COSMO 08, Madison, 28 Aug. 2008

Reheating of the universe after inflation with $f(\phi)R$ gravity

Yuki Watanabe (Univ. of Texas, Austin)

with Eiichiro Komatsu

Based on

PRD 75, 061301 (2007), [arXiv:qr-qc/0612120] PRD 77, 043514 (2008), [arXiv:0711.3442]

Why Study Reheating?

- The universe was left cold and empty after inflation.
 - But, we need a hot Big Bang cosmology.
- The universe must reheat after inflation.

Successful inflation must transfer energy in inflaton to radiation, and heat the universe to at least ~1 MeV for successful nucleosynthesis.

...however, little is known about this important epoch....

Why Study Reheating?

- The universe was left cold and empty after inflation.
 - But, we need a hot Big Bang cosmology.
- The universe must reheat after inflation.

Successful inflation must transfer energy in inflaton to radiation, and heat the universe to at least ~1 MeV for successful nucleosynthesis.

...however, little is known about this important epoch....

Outstanding Questions

- Can one reheat universe successfully/naturally?
- How much do we know about reheating?
- What can we learn from observations (if possible at all)?
- Can we use reheating to constrain inflationary models?
- Can we use inflation to constrain reheating mechanism?

Perturbative Reheating

Dolgov & Linde (1982); Abbott, Farhi & Wise (1982); Albrecht et al. (1982)

Inflaton decays and thermalizes through the tree-level interactions like: $L_{\text{int}} = -\left(g_{\psi}\phi\overline{\psi}\psi + g_{\chi}\phi\chi^{2} + \frac{1}{4}\lambda\phi^{4} + \cdots\right)$ $\phi = -\left(g_{\psi}\phi\overline{\psi}\psi + g_{\chi}\phi\chi^{2} + \frac{1}{4}\lambda\phi^{4} + \cdots\right)$

Inflaton can decay if allowed kinematically with the widths given by

$$\Gamma_{\phi\bar{\psi}\psi} = \frac{g_{\psi}^2 m_{\phi}}{8\pi} \left(1 - \frac{4m_{\psi}^2}{m_{\phi}^2}\right)^{3/2} \tanh\left(\frac{m_{\phi}}{4T}\right) \Gamma_{\psi} \qquad \text{Pauli blocking}$$

$$\Gamma_{\phi\chi\chi} = \frac{g_{\chi}^2}{8\pi m_{\phi}} \left(1 - \frac{4m_{\chi}^2}{m_{\phi}^2}\right)^{1/2} \operatorname{coth}\left(\frac{m_{\phi}}{4T}\right) \Gamma_{\chi} \qquad \text{Bose condensate}$$

$$\operatorname{coth}\left(\frac{m_{\phi}}{4T}\right) \Gamma_{\chi} \qquad \text{Example of the set of the s$$

Reheating Temperature from Energetics

$$\ddot{\phi} + (3H + \Gamma_{tot})\dot{\phi} + m_{\phi}^2\phi = 0 \qquad H_{inf} >> H_{osc} \propto a^{-3/2}$$

 $3H_{osc} > \Gamma_{tot} \Rightarrow$ Inflaton dominates the energy density. $3H_{osc} < \Gamma_{tot} \Rightarrow$ Decay products dominate the energy density.

$$\rho_{rad}(t_{rh}) = 3M_{Pl}^2 H_{osc}^2 = \frac{M_{Pl}^2 \Gamma_{tot}^2}{3} = \frac{\pi^2}{30} g_*(T_{rh}) T_{rh}^4$$

$$T_{rh} = \frac{\sqrt{M_{Pl}\Gamma_{tot}}}{(10\pi^2)^{1/4}} \left(\frac{g_*(T_{rh})}{100}\right)^{-1/4}$$

Coupling constants determine the decay width, Γ . But, what determines coupling constants?

What are coupling constants? Problem: arbitrariness of the nature of inflaton fields

• Inflation works very well as a <u>concept</u>, but we do not understand the nature (including interaction properties) of inflaton.

e.g. Higgs-like scalar fields, Axion-like fields, Flat directions, RH sneutrino, Moduli fields, Distances between branes, and many more...

• Arbitrariness of inflaton = Arbitrariness of couplings

• Can we say anything generic about reheating? Universal reheating? Universal coupling?

Gravitational coupling is universal

➤ too weak to cause reheating with GR.
In the early universe, however, GR would be modified.

What happens to "gravitational decay channel", when GR is modified?

Conventional Einstein gravity during inflation

$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} M_{Pl}^2 R - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi - V(\phi) \right] + \sqrt{-g} L_{matt}$$

Einstein-Hilbert term generates GR. Inflaton minimally couples to gravity.

$$L_{\text{int}} = -(g_{\psi}\phi\overline{\psi}\psi + g_{\chi}\phi\chi^2 + \lambda\phi^2\chi^2 + \cdots)$$

Conventionally one introduced explicit
couplings between inflaton and matter.

Modifying Einstein gravity during inflation

Instead of introducing explicit coupling by hand,

$$L_{\rm int} = -\left(g_{\psi}\phi\overline{\psi}\psi + g_{\chi}\phi\chi^2 + \lambda\phi^2\chi^2 + \cdots\right)$$

$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} f(\phi) R - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi - V(\phi) \right] + \sqrt{-g} L_{matt}$$

Non-minimal gravitational coupling: common in effective Lagrangian from extra dimensional theories In order to ensure GR after inflation, $f(v) = M_{Pl}^2$

Matter (everything but gravity and inflaton) completely decouples from inflaton and minimally coupled to gravity as usual.

New decay channel through "scalar gravity waves"

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \widetilde{h}_{\mu\nu} - \frac{F(\nu)}{M_{Pl}^2} \overline{g}_{\mu\nu} \sigma, \qquad F(\nu) = f'(\nu) \left(1 + \frac{3[f'(\nu)]^2}{2M_{Pl}^2}\right)^{-1/2}$$

Fermionic (spinor) matter field:

$$L_{\psi} = -\overline{e} \,\overline{\psi} [\overline{e}^{\mu\alpha} \gamma_{\alpha} D_{\mu} + m_{\psi}] \psi + \dots + \overline{e} \underbrace{F(v) m_{\psi}}_{QM_{Pr}^{2}} \sigma \overline{\psi} \psi$$
Bosonic (scalar) matter field:

$$L_{\chi} = -\overline{e} \left[\frac{1}{2} \,\overline{g}^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi + U(\chi) + \dots \right]$$
Trilinear interaction

$$\left[\frac{F(v)}{2M_{Pl}^{2}} \sigma \left(4U(\chi) + \overline{g}^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi \right) \right]$$

$$U(\chi) = m_{\chi}^{2} \chi^{2}/2$$

$$g_{\chi} \equiv \frac{F(v)}{2M_{Pl}^{2}} \left(m_{\chi}^{2} + \frac{m_{\sigma}^{2}}{2} \right)$$

 g_{ψ}

Magnitude of Yukawa coupling

$$g_{\psi} \equiv rac{F(v)m_{\psi}}{2M_{
m Pl}^2}$$

• For $f(\phi) = \xi \phi^2$, $g_{\psi} = \xi (1+6\xi)^{-1/2} (v/M_{pl}) (m_{\psi}/M_{pl})$

- > Natural to obtain a small Yukawa coupling, $g_{\psi} \sim 10^{-7}$, for e.g., $m_{\psi} \sim 10^{-7} M_{pl}$
- The induced Yukawa coupling vanishes for massless fermions: conformal invariance of massless fermions.
- Massless, minimally-coupled scalar fields are not conformally invariant. Therefore, the three-legged interaction does not vanish even for massless scalar fields:

$$g_{\chi} \equiv \frac{F(v)}{2M_{\rm Pl}^2} \left(m_{\chi}^2 + \frac{m_{\sigma}^2}{2} \right)$$

(Kinematical and thermal factors are neglected.)

Fermions

$$\Gamma = \frac{[f'(v)]^2 m_{\psi}^2 m_{\sigma}}{32\pi M_{pl}^4} \left(1 + \frac{3[f'(v)]^2}{2M_{pl}^2}\right)^{-1}$$

Scalar Bosons

1 1 1 /1

Gauge Bosons $\Gamma = \frac{\alpha^2 [f'(v)]^2 m_{\sigma}^3}{256\pi^3 M_{pl}^4} \left(1 + \frac{3[f'(v)]^2}{2M_{pl}^2}\right)^{-1} \times (\text{\# of internal fermions etc})$

Constraint on f(\$)R gravity from reheating

$$\begin{split} T_{rh} &= \frac{\sqrt{M_{Pl}\Gamma_{tot}}}{(10\pi^2)^{1/4}} \left(\frac{g_*(T_{rh})}{100}\right)^{-1/4} \\ \Gamma_{tot} &> \Gamma_{\sigma\bar{\psi}\psi} + \Gamma_{\sigma\chi\chi} + \Gamma_{\sigma FF} \\ & \left| f'(v) \right| \left(1 + \frac{3[f'(v)]^2}{M_{pl}^2} \right)^{-1/2} < 8\pi (40)^{1/4} T_{rh} \left(\frac{M_{Pl}}{m_{\sigma}}\right)^{3/2} \left(\frac{g_*(T_{rh})}{100}\right)^{1/4} \\ \text{e.g.} \ f(\phi) &= M^2 + \xi \phi^2 \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 + \frac{6\xi^2 v^2}{M_{pl}^2} \right)^{-1/2} \\ & \left| \xi \right| \left(1 +$$

COSMO 08, Madison, 28 Aug. 2008 Y. Watanabe, Reheating of the universe after inflation with f(phi)R gravity Worked Example: WMAP 3-yr data with Ginzburg-Landau potential

- A natural mechanism for reheating after inflation with f(\$\$)R gravity: Why natural?
 - Inflaton quanta decay spontaneously into any matter fields (spin-0, 1/2, 1) without explicit interactions in the original Lagrangian
 - Conformal invariance must be broken at the tree-level or by loops
 - **\square** Reheating spontaneously occurs in any theories with $f(\phi)R$ gravity
- A constraint on f(\$\ophi\$) from the reheat temperature can be found.
 - A possible limit on the reheat temperature can constrain the form of f(φ), or vice versa.
 - These constraints on f(\$\ophi\$) are totally independent of the other constraints from inflation and density fluctuations.

Further study in progress...

D Preheating? $F(\phi, X, R)$ gravity?