Affleck-Dine leptogenesis via multiscalar evolution in a seesaw model

Tsutomu Takayama

Institute for Cosmic Ray Research (ICRR)

28. Aug. 2008

Cosmo 08

Frank Lloyd Wright Monona Terrace Convention Center

University of Wisconsin–Madison Physics Department

JCAPII(2007)015 Masato Senami (Kyoto Univ.), TT (ICRR)

Outline

1 Introduction

• Leptogenesis via Affleck-Dine mechanism:

an alternative to thermal leptogenesis in SUSY

• \tilde{N} only (Allahverdi & Drees, PRD69(2004)103522)

 $\longrightarrow \text{ multiscalar } LH_u \text{-direction and RH-sneutrino}$ 2 Set-up

- Scalar potential
- initial condition
- 3 Evolution of scalar fields
- 4 Evolution of asymmetry
- 5 Constraints
- 6 Resultant baryon asymmetry
- 7 Summary

2) Origin of baryon asymmetry

baryon-to-entropy ratio: $\frac{n_B}{s} = (8.74 \pm 0.23) \times 10^{-11} \text{ (WMAP)}$

. Introduction

- thermal leptogenesis
- sufficient baryon asymmetry requires $T_R > M > 10^9 {
 m GeV}$

 \rightarrow in SUSY, gravitino is overproduced unless $T_R < 10^{6-9} \text{GeV}$

alternatives ?

many non-thermal leptogenesis scenarios are considered...

Affleck-Dine leptogenesis from right-handed sneutrino

• LH_u -flat direction

$$L = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad H_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \phi \end{pmatrix}$$

 LH_u -flat direction has large vev

AD mechanism in multiscalar evolution (Senami & Yamamoto, 2003)

 LH_u -flat direction has vanishing vev

 LH_u - flat direction is irrelevant? (Allahverdi & Drees, 2004)

. Introduction: Affleck-Dine mechanism

• complex scalar field ϕ with baryon (or lepton) number 1

total baryon (or lepton) number in homogeneous condensate of ϕ

$$n = n_{\phi} - \bar{n}_{\phi} = i(\dot{\phi}^*\phi - \phi^*\dot{\phi}) = 2|\phi|^2\dot{\theta} \qquad \phi = |\phi|e^{i\theta}$$

rotational motion after inflation

baryon (lepton) number in ϕ condensate

B - (L -) conserving decay

baryon (lepton) number in SM particles

. Introduction

Allahverdi & Drees's scenario (brief review)

 $V(\tilde{N}) = m_0^2 |\tilde{N}|^2 + C_I H^2 |\tilde{N}|^2 + (Bm_{3/2}\tilde{N}^2 + h.c.) + (bH\tilde{N}^2 + h.c.)$

- asymmetry $n_{\tilde{N}} n_{\tilde{N}^*}$ is produced via Affleck-Dine mechanism
- $n_{\tilde{N}} n_{\tilde{N}^*} \longrightarrow$ SM sector lepton number

• asymmetry is oscillating: $n_{\tilde{N}} - n_{\tilde{N}^*} \simeq t^{-2} M_N^{-1} N_0^2 \sin(2Bm_{3/2}t) \delta_{\text{eff}}$

 \longrightarrow tuning $|B|m_{3/2} \simeq \Gamma_{\tilde{N}}$ is needed (decay at maximum)

assumption: LH_u -direction does not contribute (always $\langle \phi \rangle = 0$) \longleftrightarrow due to interaction with \tilde{N} , LH_u -flat direction gets large value!

. Introduction

Allahverdi & Drees's scenario (brief review)

 $V(\tilde{N}) = m_0^2 |\tilde{N}|^2 + C_I H^2 |\tilde{N}|^2 + (Bm_{3/2}\tilde{N}^2 + h.c.) + (bH\tilde{N}^2 + h.c.)$

- asymmetry $n_{\tilde{N}} n_{\tilde{N}^*}$ is produced via Affleck-Dine mechanism
- $n_{\tilde{N}} n_{\tilde{N}^*} \longrightarrow$ SM sector lepton number

• asymmetry is oscillating: $n_{\tilde{N}} - n_{\tilde{N}^*} \simeq t^{-2} M_N^{-1} N_0^2 \sin(2Bm_{3/2}t) \delta_{\text{eff}}$

 \longrightarrow tuning $|B|m_{3/2} \simeq \Gamma_{\tilde{N}}$ is needed (decay at maximum)

assumption: LH_u -direction does not contribute (always $\langle \phi \rangle = 0$) \longleftrightarrow due to interaction with \tilde{N} , LH_u -flat direction gets large value! 2. Set-up of the model: scalar potential

• superpotential:
$$W = W_{\text{MSSM}} + y_{\nu}NLH_u + \frac{M_N}{2}N^2 + \frac{\lambda}{4M_{\text{Pl}}}N^4$$

 $V(\phi, \tilde{N}) = \frac{y_{\nu}^2}{4} |\phi|^4 + M_N |\tilde{N}|^2 + y_{\nu}^2 |\phi|^2 |\tilde{N}|^2 + \frac{\lambda^2}{M_{\rm Pl}^2} |\tilde{N}|^6 \text{ F-term}$ $+ \left[\left(\frac{y_{\nu}}{2} M_N \phi^2 \tilde{N}^* + \frac{y_{\nu} \lambda}{2M_{\text{Pl}}} \phi^2 \tilde{N}^{*3} + \frac{\lambda M_N}{M_{\text{Pl}}} \tilde{N} \tilde{N}^{*3} \right) + h.c. \right] \frac{\text{cross term}}{\text{in F-term}}$ $+c_{\phi}H^2|\phi|^2-c_NH^2| ilde{N}|^2$ Hubble-induced SUSY breaking mass term $+ \left| \left(\frac{bH}{2} M_N \tilde{N}^2 + \frac{a_y y_\nu}{2} H \phi^2 \tilde{N} + \frac{a_\lambda \lambda}{4M_{\rm Pl}} H \tilde{N}^4 \right) + h.c. \right|$ Hubble-induced SUSY breaki $+V_{\rm th}(\phi)$ thermal-mass correction $\sqrt{}$ A- and B-term $* c_{\phi} \sim 1 > 0, \ c_N \sim 1 > 0, \ |a| \sim 1, \ |b| \sim 1$

* after inflation, rapid oscillation of inflaton $~\langle a,b-{
m term}
angle \propto \langle I
angle = 0$

$$\phi$$
: LH_u direction $L = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi \\ 0 \end{pmatrix}$, $H_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \phi \end{pmatrix}$ \tilde{N} : RH-sneutrino

 ϕ : fixed at the origin due to large effective mass $m_{
m eff} \sim y_
u M_{
m GUT}$

 ϕ : fixed at the origin due to large effective mass $m_{
m eff} \sim y_{
m u} M_{
m GUT}$

(1) during inflation: $H = H_{inf} > M_N$

$$|V_{\tilde{N}} \sim -c_N H^2 |\tilde{N}|^2 + \left(\frac{bH}{2}M_N \tilde{N}^2 + h.c.\right) + D - \text{term}$$

- due to balance between Hubble-induced mass and D-term, $|\tilde{N}| \sim M_{\rm GUT}$
- phase-direction is assumed to be trapped at the minimum of B-term contribution

$$V_{\phi} \simeq c_{\phi} H^2 |\phi|^2 + y_{\nu}^2 |\tilde{N}|^2 |\phi|^2$$

+ ϕ is trapped at the origin

(2) after inflation: $H < M_N$

 $|\tilde{N}|$

* in general, Hubble-induced A- and B-terms are effective only during inflation

$$V_{\tilde{N}} \simeq M_N^2 |\tilde{N}|^2 + \left(\frac{\lambda M_N}{M_{\rm Pl}} \tilde{N} \tilde{N}^{*3} + h.c.\right)$$

- + $ilde{N}$ oscillates with $| ilde{N}| \propto H$
- cross term in F-term contribution serves as a source of asymmetry
- displacement between B-term and cross term gives CP -violation

$$V_{\phi} \simeq c_{\phi} H^2 |\phi|^2 + y_{\nu}^2 |\tilde{N}|^2 |\phi|^2 + \left(\frac{y_{\nu}}{2} M_N \phi^2 \tilde{N}^* + h.c.\right)$$

- ϕ
- + ϕ is trapped at the origin

3 destabilization: * Allahverdi & Drees did not consider this process

$$V_{\tilde{N}} \simeq M_N^2 |\tilde{N}|^2 + \left(\frac{\lambda M_N}{M_{\rm Pl}} \tilde{N} \tilde{N}^{*3} + h.c.\right)$$

• after
$$|\tilde{N}|$$
 and H decrease sufficiently,

$$y_{\nu}M_N|\tilde{N}| \sim y_{\nu}^2|\tilde{N}|^2 + c_{\phi}H^2$$

$$V_{\phi} \simeq y_{\nu}^{2} |\tilde{N}|^{2} |\phi|^{2} + \left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*} + h.c.\right) + y_{\nu}^{2} |\phi|^{4} / 4$$

 ϕ

- two minima appear in opposite directions minimize the cross term
- these two minima are determined by $ilde{N}$

(4) after destabilization: $H < M_N, \ y_{\nu}M_N |\tilde{N}| > y_{\nu}^2 |\tilde{N}|^2 + c_{\phi}H^2$

$$V_{\tilde{N}} \simeq M_N^2 |\tilde{N}|^2 + y_{\nu}^2 |\tilde{N}|^2 |\phi|^2 + \left(\frac{y_{\nu}}{2} M_N \phi^2 \tilde{N}^* + h.c.\right)$$

- N oscillates around the minimum determined by rotating ϕ

$$V_{\phi} \simeq y_{\nu}^{2} |\tilde{N}|^{2} |\phi|^{2} + \left(\frac{y_{\nu}}{2} M_{N} \phi^{2} \tilde{N}^{*} + h.c.\right) + y_{\nu}^{2} |\phi|^{4} / 4$$

- + ϕ oscillates around one of minima determined by the cross term
- to which minima ϕ falls is determined by quantum fluctuation

$${\buildrel 5}$$
 after decay of ${\basel{N}}: H < \Gamma_{{\basel{N}}} = y_{
u}^2 M_N/(4\pi)$

3. Evolution of scalar fields: numerical result

evolution of scalar fields (numerical calculation)

4. Evolution of asymmetry: numerical result

evolution of asymmetry (numerical calculation)

I lepton asymmetry is directly transfered to LH_u -direction

4. Evolution of asymmetry: homogeneity of $sgn(L_{\phi})$

• L_{ϕ} vanishes on an average over the universe?

→ because $L_{\tilde{N}}$ is homogeneous, final L_{ϕ} averaged over the fluctuation is non-vanishing

 L_{ϕ} and $L_{ ilde{N}}$ oscillate rapidly, but conserving $L_{\phi}-L_{ ilde{N}}$

N

center of the oscillation of L_{ϕ} is determined by homogeneous $L_{\tilde{N}}$ at the destabilization

stpotential minima of ϕ is determined by homogeneous $ilde{N}$

the direction of the rotation of these minima is one definite direction all over the universe

*Hubble radius at destabilization epoch: typically $k^{-1} \sim \mathcal{O}(10) \mathrm{km}$

5. Constraints on this scenario

gravitino problem

reheating temperature must be sufficiently low:

 $T_R < 10^{6-9} \mathrm{GeV}$

• in (2), \tilde{N} must not be trapped at the minima of F-term contribution $V_{N,F_{NR}} = M_N^2 |\tilde{N}|^2 - \frac{2\lambda M_N}{M_{\text{Pl}}} |\tilde{N}|^4 + \frac{\lambda^2}{M_{\text{Pl}}^2} |\tilde{N}|^6$

 $M/\lambda > M_{\rm GUT}^2/M_{\rm Pl}$

positive thermal-mass can prevent the destabilization

reheating temperature must be sufficiently low:

$$T_R < 6.5 \times 10^6 \text{GeV} \times \left(\frac{g_*}{100}\right)^{\frac{1}{4}} \left(\frac{m_{\nu}}{0.01 \text{eV}}\right)^{\frac{1}{4}} \left(\frac{M_N}{10^9 \text{GeV}}\right)^{\frac{5}{4}}$$

*thermal bath from partial decay of inflaton $T \sim (HT_R^2 M_{\rm Pl})^{\frac{1}{4}}$

I baryon isocurvature perturbation

 \rightarrow isocurvature perturbation of $\theta_{\tilde{N}} \longrightarrow$ baryon isocurvature perturbation

$$B_a = \sqrt{\frac{\mathcal{P}_S}{\mathcal{P}_R}} < 0.31 \longrightarrow M_N < H_{inf} < 3 \times 10^{12} \text{GeV}$$

*if the phase minimum is displaced from the minimum of B-term during the inflation, this constraint can be avoided O. Resultant baryon asymmetry: constraint on parameters

parameter region which give $n_B/s > 8.7 \times 10^{-11}$ (shaded region) 10¹⁰ destabilization of ϕ is prevented above this lines 10⁹ 10⁸ $m_{\nu} = 10^{-4} \text{eV}$ $=10^{-2}$ 10^{7} T_R [GeV λ : coefficient of non-10⁶ renormalizable term $m_{\nu} = \frac{y_{\nu}^2 v^2}{M_N}$ 10⁵ 10⁴ left side of this line is excluded by the condition 10^{3} $M/\lambda > M_{\rm GUT}^2/M_{\rm Pl}$ 10^{2} 10⁹ 10¹⁰ 10¹¹ 10^{12} 10^{8} 10¹³ $M_N \, [\text{GeV}]$ analytically, $\frac{n_B}{s} \sim 8.7 \times 10^{-11} \times \left(\frac{\lambda}{10^{-4}}\right) \left(\frac{M_{\rm GUT}}{10^{16} {\rm GeV}}\right)^4 \left(\frac{M_N}{10^{11} {\rm GeV}}\right)^{-2} \left(\frac{T_R}{6 \times 10^6 {\rm GeV}}\right)$

O. Resultant baryon asymmetry: constraint on parameters

parameter region which give $n_B/s > 8.7 \times 10^{-11}$ (shaded region) 10¹⁰ destabilization of ϕ is prevented above this lines 10⁹ 10⁸ $m_{\nu} = 10^{-4} \text{eV}$ 10^{7} T_R [GeV λ : coefficient of non- $\lambda = 10^{-3}$ 10⁶ renormalizable term $m_{\nu} = \frac{y_{\nu}^2 v^2}{M_N}$ 10⁵ 10⁴ left side of this line is excluded by the condition 10^{3} $M/\lambda > M_{\rm GUT}^2/M_{\rm Pl}$ 10^{2} 10¹⁰ 10⁹ 10¹² 10¹¹ 10^{8} 10¹³ $M_N \, [\text{GeV}]$ analytically, $\frac{n_B}{s} \sim 8.7 \times 10^{-11} \times \left(\frac{\lambda}{10^{-4}}\right) \left(\frac{M_{\rm GUT}}{10^{16} {\rm GeV}}\right)^4 \left(\frac{M_N}{10^{11} {\rm GeV}}\right)^{-2} \left(\frac{T_R}{6 \times 10^6 {\rm GeV}}\right)$

6. Resultant baryon asymmetry: constraint on parameters

parameter region which give $n_B/s > 8.7 \times 10^{-11}$ (shaded region) 10¹⁰ destabilization of ϕ is prevented above this lines 10⁹ 10⁸ $m_{\nu} = 10^{-4} \text{eV}$ 10^{7} T_R [GeV λ : coefficient of non- $\lambda = 10^{-4}$ 10⁶ renormalizable term $m_{\nu} = \frac{y_{\nu}^2 v^2}{M_N}$ 10⁵ 10⁴ left side of this line is excluded by the condition 10^{3} $M/\lambda > M_{\rm GUT}^2/M_{\rm Pl}$ 10^{2} 10¹⁰ 10¹¹ 10¹² 10⁹ 10^{8} 10¹³ $M_N \, [\text{GeV}]$ analytically, $\frac{n_B}{s} \sim 8.7 \times 10^{-11} \times \left(\frac{\lambda}{10^{-4}}\right) \left(\frac{M_{\rm GUT}}{10^{16} {\rm GeV}}\right)^4 \left(\frac{M_N}{10^{11} {\rm GeV}}\right)^{-2} \left(\frac{T_R}{6 \times 10^6 {\rm GeV}}\right)$

O. Resultant baryon asymmetry: constraint on parameters

parameter region which give $n_B/s > 8.7 \times 10^{-11}$ (shaded region) 10¹⁰ destabilization of ϕ is prevented above this lines 10⁹ $m_{\nu} = 10^{-4} \mathrm{eV}$ 10⁸ 10^{7} T_R [GeV λ : coefficient of non-10⁶ renormalizable term $m_{\nu} = \frac{y_{\nu}^2 v^2}{M_N}$ 10⁵ $\lambda = 10^{-5}$ 10⁴ left side of this line is excluded by the condition 10³ $M/\lambda > M_{\rm GUT}^2/M_{\rm Pl}$ 10^{2} 10¹⁰ 10¹² 10⁹ 10¹¹ 10^{8} 10¹³ $M_N \, [\text{GeV}]$ analytically, $\frac{n_B}{s} \sim 8.7 \times 10^{-11} \times \left(\frac{\lambda}{10^{-4}}\right) \left(\frac{M_{\rm GUT}}{10^{16} {\rm GeV}}\right)^4 \left(\frac{M_N}{10^{11} {\rm GeV}}\right)^{-2} \left(\frac{T_R}{6 \times 10^6 {\rm GeV}}\right)$

7. Summary

we reconsidered Affleck-Dine leptogenesis in SUSY seesaw model

• LH_u -flat direction is relevant even if it has positive Hubble-induced mass term

charge asymmetry is generated in \tilde{N} condensate, then directly transferred to LH_u -flat direction

sufficient baryon asymmetry can be generated

** only the initial evolution of \tilde{N} determines the final baryon asymmetry ** small λ is desirable for this scenario