Affleck-Dine leptogenesis via multiscalar evolution in a seesaw model

Tsutomu Takayama

Institute for Cosmic Ray Research (ICRR)
28.Aug. 2008

Cosmo 08
Frank Lloyd Wright Monona Terrace Convention Center
University of Wisconsin-Madison Physics Department

JCAP II(2007)0I5 Masato Senami (Kyoto Univ.),TT (ICRR)

Outline

1 Introduction

- Leptogenesis via Affleck-Dine mechanism: an alternative to thermal leptogenesis in SUSY
- \tilde{N} only (Allahverdi \& Drees, PRD69(2004)I03522)
\longrightarrow multiscalar $L H_{u}$-direction and RH-sneutrino
2 Set-up
- Scalar potential
- initial condition

3 Evolution of scalar fields
4 Evolution of asymmetry
5 Constraints
6 Resultant baryon asymmetry
7 Summary

Standard Model (SM) + Heavy right-handed Majorana neutrino
\longrightarrow possible solution of two unsolved problem of SM
I) Origin of small neutrino mass $m_{\nu} \lesssim \mathcal{O}(0.1) \mathrm{eV}$
seesaw mechanism
Majorana mass: $M \bar{\nu}_{R} \nu_{R} \quad$ Dirac mass: $m \bar{L} \nu_{R} \quad \nu_{R}$: right-handed neutrino
\longrightarrow lighter mass eigenvalue $\sim \frac{m^{2}}{M}$

2) Origin of baryon asymmetry

baryon-to-entropy ratio: $\frac{n_{B}}{s}=(8.74 \pm 0.23) \times 10^{-11}(\mathrm{WMAP})$

1. Introduction

- thermal leptogenesis
- sufficient baryon asymmetry requires $T_{R}>M>10^{9} \mathrm{GeV}$
\longleftrightarrow in SUSY, gravitino is overproduced unless $T_{R}<10^{6-9} \mathrm{GeV}$

\longrightarrow alternatives?

many non-thermal leptogenesis scenarios are considered...

- Affleck-Dine leptogenesis from right-handed sneutrino
- $L H_{u}$-flat direction

$$
L=\frac{1}{\sqrt{2}}\binom{\phi}{0}, \quad H_{u}=\frac{1}{\sqrt{2}}\binom{0}{\phi}
$$

$L H_{u}$-flat direction has large vev
AD mechanism in multiscalar evolution (Senami \& Yamamoto, 2003)
$L H_{u}$-flat direction has vanishing vev
$L H_{u}$ - flat direction is irrelevant? (Allahverdi \& Drees, 2004)

1. Introduction:Affleck-Dine mechanism

$■$ complex scalar field ϕ with baryon (or lepton) number 1 total baryon (or lepton) number in homogeneous condensate of ϕ

$$
n=n_{\phi}-\bar{n}_{\phi}=i\left(\dot{\phi}^{*} \phi-\phi^{*} \dot{\phi}\right)=2|\phi|^{2} \dot{\theta} \quad \phi=|\phi| e^{i \theta}
$$

"angular momentum" of $\phi \longrightarrow$ baryon (lepton) number

rotational motion after inflation

baryon (lepton) number in ϕ condensate
$B-(L-)$ conserving decay
baryon (lepton) number in SM particles

1. Introduction

- Allahverdi \& Drees's scenario (brief review)

$$
V(\tilde{N})=m_{0}^{2}|\tilde{N}|^{2}+C_{I} H^{2}|\tilde{N}|^{2}+\left(B m_{3 / 2} \tilde{N}^{2}+h . c .\right)+\left(b H \tilde{N}^{2}+h . c .\right)
$$

- asymmetry $n_{\tilde{N}}-n_{\tilde{N}}$ is produced via Affleck-Dine mechanism
- $n_{\tilde{N}}-n_{\tilde{N}^{*}} \longrightarrow$ SM sector lepton number

- asymmetry is oscillating: $n_{\tilde{N}}-n_{\tilde{N}^{*}} \simeq t^{-2} M_{N}^{-1} N_{0}^{2} \underline{\sin \left(2 B m_{3 / 2} t\right)} \delta_{\text {eff }}$
\longrightarrow tuning $|B| m_{3 / 2} \simeq \Gamma_{\tilde{N}}$ is needed (decay at maximum)
assumption: $L H_{u}$-direction does not contribute (always $\langle\phi\rangle=0$) \longleftrightarrow due to interaction with $\tilde{N}, L H_{u}$-flat direction gets large value!

1. Introduction

- Allahverdi \& Drees's scenario (brief review)

$$
V(\tilde{N})=m_{0}^{2}|\tilde{N}|^{2}+C_{I} H^{2}|\tilde{N}|^{2}+\left(B m_{3 / 2} \tilde{N}^{2}+h . c .\right)+\left(b H \tilde{N}^{2}+h . c .\right)
$$

- asymmetry $n_{\tilde{N}}-n_{\tilde{N}^{*}}$ is produced via Affleck-Dine mechanism
- $n_{\tilde{N}}-n_{\tilde{N}^{*}} \longrightarrow$ SM sector lepton number

SUSY-breaking from thermal effect
Pauli blocking and stimulated emisson

$$
\longrightarrow \Gamma_{\substack{\text { bosonic, } \Delta L=+H_{u} \tilde{L}}} \neq \Gamma_{\tilde{N} \rightarrow \overline{\tilde{H}}_{u} \bar{L}}
$$

- asymmetry is oscillating: $n_{\tilde{N}}-n_{\tilde{N}^{*}} \simeq t^{-2} M_{N}^{-1} N_{0}^{2} \sin \left(2 B m_{3 / 2} t\right) \delta_{\text {eff }}$
\longrightarrow tuning $|B| m_{3 / 2} \simeq \Gamma_{\tilde{N}}$ is needed (decay at maximum)
assumption: $L H_{u}$-direction does not contribute (always $\langle\phi\rangle=0$) \longleftrightarrow due to interaction with $\tilde{N}, L H_{u}$-flat direction gets large value!

2. Set-up of the model: scalar potential

- superpotential: $W=W_{\mathrm{MSSM}}+y_{\nu} N L H_{u}+\frac{M_{N}}{2} N^{2}+\frac{\lambda}{4 M_{\mathrm{Pl}}} N^{4}$ source of CP-violation

$$
\begin{aligned}
& V(\phi, \tilde{N})=\frac{y_{\nu}^{2}}{4}|\phi|^{4}+M_{N}|\tilde{N}|^{2}+y_{\nu}^{2}|\phi|^{2}|\tilde{N}|^{2}+\frac{\lambda^{2}}{M_{\mathrm{Pl}}^{2}}|\tilde{N}|^{6} \quad \text { F-term } \\
& +\left[\left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*}+\frac{y_{\nu} \lambda}{2 M_{\mathrm{Pl}}} \phi^{2} \tilde{N}^{* 3}+\frac{\lambda M_{N}}{M_{\mathrm{Pl}}} \tilde{N} \tilde{N}^{* 3}\right)+\text { h.c. }\right] \begin{array}{l}
\text { cross term } \\
\text { in F-term }
\end{array} \\
& +c_{\phi} H^{2}|\phi|^{2}-c_{N} H^{2}|\tilde{N}|^{2} \text { Hubble-induced SUSY breaking mass term } \\
& +\left[\left(\frac{b H}{2} M_{N} \tilde{N}^{2}+\frac{a_{y 2}}{2} H_{\phi^{2}} \tilde{a_{\lambda} \lambda}+\frac{a_{\lambda}}{4 M_{\mathrm{Pl}}} H N^{4}\right)+\text { h.c. }\right] \\
& \text { in F-term } \\
& +V_{\mathrm{th}}(\phi) \text { thermal-mass correction } \\
& \text { Hubble-induced SUSY breaking } \\
& \text { A- and B-term }
\end{aligned}
$$

$※ c_{\phi} \sim 1>0, c_{N} \sim 1>0,|a| \sim 1,|b| \sim 1$
※ after inflation, rapid oscillation of inflaton $\langle a, b-$ term $\rangle \propto\langle I\rangle=0$
$\phi: L H_{u}$ direction $\quad L=\frac{1}{\sqrt{2}}\binom{\phi}{0}, \quad H_{u}=\frac{1}{\sqrt{2}}\binom{0}{\phi} \quad \tilde{N}:$ RH-sneutrino

2. Set-up of the model: initial conditions

 during the inflation, $H \gg M_{N}$- \tilde{N} : displaced from the origin
- radial direction: $\left|\tilde{N}_{\text {ini }}\right|=M_{\text {GUT }}$
(Hubble-induced mass and D-term)
※ $M / \lambda>M_{\mathrm{GUT}}^{2} / M_{\mathrm{PI}}$ is assumed (avoid wrong vacuum)
- phase direction :
trapped at B-term minima

NR F-term can not be used to trap $\tilde{N}_{\text {ini }}$

- ϕ : fixed at the origin due to large effective mass $m_{\mathrm{eff}} \sim y_{\nu} M_{\mathrm{GUT}}$

2. Set-up of the model: initial conditions

 during the inflation, $H \gg M_{N}$- \tilde{N} : displaced from the origin
- radial direction: $\left|\tilde{N}_{\text {ini }}\right|=M_{\text {GUT }}$
(Hubble-induced mass and D-term)
※ $M / \lambda>M_{\mathrm{GUT}}^{2} / M_{\mathrm{PI}}$ is assumed (avoid wrong vacuum)
- phase direction :
trapped at B-term minima

NR F-term can not be used to trap $\tilde{N}_{\text {ini }}$

$M_{\text {GUT }}$
※hereafter, $M_{\mathrm{GUT}}=10^{16} \mathrm{GeV}$

- ϕ : fixed at the origin due to large effective mass $m_{\text {eff }} \sim y_{\nu} M_{\text {GUT }}$

3. Evolution of scalar fields

(1) during inflation: $H=H_{\mathrm{inf}}>M_{N}$

$$
V_{\tilde{N}} \sim-c_{N} H^{2}|\tilde{N}|^{2}+\left(\frac{b H}{2} M_{N} \tilde{N}^{2}+\text { h.c. }\right)+D-\text { term }
$$

- due to balance between Hubble-induced mass and D-term,

$$
|\tilde{N}| \sim M_{\mathrm{GUT}}
$$

- phase-direction is assumed to be trapped at the minimum of B-term contribution

$$
V_{\phi} \simeq c_{\phi} H^{2}|\phi|^{2}+y_{\nu}^{2}|\tilde{N}|^{2}|\phi|^{2}
$$

ϕ

- ϕ is trapped at the origin

3. Evolution of scalar fields

(2) after inflation: $H<M_{N}$
※ in general, Hubble-induced A- and B-terms are effective only during inflation

$$
V_{\tilde{N}} \simeq M_{N}^{2}|\tilde{N}|^{2}+\left(\frac{\lambda M_{N}}{M_{\mathrm{Pl}}} \tilde{N} \tilde{N}^{* 3}+\text { h.c. }\right)
$$

- \tilde{N} oscillates with $|\tilde{N}| \propto H$
- cross term in F-term contribution serves as a source of asymmetry
- displacement between B-term and cross term gives $C P$-violation

$$
V_{\phi} \simeq c_{\phi} H^{2}|\phi|^{2}+y_{\nu}^{2}|\tilde{N}|^{2}|\phi|^{2}+\left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*}+h . c .\right)
$$

ϕ

- ϕ is trapped at the origin

3. Evolution of scalar fields

(3) destabilization: \quad Allahverdi \& Drees did not consider this process

$$
V_{\tilde{N}} \simeq M_{N}^{2}|\tilde{N}|^{2}+\left(\frac{\lambda M_{N}}{M_{\mathrm{Pl}}} \tilde{N} \tilde{N}^{* 3}+\text { h.c. }\right)
$$

\underline{N}

- after $|\tilde{N}|$ and H decrease sufficiently,

$$
y_{\nu} M_{N}|\tilde{N}| \sim y_{\nu}^{2}|\tilde{N}|^{2}+c_{\phi} H^{2}
$$

$$
V_{\phi} \simeq y_{\nu}^{2}|\tilde{N}|^{2}|\phi|^{2}+\left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*}+h . c .\right)+y_{\nu}^{2}|\phi|^{4} / 4
$$

ϕ

- two minima appear in opposite directions minimize the cross term
- these two minima are determined by \tilde{N}
\longrightarrow position of these minima rotate together with the rotation of \tilde{N}

3. Evolution of scalar fields

(4) after destabilization: $H<M_{N}, y_{\nu} M_{N}|\tilde{N}|>y_{\nu}^{2}|\tilde{N}|^{2}+c_{\phi} H^{2}$

$$
V_{\tilde{N}} \simeq M_{N}^{2}|\tilde{N}|^{2}+y_{\nu}^{2}|\tilde{N}|^{2}|\phi|^{2}+\left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*}+\text { h.c. }\right)
$$

- \tilde{N} oscillates around the minimum determined by rotating ϕ

$$
V_{\phi} \simeq y_{\nu}^{2}|\tilde{N}|^{2}|\phi|^{2}+\left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*}+\text { h.c. }\right)+y_{\nu}^{2}|\phi|^{4} / 4
$$

ϕ

- ϕ oscillates around one of minima determined by the cross term
- to which minima ϕ falls is determined by quantum fluctuation

3. Evolution of scalar fields

(5) after decay of $\tilde{N}: H<\Gamma_{\tilde{N}}=y_{\nu}^{2} M_{N} /(4 \pi)$
(friction term dominates the evolution of \tilde{N})
$\underline{\tilde{N}}$

- after the condensate of \tilde{N} decays, \tilde{N} is fixed at the minima

$$
V_{\phi, \mathrm{eff}} \simeq \frac{y_{\nu}^{4}}{4} \frac{|\phi|^{6}}{M_{N}^{2}}+V_{\mathrm{th}}(\phi)
$$

ϕ

- ϕ oscillates around the origin
- the direction of rotation is determined by the rotation of \tilde{N} at (2)

3. Evolution of scalar fields: numerical result

- evolution of scalar fields (numerical calculation)

4. Evolution of asymmetry: numerical result

■ evolution of asymmetry (numerical calculation)

■ lepton asymmetry is directly transfered to $L H_{u}$-direction

4. Evolution of asymmetry: homogeneity of $\operatorname{sgn}\left(L_{\phi}\right)$

- L_{ϕ} vanishes on an average over the universe?
\longrightarrow because $L_{\tilde{N}}$ is homogeneous, final L_{ϕ} averaged over the fluctuation is non-vanishing
L_{ϕ} and $L_{\tilde{N}}$ oscillate rapidly, but conserving $L_{\phi}-L_{\tilde{N}}$
\longrightarrow center of the oscillation of L_{ϕ} is determined by homogeneous $L_{\tilde{N}}$ at the destabilization
※potential minima of ϕ is determined by homogeneous \tilde{N}
the direction of the rotation of these minima is one definite direction all over the universe

※Hubble radius at destabilization epoch: typically $\quad k^{-1} \sim \mathcal{O}(10) \mathrm{km}$

5. Constraints on this scenario

- gravitino problem
\longrightarrow reheating temperature must be sufficiently low:

$$
T_{R}<10^{6-9} \mathrm{GeV}
$$

- in (2), \tilde{N} must not be trapped at the minima of F-term contribution

$$
V_{N, F_{N R}}=M_{N}^{2}|\tilde{N}|^{2}-\frac{2 \lambda M_{N}}{M_{\mathrm{Pl}}}|\tilde{N}|^{4}+\frac{\lambda^{2}}{M_{\mathrm{Pl}}^{2}}|\tilde{N}|^{6}
$$

$$
M / \lambda>M_{\mathrm{GUT}}^{2} / M_{\mathrm{Pl}}
$$

5. Constraints on this scenario

- positive thermal-mass can prevent the destabilization
\rightarrow reheating temperature must be sufficiently low:

$$
T_{R}<6.5 \times 10^{6} \mathrm{GeV} \times\left(\frac{g_{*}}{100}\right)^{\frac{1}{4}}\left(\frac{m_{\nu}}{0.01 \mathrm{eV}}\right)^{\frac{1}{4}}\left(\frac{M_{N}}{10^{9} \mathrm{GeV}}\right)^{\frac{5}{4}}
$$

※thermal bath from partial decay of inflaton $T \sim\left(H T_{R}^{2} M_{\mathrm{Pl}}\right)^{\frac{1}{4}}$

- baryon isocurvature perturbation
\longrightarrow isocurvature perturbation of $\theta_{\tilde{N}} \longrightarrow$ baryon isocurvature perturbation

$$
B_{a}=\sqrt{\frac{\mathcal{P}_{\mathcal{S}}}{\mathcal{P}_{\mathcal{R}}}}<0.31 \longrightarrow M_{N}<H_{\mathrm{inf}}<3 \times 10^{12} \mathrm{GeV}
$$

※if the phase minimum is displaced from the minimum of B-term during the inflation, this constraint can be avoided

6. Resultant baryon asymmetry: constraint on parameters

- parameter region which give $n_{B} / s>8.7 \times 10^{-11}$ (shaded region)

analytically,

$$
\frac{n_{B}}{s} \sim 8.7 \times 10^{-11} \times\left(\frac{\lambda}{10^{-4}}\right)\left(\frac{M_{\mathrm{GUT}}}{10^{16} \mathrm{GeV}}\right)^{4}\left(\frac{M_{N}}{10^{11} \mathrm{GeV}}\right)^{-2}\left(\frac{T_{R}}{6 \times 10^{6} \mathrm{GeV}}\right)
$$

6. Resultant baryon asymmetry: constraint on parameters

- parameter region which give $n_{B} / s>8.7 \times 10^{-11} \quad$ (shaded region)

analytically,

$$
\frac{n_{B}}{s} \sim 8.7 \times 10^{-11} \times\left(\frac{\lambda}{10^{-4}}\right)\left(\frac{M_{\mathrm{GUT}}}{10^{16} \mathrm{GeV}}\right)^{4}\left(\frac{M_{N}}{10^{11} \mathrm{GeV}}\right)^{-2}\left(\frac{T_{R}}{6 \times 10^{6} \mathrm{GeV}}\right)
$$

6. Resultant baryon asymmetry: constraint on parameters

- parameter region which give $n_{B} / s>8.7 \times 10^{-11}$ (shaded region)

analytically,

$$
\frac{n_{B}}{s} \sim 8.7 \times 10^{-11} \times\left(\frac{\lambda}{10^{-4}}\right)\left(\frac{M_{\mathrm{GUT}}}{10^{16} \mathrm{GeV}}\right)^{4}\left(\frac{M_{N}}{10^{11} \mathrm{GeV}}\right)^{-2}\left(\frac{T_{R}}{6 \times 10^{6} \mathrm{GeV}}\right)
$$

6. Resultant baryon asymmetry: constraint on parameters

- parameter region which give $n_{B} / s>8.7 \times 10^{-11}$ (shaded region)

analytically,

$$
\frac{n_{B}}{s} \sim 8.7 \times 10^{-11} \times\left(\frac{\lambda}{10^{-4}}\right)\left(\frac{M_{\mathrm{GUT}}}{10^{16} \mathrm{GeV}}\right)^{4}\left(\frac{M_{N}}{10^{11} \mathrm{GeV}}\right)^{-2}\left(\frac{T_{R}}{6 \times 10^{6} \mathrm{GeV}}\right)
$$

■ we reconsidered Affleck-Dine leptogenesis in SUSY seesaw model

- $L H_{u}$-flat direction is relevant even if it has positive Hubble-induced mass term
- charge asymmetry is generated in \tilde{N} condensate, then directly transfered to $L H_{u}$-flat direction
\longrightarrow sufficient baryon asymmetry can be generated
※only the initial evolution of \tilde{N} determines the final baryon asymmetry
※small λ is desirable for this scenario

