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１Introduction

・
-direction and RH-sneutrinoLHu

・Leptogenesis via Affleck-Dine mechanism:

  an alternative to thermal leptogenesis in SUSY

Ñ  only (Allahverdi & Drees, PRD69(2004)103522) 

multiscalar



Standard Model (SM) + Heavy right-handed Majorana neutrino

１. Introduction

possible solution of two unsolved problem of SM

1)

Majorana mass: Dirac mass:

lighter mass eigenvalue ∼ m2

M

mL̄νRM ν̄RνR νR : right-handed neutrino

Origin of small neutrino mass 

2) Origin of baryon asymmetry

baryon-to-entropy ratio:

mν ! O(0.1)eV

seesaw mechanism

nB

s
= (8.74± 0.23)× 10−11 (WMAP)



・　　-flat direction

１. Introduction

・sufficient baryon asymmetry requires

in SUSY, gravitino is overproduced unless

alternatives？

Affleck-Dine leptogenesis from right-handed sneutrino

TR > M > 109GeV

LHu -flat direction has large vev 

LHu -flat direction has vanishing vev 






LHu

many non-thermal leptogenesis scenarios are considered...

AD mechanism in multiscalar evolution (Senami & Yamamoto, 2003)

       - flat direction is irrelevant? (Allahverdi & Drees, 2004)LHu

L =
1√
2

(
φ
0

)
, Hu =

1√
2

(
0
φ

)

thermal leptogenesis

TR < 106−9GeV



１. Introduction: Affleck-Dine mechanism

complex scalar field     with baryon (or lepton) numberφ 1
total baryon (or lepton) number in homogeneous condensate of φ

“angular momentum” of φ baryon (lepton) number

rotational motion after inflation

Re(φ)

Im(φ) baryon (lepton) number
in    condensateφ

- (    -) conserving decayB L

baryon (lepton) number
in SM particles

n = nφ − n̄φ = i(φ̇∗φ− φ∗φ̇) = 2|φ|2θ̇ φ = |φ|eiθ



１. Introduction

due to interaction with    ,　　 -flat direction gets large value!

Allahverdi & Drees’s scenario (brief review)

assumption:        -direction does not contribute (always             )〈φ〉 = 0LHu

LHuÑ

tuning                      is needed (decay at maximum)

・asymmetry is oscillating: nÑ − nÑ∗ " t−2M−1
N N2

0 sin(2Bm3/2t)δeff

|B|m3/2 ! ΓÑ

V (Ñ) = m2
0|Ñ |2 + CIH

2|Ñ |2 + (Bm3/2Ñ
2 + h.c.) + (bHÑ2 + h.c.)

tree level: ΓÑ→HuL̃ = Γ
Ñ→ ¯̃HuL̄

Ñ

L̃

L̄

∆L = +1 ∆L = −1bosonic, fermionic,

same Γ

total L = 0

・asymmetry                is produced via Affleck-Dine mechanism   nÑ − nÑ∗

・                             SM sector lepton numbernÑ − nÑ∗
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|B|m3/2 ! ΓÑ

V (Ñ) = m2
0|Ñ |2 + CIH

2|Ñ |2 + (Bm3/2Ñ
2 + h.c.) + (bHÑ2 + h.c.)

・                             SM sector lepton numbernÑ − nÑ∗

Ñ

L̃

L̄

SUSY-breaking from thermal effect

Pauli blocking and stimulated emisson

ΓÑ→HuL̃ != Γ
Ñ→ ¯̃HuL̄

∆L = +1 ∆L = −1bosonic, fermionic,

Γ∆L=+1 != Γ∆L=−1

total L != 0



２. Set-up２. Set-up of the model: scalar potential

+Vth(φ)

cross term
in F-term

Hubble-induced SUSY breaking mass term

thermal-mass correction

cφ ∼ 1 > 0, cN ∼ 1 > 0※ , |a| ∼ 1, |b| ∼ 1

V (φ, Ñ) =
y2

ν

4
|φ|4 + MN |Ñ |2 + y2

ν |φ|2|Ñ |2 +
λ2

M2
Pl

|Ñ |6

+
[(

yν

2
MNφ2Ñ∗ +

yνλ

2MPl
φ2Ñ∗3 +

λMN

MPl
ÑÑ∗3

)
+ h.c.

]
F-term

+cφH2|φ|2 − cNH2|Ñ |2

+
[(

bH

2
MN Ñ2 +

ayyν

2
Hφ2Ñ +

aλλ

4MPl
HÑ4

)
+ h.c.

]

Hubble-induced SUSY breaking
A- and B-term

：　　  directionφ Ñ：RH-sneutrino

superpotential: W = WMSSM + yνNLHu +
MN

2
N2 +

λ

4MPl
N4

L =
1√
2

(
φ
0

)
, Hu =

1√
2

(
0
φ

)
LHu

source of CP-violation

※ after inflation, rapid oscillation of inflaton 〈a, b− term〉 ∝ 〈I〉 = 0



２. Set-up of the model: initial conditions

Ñ : displaced from the origin

・radial direction:

: fixed at the origin due to large effective massφ meff ∼ yνMGUT

during the inflation, H !MN

・phase direction :
trapped at B-term minima

F-term

F-term
+Hubble

※　　　　　　　　　 is assumed                                     

|Ñ |

NR F-term can not be 
used to trap Ñini

|Ñini| = MGUT

(Hubble-induced mass and D-term)

M/λ > M2
GUT/MPl

(avoid wrong vacuum)                                    
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Ñ : displaced from the origin

・radial direction:

: fixed at the origin due to large effective massφ meff ∼ yνMGUT

during the inflation, H !MN

・phase direction :
trapped at B-term minima

F-term

F-term
+Hubble

MGUT

MGUT = 1016GeV※hereafter,
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① during inflation:

phase-direction is assumed to be trapped 
at the minimum of B-term contribution

    is trapped at the origin

３. Evolution of scalar fields

due to balance between 
Hubble-induced mass and D-term,

H = Hinf > MN

・

・

|Ñ | ∼MGUT

・

VÑ ∼ −cNH2|Ñ |2 +
(

bH

2
MN Ñ2 + h.c.

)
+ D−term

Ñ

φ φ

Vφ ! cφH2|φ|2 + y2
ν |Ñ |2|φ|2



３. Evolution of scalar fields

Ñ

φ

VÑ !M2
N |Ñ |2 +

(
λMN

MPl
ÑÑ∗3 + h.c.

)
② after inflation: H < MN

Vφ ! cφH2|φ|2 + y2
ν |Ñ |2|φ|2 +

(yν

2
MNφ2Ñ∗ + h.c.

)

・     oscillates withÑ |Ñ | ∝ H

・ cross term in F-term contribution 
serves as a source of asymmetry

in general, Hubble-induced A- and B-terms
are effective only during inflation

※

・ displacement between B-term and
cross term gives        -violationCP

    is trapped at the origin・ φ



３. Evolution of scalar fields

・

・

Ñ

φ

VÑ !M2
N |Ñ |2 +

(
λMN

MPl
ÑÑ∗3 + h.c.

)
③ destabilization:

two minima appear in opposite directions
minimize the cross term

after      and     decrease sufficiently,|Ñ | H

・
position of these minima rotate together
with the rotation of     

these two minima are determined by Ñ

Ñ

Allahverdi & Drees did not consider this process※

yνMN |Ñ | ∼ y2
ν |Ñ |2 + cφH2

Vφ ! y2
ν |Ñ |2|φ|2 +

(yν

2
MNφ2Ñ∗ + h.c.

)
+ y2

ν |φ|4/4



３. Evolution of scalar fields

・

・

Ñ

φ

④ after destabilization: H < MN , yνMN |Ñ | > y2
ν |Ñ |2 + cφH2

VÑ !M2
N |Ñ |2 + y2

ν |Ñ |2|φ|2 +
(yν

2
MNφ2Ñ∗ + h.c.

)

    oscillates around the minimum
determined by rotating     
Ñ

φ

    oscillates around one of minima
determined by the cross term
φ

・ to which minima     falls is determined by 
quantum fluctuation

φ

Vφ ! y2
ν |Ñ |2|φ|2 +

(yν

2
MNφ2Ñ∗ + h.c.

)
+ y2

ν |φ|4/4



３. Evolution of scalar fields

・

・

Ñ

φ

⑤ after decay of 　 :

（friction term dominates the evolution of 　 ）Ñ

Ñ H < ΓÑ = y2
νMN/(4π)

after the condensate of     decays,
    is fixed at the minima    

Ñ
Ñ

Vφ,eff !
y4

ν

4
|φ|6

M2
N

+ Vth(φ)

φ    oscillates around the origin

・ the direction of rotation is determined by
the rotation of      at ②Ñ



３. Evolution of scalar fields: numerical result
evolution of scalar fields (numerical calculation)
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]
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H [GeV]
MN = 1011GeV, yν = 10−1, TR = 2× 106GeV
cφ = cN = 1,λ = 10−4



４. Evolution of asymmetry: numerical result

as
ym

m
et

ry
evolution of asymmetry (numerical calculation)

H [GeV]
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|Lφ − LÑ |
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|Lφ|
s′

|LÑ |
s′

① ② ③ ④ ⑤

lepton asymmetry is directly transfered to         -directionLHu



because      is homogeneous, 
final      averaged over the fluctuation is non-vanishing

４. Evolution of asymmetry: homogeneity of 

     vanishes on an average over the universe?Lφ

     and      oscillate rapidly, but conserving LÑLφ Lφ − LÑ

center of the oscillation of      is determined by
homogeneous       at the destabilization

※potential minima of     is determined by homogeneous φ Ñ

the direction of the rotation of these minima is one definite direction
all over the universe

LÑ

Lφ

sgn(Lφ)

Lφ

LÑ

Ñ φ

※Hubble radius at destabilization epoch: typically k−1 ∼ O(10)km



５. Constraints on this scenario

gravitino problem

reheating temperature must be sufficiently low:

TR < 106−9GeV

in ②,      must not be trapped at the minima of F-term contribution                                         

VN,FNR = M2
N |Ñ |2 − 2λMN

MPl
|Ñ |4 +

λ2

M2
Pl

|Ñ |6

Ñ

M/λ > M2
GUT/MPl



isocurvature perturbation of 

５. Constraints on this scenario

baryon isocurvature perturbation

Ba =
√
PS
PR

< 0.31

※if the phase minimum is displaced from the minimum of B-term 
　during the inflation, this constraint can be avoided

positive thermal-mass can prevent the destabilization

reheating temperature must be sufficiently low:

TR < 6.5× 106GeV ×
( g∗

100

) 1
4

( mν

0.01eV

) 1
4

(
MN

109GeV

) 5
4

MN < Hinf < 3× 1012GeV

θÑ baryon isocurvature perturbation

※thermal bath from partial decay of inflaton T ∼ (HT 2
RMPl)

1
4



parameter region which give                                  (shaded region)
６. Resultant baryon asymmetry: constraint on parameters
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６. Resultant baryon asymmetry: constraint on parameters
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６. Resultant baryon asymmetry: constraint on parameters
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７. Summary

we reconsidered Affleck-Dine leptogenesis in SUSY seesaw model

       -flat direction is relevant even if it has positive Hubble-induced mass termLHu

charge asymmetry is generated in     condensate, 
then directly transfered to        -flat direction

Ñ
LHu

sufficient baryon asymmetry can be generated

※small    is desirable for this scenarioλ

※only the initial evolution of     determines the final baryon asymmetryÑ


