Leading Log Approximation for Inflationary QFT

Richard Woodard Cosmo 08 Madison August 28, 2008

Spacetime Exp. Strengthens QFT

- Why?
 - Loops \rightarrow classical physics of virtuals
 - Expansion \rightarrow holds virtuals apart longer
- Maximum Effect for:
 - Inflation
 - Massless virtuals
 - NOT conformally invariant
- Two Particles
 - MMC scalars
 - Gravitons

Ehancement Manifests as "Infrared Logarithms"

• $ds^2 = -dt^2 + a^2 dx \cdot dx$ with $a(t) = e^{Ht}$

- Eg. $\langle \mathsf{T}_{\mu\nu} \rangle$ for MMC $\varphi + \lambda \varphi^4$
 - $\rho = \lambda (H/2\pi)^4 [1/8 \ln^2(a)] + O(\lambda^2)$
 - $p = -\lambda (H/2\pi)^4 [\frac{1}{8} \ln^2(a) + \frac{1}{12} \ln(a)] + O(\lambda^2)$

Many Theories Show IR Logs

- 1. MMC $\phi + \lambda \phi^4$
- 2. MMC ϕ + Fermions (Yukawa)
- 3. MMC ϕ + EM (SQED)
- 4. Pure QG
- 5. QG + Fermions
- 6. QG + Scalars

IR Logs Are Physical

- 1. $\langle T_{\mu\nu} \rangle$ with non-dynamical gravity
- 2. $\langle F_{\mu\nu} F_{\rho\sigma} \rangle$ in SQED
- 3. QG corrections to P(k)
 - S. Weinberg: hep-th/0506236, 0605244
 - K. Chaicherdsakul: hep-th/0611352

General Form of Series

- Consider Interaction Vertex with:
 - Coupling constant K
 - N undiff. MMC ϕ and $h_{\mu\nu}$
 - Any other fields or diff. fields
- Each $K^2 \rightarrow$ up to N factors of In(a)
 - $\lambda \phi^4 \rightarrow \text{series in } \lambda \ln^2(a)$
 - $e\phi^*\partial\phi A_{\mu} \rightarrow series in e^2 \ln(a)$
 - $\kappa h \partial h \partial h \rightarrow \text{ series in GH}^2 \ln(a)$

Same for Counterterms

- $\lambda \phi^4 \rightarrow \lambda \ln^2(a)$
 - Eg $\delta \xi \varphi^2 \rightarrow \delta \xi \ln(a) = [\#\lambda + \#\lambda^2 + ...] \ln(a)$
- $e^2 \phi^* \phi A_\mu A_\nu g^{\mu\nu} \rightarrow e^2 \ln(a)$
 - $\delta \xi \phi^* \phi \rightarrow \delta \xi \ln(a) = [\#e^2 + \#e^4 + ...] \ln(a)$
- $\kappa h \partial h \partial h \rightarrow GH^2 \ln(a)$
 - $\delta \Lambda / \kappa^2 (-g)^{1/2} = \delta \Lambda / \kappa^2 [1 + \kappa h + \kappa^2 h^2 + ...]$ $\rightarrow (\delta \Lambda / \kappa^2 H^4) GH^2 \ln(a)$
 - = [#GH² + #(GH²)² + ...] ln(a)

IR Logs Are Fascinating!

- 1. Introduce time dependence
 - $< T_{\mu\nu} > \neq \text{const} \times g_{\mu\nu}$
- 2. Compensate for small coupling const.
 - GH² < 10^{-12} for primordial inflation
 - But ln(a) can get BIG!

Perturbative Conundrum

- Pert. Theory breaks down!
 - 1 Loop QG: GH² [ln(a) + 1]
 - 2 Loop QG: (GH²)² [ln²(a) + ln(a) + 1]
 - When $GH^2 \ln(a) \sim 1 \rightarrow all loops order one$
- What to do? \rightarrow Sum the leading logs!
 - Cf. Renormalization Group in QFT
 - Subdominant terms perturbatively small

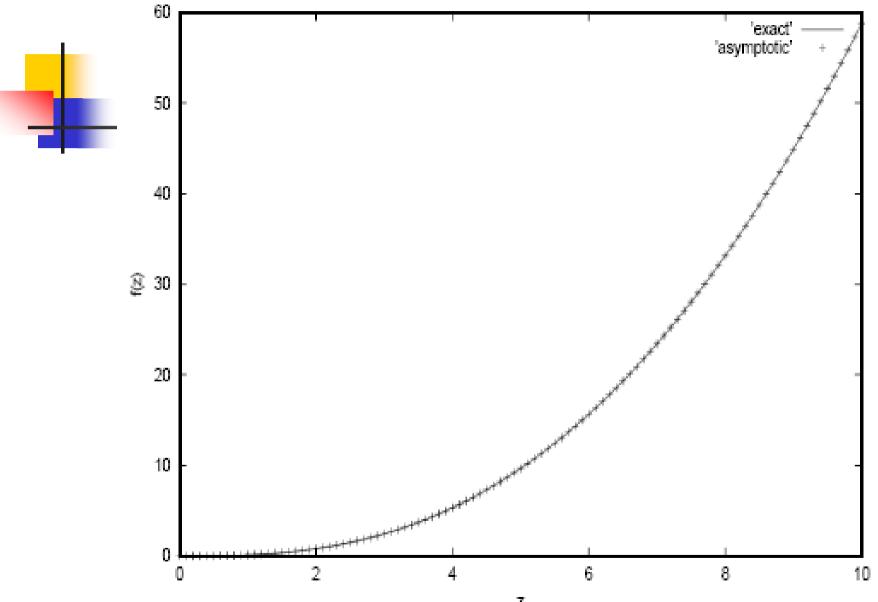
Summing the Leading IR Logs

- Method: LL QFT \rightarrow simple stochastic FT
 - Starobinsky 1986
- MMC φ + V(φ)
 - Starobinsky & Yokoyama astro-ph/9407016
 - All orders proof with Tsamis gr-qc/0505115
- MMC ϕ + passives
 - Yukawa, with Miao, gr-qc/0602110
 - SQED, with Prokopec & Tsamis, 0707.0847
- No general result yet for derivative int's

Physics of Leading Log SQED

- Inflation rips virtual scalars from vac.
- Hence φ*φ grows
- $e^2 \phi^* \phi A_\mu A_\nu$ induces photon mass
- γ vac. energy induces V_{eff} for scalar
- $V_{eff} = 3H^4/(8\pi^2) f(z)$ for $z=e^2\phi^*\phi/H^2$

Exact potential (lines) and its asymptotic form (crosses)



Z

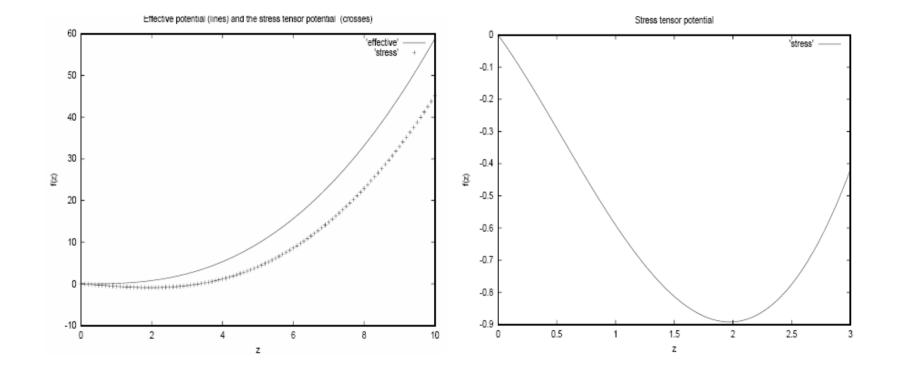
Nonpert. Results for SQED

Operator	Expectation Value
$\varphi^*\varphi$	$1.6495 imes H^2/e^2$
$(\varphi^*\varphi)^2$	$3.3213 imes H^4/e^4$
$(\varphi^* \varphi)^3$	$7.6308 imes H^6/e^6$
$M_{\gamma}^2 \equiv 2 e^2 \varphi^* \varphi$	$3.2991 imes H^2$
$M_{\varphi}^2 \equiv V_{\rm eff}'(\varphi^*\varphi)$	$.8961 \times 3e^2 H^2 / 8\pi^2$
$V_{\text{eff}}(\varphi^*\varphi)$	$.7223 \times 3H^4/8\pi^2$
$V_{\rm s}(\varphi^*\varphi)$	$6551 imes 3H^4/8\pi^2$
$(F_{\mu\nu}F_{\rho\sigma})_{\rm fin}$	$-9.5246 \times H^4/8\pi^2 \left(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}\right)$

Curious Case of $< T_{\mu\nu} >$

- At Lead. Log: $\langle T_{\mu\nu} \rangle = -g_{\mu\nu} \langle V_s(\phi^*\phi) \rangle$
- But $V_s \neq V_{eff}$!
- Why not?
 - $V_{eff} = 3H^4/(8\pi^2) f(z)$ for $z = e^2 \phi^* \phi/H^2$
 - Most factors of H² \rightarrow ¹/₁₂ R for gen. g_{µν}
 - Varying $-V_{eff}(-g)^{1/2}$ wrt $g_{\mu\nu}$ gives V_s
- So SQED gives a precise f(R) model!

 $V_s \neq V_{eff}$ for SQED



Conclusions I

- Undiff. MMC ϕ 's and $h_{\mu\nu}$'s cause IR logs
- They have been seen in many models
 - $\lambda \phi^4$ \rightarrow series in $\lambda \ln^2(a)$
 - SQED \rightarrow series in e² ln(a)
 - Yukawa \rightarrow series in f² ln(a)
 - Q. Grav. \rightarrow series in GH² In(a)
- They affect physical quantities
- They introduce time dependence
- They compensate for small coupling const's

Conclusions II

- Long inflation \rightarrow pert. theory breaks
- Sum leading logs for
 - MMC φ + V(φ)
 - MMC ϕ + A_µ and ψ
 - Not yet for quantum gravity
- Nonperturbative results for SQED
 - φ*φ ~ H²/e²
 - $M_{\gamma} \sim H$ and $M_{\phi} \sim e H$
 - Vacuum energy ~ -H⁴
 - Precise f(R) model induced