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All of the successful models of inflation use scalar fields:
- potential energy (new inflation, chaotic inflation, etc.)

- kinetic energy (k-inflation, k-essence, DBI-inflation, etc.)

But, scalar fields where never observed! (not yet)

Can higher spin fields drive de-Sitter expansion? Vectors?

Necessary requirements for a field to drive inflation: 
A) condensate (YES)
B) isotropy (NO)
C) slow roll regime (NO)    These problems were realized by Ford in 1989

B) can be resolved by a triplet of orthogonal fields [Armendariz-Picon, 2004]
C) can be resolved by fine-tuning potential and IC [Ford, 1989]
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Consider a vector field non-minimally coupled to gravity:

- non-minimal coupling is exactly the same as for conformal scalar
- conformal symmetry of vector field is broken by this coupling
- vector fields starts to behave as a minimally coupled scalar
Note: the slow-roll problem of a minimally coupled vector fields has the 
same root as the problem of slow-roll with conformal scalars
Field equations:

In Friedman universe:
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Define:

For quasi homogeneous vector field background equations are

Similar to the scalar field case, when Hubble constant  H > m the fields are 
“frozen” and quasi de Sitter expansion is possible. 

Energy momentum tensor:
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For a homogeneous vector field in a flat Friedman universe:

For a vector triad (three mutually orthogonal vector fields)

and the components of any field from the triplet satisfy

where

As for the scalar field                in the slow roll regime 
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Another way to achieve isotropy is to consider a large number N of 
randomly oriented vector fields. For simplicity take all masses to be the 
same.

It follows that

and for the spatial components of energy-momentum tensor we note  

where summation over k is assumed. 
Corrections of order        are due to random distribution of directions,  

which do not vanish for        .

Typical value of the off-diagonal spatial components is 
  

Isotropic inflationary solution is self-consistent only if 
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Hence, the quasi de Sitter solution is valid only if:

On the other hand the vector fields are in the slow-roll only  if the effective 
friction exceeds their mass, and the inflation is over when the Hubble 
constant is of the order of the mass:

Therefore

When the field drops below this value its starts to oscillate. 
The number of e-foldings can be estimated as 

The maximum number of e-foldings of isotropic inflation is 
One hundred vector field is enough to explain observed homogeneity, but 
global anisotropy of order       can survive until the end of inflation
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Conclusions         

- Vector inflation is possible!

- Slow-roll condition is satisfied for non-minimally coupled vector fields.

- Isotropicity can be achieved by: 
a) three mutually orthogonal vector fields
b) symmetric configurations with four or more fields
c) a large number of randomly oriented vector fields

- Anisotropicity of the order of           remains until after the end of inflation.

- The lightest vector fields might also force the late time acceleration of 
the Universe. 
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