



# Gravitational Radiation from Preheating

John T. Giblin, Jr September 28, 2008 COSMO '08 University of Wisconsin, Madison

> Easther, Giblin, Lim: astro-ph/0612294 Easther, Giblin, Lim: arXiv/0712.2991

## Outline

- Inflation and its end
- Parametric resonance
- \* Gravitational waves: How and Why
- Gravitational radiation from preheating
  - Methods and numerics
  - Results and parameter dependence

### History / Prior Art

- Parametric resonance: Brandenberger & Traschen (1990) / Linde & co
- Khlebnikov and Tkachev: GUT scale inflation and Gravitational waves (1997)
- Yale (2005-) -- Energy Scale/Peak location correlation and lattice simulations
- Now: Garcia-Bellido et al. (Madrid), CITA group, Price and Siemens (Milwaukee)

### Inflation

- (Near) Exponential expansion of the universe
  - Realizable by "particle physics"
  - Energy density of the universe dominated by (scalar-field) potential
- Solves observational "issues" of Big Bang Cosmology
  - Isotropy, Homogeneity
- Quantum Fluctuations provide insight into structure formation



#### Parametric Resonance

Consider the toy model

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi - g^{2}\phi^{2}\chi^{2} - V(\phi)$$

φ is the inflation and χ is a bosonic field. The mode equations for χ are

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2} + g^2\phi^2\right)\chi_k = 0$$

where

$$\tilde{\chi}(k,t) = \int d^3x \ \chi(x,t) e^{2\pi i k \cdot x}$$

### Parametric Resonance (II)

+ If we assume that

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

and H=0 (non-expansion), then

$$\phi(t) = \Phi \sin(mt)$$

and

$$\ddot{\chi}_k + \left(k^2 + g^2 \Phi^2 \sin^2(m_\phi t)\right) \chi_k = 0$$

#### Mathieu Equation

8

10

q

A 20 z = mt $q = \frac{g^2 \Phi^2}{4m^2}$ 15 10  $A_k = \frac{k^2}{m^2} + \frac{g^2 \Phi^2}{2m^2} = \frac{k^2}{m^2} + 2q$ Solutions are either exponential or oscillatory 2 4 6  $\chi_k'' + (A_k - 2q\cos(2z))\chi_k = 0$ 

#### Mathieu Equation

8

10

q

A 20 z = mt $q = \frac{g^2 \Phi^2}{4m^2}$ 15 10  $A_k = \frac{k^2}{m^2} + \frac{g^2 \Phi^2}{2m^2} = \frac{k^2}{m^2} + 2q$ Solutions are either exponential or oscillatory 2 4 6  $\chi_k'' + (A_k - 2q\cos(2z))\chi_k = 0$ 



## Implications

- Certain modes are exponentially excited
  - (copious) particle production of certain momentum states
  - out-of-equilibrium universe
- Large gradient energy
- Any model whose termination oscillates will (approximately) resonate
- + Inhomogeneities lead to...

### Gravity Waves

Einstein's Equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

• With a metric of the form (in synchronous gauge)  $ds^{2} = dt^{2} - a^{2}(t) \left[\delta_{ij} + h_{ij}\right] dx^{i} dx^{j}$ • Where the metric better is the metric is the metric of the second second

• Where the perturbation is *transverse-traceless* 

 $h_i^i = 0 \quad h_{j,i}^i = 0$ 

### Gravity Waves (II)

+ We can use perturbation theory  $\delta G_{\mu\nu}(x,t) = 8\pi G \delta T_{\mu\nu}(x,t)$ to write equations of motion for the metric perturbations

$$h_{ij} + 3\frac{\dot{a}}{a}\dot{h}_{ij} - \frac{1}{a}\nabla^2 h_{ij} = \frac{16\pi G}{a^2}\delta S_{ij}^{TT}$$

### The Source

The source

$$S_{ij} = T_{ij} - \frac{1}{3}T_k^k \delta_{ij}$$

must be made transverse-traceless by

$$S_{ij}^{TT} = P_{ik}S_{kl}P_{lj} - \frac{1}{2}P_{ij}\left(P_{lm}S_{lm}\right)$$

where

$$P_{ij} = \delta_{ij} - \frac{k_i k_j}{k^2}$$



### Computational Strategy

 We start by defining a 3dimensional lattice with periodic boundary conditions and fill it with scalar fields,

$$\phi_i(\vec{x},t)$$

 We fill the lattice with Scalar fields which obey

$$\ddot{\phi}_i + 3\frac{\dot{a}}{a}\dot{\phi}_i - \frac{1}{a^2}\nabla^2\phi_i + \frac{\partial V(\phi)}{\partial\phi_i} = 0$$

 We use LATTICEEASY to evolve fields an∂ the Friedmann equations

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

We calculate the source term of

$$\ddot{h}_{ij} + 3\frac{\dot{a}}{a}\dot{h}_{ij} - \frac{1}{a^2}\nabla^2 h_{ij} = \frac{16\pi G}{a^2}S_{ij}$$

in momentum space.

Evolve the metric perturbations (in an expanding background) calculate

$$\rho_{gw} = \frac{1}{32\pi G} \left\langle h_{ij,0} h_{,0}^{ij} \right\rangle = \sum_{i,j} \frac{1}{32\pi G} \left\langle h_{ij,0}^2 \right\rangle$$

### Transfer Function

 specifically, we calculate  $\frac{d\Omega_{gw}}{d\ln k} = \frac{1}{\rho_{crit}} \frac{d\rho}{d\ln k} = \frac{\pi k^3}{3H^2 L^2} \sum_{i,j} |h_{ij,0}(k)|^2$ + and transfer that to the present day using  $\Omega_{gw}h^2 = \Omega_r h^2 \frac{d\Omega_{gw}(a_e)}{d\ln k} \left(\frac{g_0}{g_*}\right)^{1/3}$  $f = 6 \times 10^{10} \frac{k}{\sqrt{M_p H_e}} \text{ Hz}$ 

### The First Model

- + We start by looking at  $V(\phi) = \frac{1}{4}\lambda\phi^4$
- First used by Khlebnikov and Tkachev

hep-ph/9701423

Useful comparison to other work



# State of Affairs

| Group           | Yale                                                 | CITA                                    | Madrid                                                            | Milwaukee                                           |
|-----------------|------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|
| Algorithm       | Compute tensor<br>source, solve in<br>momentum space | Green's function<br>method              | Compute tensor<br>source, solve in<br>position space              | Green's function<br>method                          |
| Scalar Dynamics | Staggered<br>Leapfrog                                | Staggered<br>Leapfrog                   | Staggered<br>Leapfrog                                             | Staggered<br>Leapfrog                               |
| Approximations  | No backreaction<br>Numerical noise?                  | << 1/Hubble<br>"Sample" of k-<br>modes. | Low Scale<br>models have non-<br>expanding<br>background          | Expansion is<br>radiation or<br>matter<br>dominated |
| Comments        | Few<br>approximations;<br>noisy sources.             | Orthogonal to<br>our approach           | Same method as<br>"Yale group" but<br>(sometimes) no<br>expansion | Exact method in radiation era                       |





## The gravitational wave search



### Scaling Argument

 Assuming that the largest possible wavelength to resonate corresponds to (approximately) the Hubble horizon, 1/H, where

$$H \sim \frac{\sqrt{V_e}}{m_{pl}}$$

we can use our transfer function to calculate

$$f = 6 \times 10^{10} \frac{H_e}{\sqrt{m_{pl}H_e}} \propto V^{1/4}$$

### Other Models

+ Consider

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

 For single field inflation, the CMB places a bound that

 $m \approx 10^{-6} m_{pl}$ 



GUT Scale

### Chaotic Inflation

- Amplitude is FIXED
- \* Scale depends on the parameter, *m*, and hence on the energy scale of inflation
- Observation at MHz and GHz seems (at least now) unrealistic
- More realistic observations need a lower energy scale

## The gravitational wave search



## Hybrid Inflation

+ Let's add a field:

$$V = \frac{(M^2 - \lambda \sigma^2)^2}{4\lambda} + \frac{m^2}{2}\phi^2 + \frac{h^2}{2}\phi^2\sigma^2$$

 For large values of φ, σ=0 is a stable point, however as φ decreases, σ is drawn to a minimum at

$$\sigma = \langle \sigma \rangle = \frac{M}{\sqrt{\lambda}}$$

## Hybrid Inflation (II)

- + Assume no fluctuations in  $\sigma$
- + We get an effective potential

$$V(\phi) = \frac{1}{2} \left( m^2 + \frac{h^2 M^2}{\lambda} \right) \phi^2$$

which is (dynamically) identical to chaotic inflation,

### Low Scale





## Different from Primordial Spectrum

| Primordial                       | Preheating                          |  |
|----------------------------------|-------------------------------------|--|
| Quantum source                   | Classical source                    |  |
| Scale Invariant                  | Peaked near observable range        |  |
| Low H : Low amplitude            | Low H : redder peak                 |  |
| Always generated                 | Strongly model dependent            |  |
| Amplitude bounded by CMB         | Amplitude possibly large            |  |
| $\Omega_{gw,inf} b^2 < 10^{-14}$ | $\Omega_{gw} b^2 \lesssim 10^{-10}$ |  |

### Conclusions

- Direct detection of gravitational waves "inevitable"?
- Preheating provides a frequency-dependent, constant amplitude probe
- Detection could serve as a "model" selector
- Preheating a new window on inflation
  - + Particularly for low scales (<10<sup>9</sup>GeV)



## Changing the Sign

What if we look at a more general case...

$$V(\phi,\chi) = \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{g}{2}\phi^2\chi^2,$$

where

 $\frac{\lambda_{\phi}\lambda_{\chi}}{q^2} > 1$ 

so that the energy potential is always bounded from below

### Resonance, Reprise

- If we allow g<0 we begin to see the region of the stability chart *below* the A=2q line
- Corresponds to very broad resonance







### parts of the positive spectrum



![](_page_41_Figure_0.jpeg)