Conservation and evolution of the curvature perturbation

Jinn-Ouk Gong

University of Wisconsin-Madison 1150 University Avenue, Madison WI 53706-1390 USA

Cosmo 08 University of Wisconsin-Madison, USA 28th August, 2008

《曰》 《圖》 《注》 《注》 三注:

590

Based on

- D. J. H. Chung and JG, in preparation
- K.-Y. Choi, JG and D. Jeong, in preparation

Multi field inflation

Conclusions

Outline

Introduction

• Curvature perturbation?

2 Single field inflation

- Equation of motion
- Subtleties

3 Multi field inflation

- Single and multi field inflation
- Evolution after multi field inflation

4 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Single field inflation

Curvature perturbation ··· Err?

Gauge invariant curvature perturbation ζ

$$-\zeta = \psi + H \frac{\delta \rho}{\dot{\rho}}$$

Conservation and evolution of the curvature perturbation

イロト イロト イヨト イヨト

5990

Single field inflation

Multi field inflation

Conclusions

Curvature perturbation… Err?

Gauge invariant curvature perturbation ζ

$$-\zeta = \psi + H \frac{\delta \rho}{\dot{\rho}}$$

Generic hypersurface \rightarrow the one with uniform energy density

- Wiggles in the spatial curvature
- Strongly constrained by observations

$$\mathscr{P}_{\zeta} \sim 10^{-5}, \quad n \sim 0.96, \quad \left|\frac{dn}{d\log k}\right| \lesssim 0.01, \cdots$$

(The only?) Window to the early universe

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Single field inflation

Multi field inflation

Conclusions

Curvature perturbation… Err?

Gauge invariant curvature perturbation ζ

$$-\zeta = \psi + H \frac{\delta \rho}{\dot{\rho}}$$

Generic hypersurface \rightarrow the one with uniform energy density

- Wiggles in the spatial curvature
- Strongly constrained by observations

$$\mathscr{P}_{\zeta} \sim 10^{-5}, \quad n \sim 0.96, \quad \left|\frac{dn}{d\log k}\right| \lesssim 0.01, \cdots$$

(The only?) Window to the early universe

Q: What do we know about ζ ?

< ロ > < 同 > < 三 > < 三 > -

Single field inflation

Multi field inflation

Conclusions

Equation of motion of ζ

From perturbed Klein-Gordon equation / Einstein equation / variation principle we can obtain

$$\ddot{\zeta} + \left(\frac{2\ddot{\phi}}{\dot{\phi}} - \frac{2\dot{H}}{H} + 3H\right)\dot{\zeta} - \frac{\nabla^2}{a^2}\zeta = 0$$

No potential dependence / exact

イロト イポト イヨト イヨト

Single field inflation

Multi field inflation 0000 Conclusions

Equation of motion of ζ

From perturbed Klein-Gordon equation / Einstein equation / variation principle we can obtain

$$\ddot{\zeta} + \left(\frac{2\ddot{\phi}}{\dot{\phi}} - \frac{2\dot{H}}{H} + 3H\right)\dot{\zeta} - \frac{\nabla^2}{\mu^2}\zeta = 0$$

No potential dependence / exact

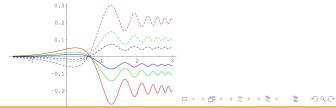
• On super-horizon scales, $\dot{\zeta} = 0$ is always a solution

イロト イポト イヨト イヨト

Single field inflation

Multi field inflation

Conclusions


Equation of motion of ζ

From perturbed Klein-Gordon equation / Einstein equation / variation principle we can obtain

$$\ddot{\boldsymbol{\zeta}} + \left(\frac{2\ddot{\phi}}{\dot{\phi}} - \frac{2\dot{H}}{H} + 3H\right)\dot{\boldsymbol{\zeta}} - \frac{\nabla^2}{H^2}\boldsymbol{\zeta} = \mathbf{0}$$

No potential dependence / exact

- On super-horizon scales, $\dot{\zeta} = 0$ is always a solution
- Segative coefficient: (exponentially) growing solution

Single field inflation

Multi field inflation 0000 Conclusions

Equation of motion of ζ

From perturbed Klein-Gordon equation / Einstein equation / variation principle we can obtain

$$\ddot{\boldsymbol{\zeta}} + \left(\frac{2\ddot{\phi}}{\dot{\phi}} - \frac{2\dot{H}}{H} + 3H\right)\dot{\boldsymbol{\zeta}} - \frac{\nabla^2}{H^2}\boldsymbol{\zeta} = \mathbf{0}$$

No potential dependence / exact

- On super-horizon scales, $\dot{\zeta} = 0$ is always a solution
- Negative coefficient: (exponentially) growing solution

Conservation of ζ : Slow-roll is necessary even for single field case

 $\ddot{\zeta} + \mathcal{O}(H)\dot{\zeta} = 0$

イロト イポト イヨト イヨト

Single field inflation

Multi field inflation 0000 Conclusions

Case of particle production (1/2)

Conservation of $\zeta \leftrightarrow$ conservation of energy

$$\Delta \mathscr{L} = -\frac{1}{2}g^2\phi^2 \chi^2$$

At $\phi_{\star} = m_{\chi}/g$, χ particles are resonantly produced

イロト イ団ト イヨト イヨトー

Single field inflation

Multi field inflation

Conclusions

Case of particle production (1/2)

Conservation of $\zeta \leftrightarrow$ conservation of energy

$$\Delta \mathscr{L} = -\frac{1}{2}g^2\phi^2 \langle \chi^2 \rangle$$

At $\phi_{\star} = m_{\chi}/g$, χ particles are resonantly produced

$$\chi = \chi_0 + \delta \chi$$

 χ field is **quantum**: How to treat it?

イロト イ団 トイヨト イヨトー

Single field inflation

Multi field inflation

Conclusions

Case of particle production (2/2)

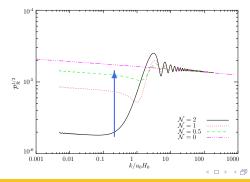
• With
$$Q = \delta \phi + (\dot{\phi}/H)\psi = -(\dot{\phi}/H)\zeta$$
,

$$\ddot{Q}_{k} = -3H\dot{Q}_{k} - \left\{\frac{k^{2}}{a^{2}} + V'' + g^{2}\mathcal{N}\left\langle\chi^{2}\right\rangle + \frac{1}{m_{\text{Pl}}^{2}H}\left[\left(3H + \frac{\dot{H}}{H}\right)\dot{\phi} + 2V' - g\mathcal{N}(m_{\chi} - g\phi)\left\langle\chi^{2}\right\rangle\right]\right\}Q_{k}$$

Change in the background \rightarrow **HUGE** change in \mathcal{P}_{ζ}

イロト イロト イヨト イヨト

Single field inflation


Multi field inflation

Conclusions

Case of particle production (2/2)

• With
$$Q = \delta \phi + (\dot{\phi}/H)\psi = -(\dot{\phi}/H)\zeta$$
,
 $\ddot{Q}_k = -3H\dot{Q}_k - \left\{\frac{k^2}{a^2} + V'' + g^2 \mathcal{N}\langle\chi^2\rangle + \frac{1}{m_{\rm Pl}^2 H}\left[\left(3H + \frac{\dot{H}}{H}\right)\dot{\phi} + 2V' - g\mathcal{N}(m_\chi - g\phi)\langle\chi^2\rangle\right]\right\}Q_k$

Change in the background \rightarrow **HUGE** change in \mathcal{P}_{ζ}

nan

Single field inflation

Multi field inflation

Conclusions

Case of particle production (2/2)

• With
$$Q = \delta \phi + (\dot{\phi}/H)\psi = -(\dot{\phi}/H)\zeta$$
,

$$\ddot{Q}_{k} = -3H\dot{Q}_{k} - \left\{\frac{k^{2}}{a^{2}} + V'' + g^{2}\mathcal{N}\left\langle\chi^{2}\right\rangle + \frac{1}{m_{\rm Pl}^{2}H}\left[\left(3H + \frac{\dot{H}}{H}\right)\dot{\phi} + 2V' - g\mathcal{N}(m_{\chi} - g\phi)\left\langle\chi^{2}\right\rangle\right]\right\}Q_{k}$$

Change in the background $\rightarrow HUGE$ change in \mathcal{P}_{ζ}

•
$$\rho_{\chi} \ll \ll \rho \rightarrow \text{second order effect}$$

From conservation equation: $\dot{\mathscr{P}}_{\zeta} = -\frac{\rho_{\chi}^2 H}{6(\rho+p)^2}\mathscr{P}_{\chi}$

Many subtleties

- How to "turn on" χ ?
- What is the range of wavenumber and time?

small change in \mathscr{P}_{ζ}

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Single field inflation

Multi field inflation

Conclusions

Case of particle production (2/2)

• With
$$Q = \delta \phi + (\dot{\phi}/H)\psi = -(\dot{\phi}/H)\zeta$$
,

$$\ddot{Q}_{k} = -3H\dot{Q}_{k} - \left\{\frac{k^{2}}{a^{2}} + V'' + g^{2}\mathcal{N}\left\langle\chi^{2}\right\rangle + \frac{1}{m_{\rm Pl}^{2}H}\left[\left(3H + \frac{\dot{H}}{H}\right)\dot{\phi} + 2V' - g\mathcal{N}(m_{\chi} - g\phi)\left\langle\chi^{2}\right\rangle\right]\right\}Q_{k}$$

Change in the background $\rightarrow HUGE$ change in \mathcal{P}_{ζ}

•
$$\rho_{\chi} \ll \ll \rho \rightarrow$$
 second order effect

From conservation equation: $\dot{\mathscr{P}}_{\zeta} = -\frac{\rho_{\chi}^2 H}{6(\rho+p)^2}\mathscr{P}_{\chi}$

Many subtleties

- How to "turn on" χ ?
- What is the range of wavenumber and time?

small change in \mathscr{P}_{ζ}

We are trying to find a new perspective on ζ regarding its conservation $\langle \neg \neg \rangle$ $\langle \neg \neg \rangle$ $\langle \neg \neg \rangle$

Conservation and evolution of the curvature perturbation

Single field inflation

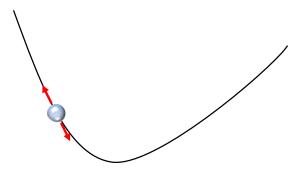
Multi field inflation ●○○○

Conclusions

What is different from single field inflation?

There are more than one orthogonal directions into which the field can be "*kicked*"

イロト イ団ト イヨト イヨト

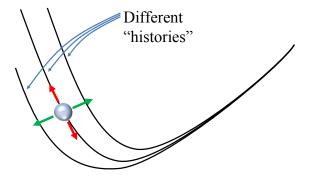

Single field inflation

Multi field inflation

Conclusions

What is different from single field inflation?

There are more than one orthogonal directions into which the field can be "*kicked*"

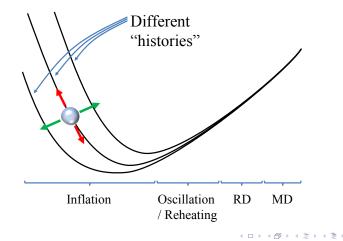

Single field inflation

Multi field inflation

Conclusions

What is different from single field inflation?

There are more than one orthogonal directions into which the field can be "*kicked*"

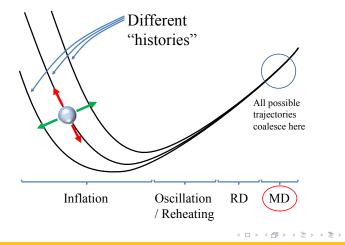

Single field inflation

Multi field inflation

Conclusions

What is different from single field inflation?

There are more than one orthogonal directions into which the field can be "*kicked*"


Single field inflation

Multi field inflation

Conclusions

What is different from single field inflation?

There are more than one orthogonal directions into which the field can be "*kicked*"

Multi field inflation

Conclusions

Multi field inflation and afterwards

For multi field inflation, **inflationary estimates are not enough** and the evolution after inflation should be taken into account

e.g. curvaton σ should satisfy

- flat potential: $m_{\sigma} \ll H$
- 2 non-zero amplitude: $\sigma \gtrsim 10^{-8} m_{\rm Pl}$
- Small energy fraction: $V_{\sigma} \ll V_{\text{tot}}$

Easily satisfied by individual inflaton field after multi field inflation

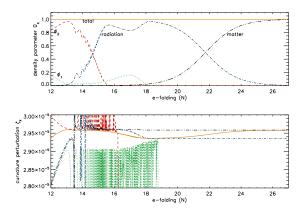
inflaton = curvaton

< ロ > < 同 > < 三 > < 三 > -

Multi field inflation 0000

Evolution of ζ in multi field inflation

Multiple chaotic inflation:
$$V = \frac{1}{2} \sum_{i} m_i^2 \phi_i^2$$
 with $\phi_i \to \Gamma_{\gamma}^{(i)}$, $\Gamma_m^{(i)}$


5900

イロト イロト イヨト イヨト

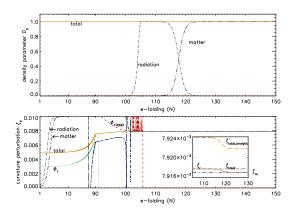
Multi field inflation 0000

Evolution of ζ in multi field inflation

Multiple chaotic inflation:
$$V = \frac{1}{2} \sum_{i} m_i^2 \phi_i^2$$
 with $\phi_i \to \Gamma_{\gamma}^{(i)}$, $\Gamma_m^{(i)}$

크 Jinn-Ouk Gong

5990


トメヨト

э

Multi field inflation 0000

Evolution of ζ in multi field inflation

Multiple chaotic inflation:
$$V = \frac{1}{2} \sum_{i} m_i^2 \phi_i^2$$
 with $\phi_i \to \Gamma_{\gamma}^{(i)}$, $\Gamma_m^{(i)}$

5900

イロト イロト イヨト イヨト

Single field inflatio

Multi field inflation

Conclusions

Matter-radiation isocurvature perturbation

$$S_{\alpha\beta} = 3\left(\zeta_{\alpha} - \zeta_{\beta}\right) \Rightarrow S_{m\gamma} = \frac{\delta\rho_m}{\rho_m} - \frac{3}{4}\frac{\delta\rho_{\gamma}}{\rho_{\gamma}}$$

- $S_{m\gamma} = 0$ in single field inflation
- **2** Observationally $\lesssim 10\%$ contribution
- One of the signatures of multi field inflation?

イロト イポト イヨト イヨト

Single field inflatio

Multi field inflation

Conclusions

Matter-radiation isocurvature perturbation

$$S_{\alpha\beta} = 3\left(\zeta_{\alpha} - \zeta_{\beta}\right) \Rightarrow S_{m\gamma} = \frac{\delta\rho_m}{\rho_m} - \frac{3}{4}\frac{\delta\rho_{\gamma}}{\rho_{\gamma}}$$

- $S_{m\gamma} = 0$ in single field inflation
- ② Observationally $\lesssim 10\%$ contribution
- One of the signatures of multi field inflation?

We can find

- $S_{m\gamma} \rightarrow 0$ with large *e*-folds: $\zeta_i = \text{adiabatic} + \text{non-adiabatic}$
- **2** ζ does change after inflation: non-zero δp_{nad} **DO** exist
- **3** \mathscr{P}_{ζ} and \mathscr{P}_{S} have slightly different scale dependence

イロト イポト イヨト イヨト

Multi field inflation

Conclusions

Conservation of the curvature perturbation is not as simple as a piece of cake

- Single field inflation
 - Slow-roll is *required* to ensure the conservation of ζ
 - But many subtleties regarding the conservation of ζ
- Multi field inflation
 - ζ varies throughout the whole evolution of the universe
 - Inflationary estimates *may not* work
 - Possibly non-zero, detectable $S_{m\gamma}$

< ロ > < 同 > < 三 > < 三 > -