plane corresponding to
hypersurfaces of closed and flat FLRW models

Apply it to four-dimensional example which involves choice of
boundary conditions on the congruence of light-like geodesics

⇒ Apply averaging process to Cosmology and combine the two
lines of research
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