Gravity and the cosmological constant as superconducting phenomena

Gianluca Calcagni

August 28th, 2008

Based on

(1) S. Alexander, G.C., Superconducting loop quantum gravity and the cosmological constant [0806.4382].
(2) S. Alexander, G.C., Quantum gravity as a Fermi liquid [0807.0225].

Aims of the talk

Aims of the talk

- To throw a rock.

Aims of the talk

- To throw a rock.
- Not to hide the hand.

The rock

The rock

- Setup: Loop quantum gravity with Λ, no matter, and the Chern-Simons state as ground state.

The rock

- Setup: Loop quantum gravity with Λ, no matter, and the Chern-Simons state as ground state.
- Assumption: Deform the topological sector (then Λ becomes dynamical).

The rock

- Setup: Loop quantum gravity with Λ, no matter, and the Chern-Simons state as ground state.
- Assumption: Deform the topological sector (then Λ becomes dynamical).
- Result 1: spacetime degenerate ($1+1$ dimensions), Hamiltonian modified by a quantum counterterm.

The rock

- Setup: Loop quantum gravity with Λ, no matter, and the Chern-Simons state as ground state.
- Assumption: Deform the topological sector (then Λ becomes dynamical).
- Result 1: spacetime degenerate ($1+1$ dimensions), Hamiltonian modified by a quantum counterterm.
- Result 2: Gravity behaves as a Fermi liquid, in particular BCS.

BCS theory

BCS theory

Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

BCS theory

Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957). Nobel Prize in 1972 (Bardeen's second!).

BCS theory

Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957). Nobel Prize in 1972 (Bardeen's second!).

BCS theory

Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957). Nobel Prize in 1972 (Bardeen's second!).

1958-1971: 1 Nobel Prize for studies on condensed matter (Landau).

BCS theory

Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957). Nobel Prize in 1972 (Bardeen's second!).

1958-1971: 1 Nobel Prize for studies on condensed matter (Landau). 1973-2007: 10 Prizes awarded in this field.

The ripples (to be explored)

The ripples (to be explored)

(1) Λ is exponentially suppressed, nonperturbative phenomenon; at small scales gravity is perturbative, like in QCD confinement.

The ripples (to be explored)

(1) Λ is exponentially suppressed, nonperturbative phenomenon; at small scales gravity is perturbative, like in QCD confinement.
(2) Geometrical measurements amount to counting Cooper pairs.

The ripples (to be explored)

(1) Λ is exponentially suppressed, nonperturbative phenomenon; at small scales gravity is perturbative, like in QCD confinement.
(2) Geometrical measurements amount to counting Cooper pairs.
(3) Classically, Cooper pairs are microscopic nonlocal d.o.f. living on the dS boundary (wormholes).

The ripples (to be explored)

(1) Λ is exponentially suppressed, nonperturbative phenomenon; at small scales gravity is perturbative, like in QCD confinement.
(2) Geometrical measurements amount to counting Cooper pairs.
(3) Classically, Cooper pairs are microscopic nonlocal d.o.f. living on the dS boundary (wormholes).
(4) Four dimensions recovered by the spin network defined by the superfluid theory.

The ripples (to be explored)

(1) Λ is exponentially suppressed, nonperturbative phenomenon; at small scales gravity is perturbative, like in QCD confinement.
(2) Geometrical measurements amount to counting Cooper pairs.
(3) Classically, Cooper pairs are microscopic nonlocal d.o.f. living on the dS boundary (wormholes).
(4) Four dimensions recovered by the spin network defined by the superfluid theory.
(5) Matter is 'hidden' in gravity?

Nonlocal degrees of freedom on dS horizons

The hand: 1. Loop quantum gravity

The hand: 1. Loop quantum gravity

- Ashtekar variables: connection \mathbb{C}-field $A \equiv A_{\alpha}^{i} \tau_{i} d x^{\alpha}$ and real triad E_{α}^{i}.

The hand: 1. Loop quantum gravity

- Ashtekar variables: connection \mathbb{C}-field $A \equiv A_{\alpha}^{i} \tau_{i} d x^{\alpha}$ and real triad E_{α}^{i}.
- Scalar, vector, and Gauss constraints:

$$
\begin{aligned}
\mathcal{H} & =\epsilon_{i j k} E^{i} \cdot E^{j} \times\left(B^{k}+\frac{\Lambda}{3} E^{k}\right)=0 \\
\mathcal{V}_{\alpha} & =\left(E_{i} \times B^{i}\right)_{\alpha}=0, \mathcal{G}_{i}=D_{\alpha} E_{i}^{\alpha}=0
\end{aligned}
$$

The hand: 1. Loop quantum gravity

- Ashtekar variables: connection \mathbb{C}-field $A \equiv A_{\alpha}^{i} \tau_{i} d x^{\alpha}$ and real triad E_{α}^{i}.
- Scalar, vector, and Gauss constraints:

$$
\begin{aligned}
\mathcal{H} & =\epsilon_{i j k} E^{i} \cdot E^{j} \times\left(B^{k}+\frac{\Lambda}{3} E^{k}\right)=0 \\
\mathcal{V}_{\alpha} & =\left(E_{i} \times B^{i}\right)_{\alpha}=0, \mathcal{G}_{i}=D_{\alpha} E_{i}^{\alpha}=0
\end{aligned}
$$

- Quantum theory: $E \rightarrow \hat{E}_{i}^{\alpha}=-\delta / \delta A_{\alpha}^{i}, \hat{A}_{\alpha}^{i}$ multiplicative.

The hand: 1. Loop quantum gravity

- Ashtekar variables: connection \mathbb{C}-field $A \equiv A_{\alpha}^{i} \tau_{i} d x^{\alpha}$ and real triad E_{α}^{i}.
- Scalar, vector, and Gauss constraints:

$$
\begin{aligned}
\mathcal{H} & =\epsilon_{i j k} E^{i} \cdot E^{j} \times\left(B^{k}+\frac{\Lambda}{3} E^{k}\right)=0 \\
\mathcal{V}_{\alpha} & =\left(E_{i} \times B^{i}\right)_{\alpha}=0, \mathcal{G}_{i}=D_{\alpha} E_{i}^{\alpha}=0
\end{aligned}
$$

- Quantum theory: $E \rightarrow \hat{E}_{i}^{\alpha}=-\delta / \delta A_{\alpha}^{i}, \hat{A}_{\alpha}^{i}$ multiplicative.

Constraints annihilated by the Chern-Simons state

$$
\Psi_{\mathrm{CS}}=\exp \left[\frac{i \theta}{8 \pi^{2}} \int_{S^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right], \quad \theta \equiv \frac{6 \pi^{2}}{i \Lambda}
$$

The hand: 1. Loop quantum gravity

- Ashtekar variables: connection \mathbb{C}-field $A \equiv A_{\alpha}^{i} \tau_{i} d x^{\alpha}$ and real triad E_{α}^{i}.
- Scalar, vector, and Gauss constraints:

$$
\begin{aligned}
\mathcal{H} & =\epsilon_{i j k} E^{i} \cdot E^{j} \times\left(B^{k}+\frac{\Lambda}{3} E^{k}\right)=0 \\
\mathcal{V}_{\alpha} & =\left(E_{i} \times B^{i}\right)_{\alpha}=0, \mathcal{G}_{i}=D_{\alpha} E_{i}^{\alpha}=0
\end{aligned}
$$

- Quantum theory: $E \rightarrow \hat{E}_{i}^{\alpha}=-\delta / \delta A_{\alpha}^{i}, \hat{A}_{\alpha}^{i}$ multiplicative. Constraints annihilated by the Chern-Simons state

$$
\Psi_{\mathrm{CS}}=\exp \left[\frac{i \theta}{8 \pi^{2}} \int_{S^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right], \quad \theta \equiv \frac{6 \pi^{2}}{i \Lambda}
$$

- Different sectors of Euclidean gravity $(\theta \rightarrow i \theta)$ connected by large gauge transformations.

The hand: 2. Deformation of θ

The hand: 2. Deformation of θ

- We deform the topological sector as

$$
\theta \rightarrow \theta(A),
$$

The hand: 2. Deformation of θ

- We deform the topological sector as

$$
\theta \rightarrow \theta(A),
$$

thus breaking large-gauge $U(1)$ invariance (analogy with Peccei-Quinn invariance in QCD).

The hand: 2. Deformation of θ

- We deform the topological sector as

$$
\theta \rightarrow \theta(A),
$$

thus breaking large-gauge $U(1)$ invariance (analogy with Peccei-Quinn invariance in QCD). Λ is promoted to an evolving functional $\Lambda(A)$.

The hand: 2. Deformation of θ

- We deform the topological sector as

$$
\theta \rightarrow \theta(A),
$$

thus breaking large-gauge $U(1)$ invariance (analogy with Peccei-Quinn invariance in QCD). Λ is promoted to an evolving functional $\Lambda(A)$.

- No matter introduced by hand!

The hand: 2. Deformation of θ

- We deform the topological sector as

$$
\theta \rightarrow \theta(A),
$$

thus breaking large-gauge $U(1)$ invariance (analogy with Peccei-Quinn invariance in QCD). Λ is promoted to an evolving functional $\Lambda(A)$.

- No matter introduced by hand!
- The only sectors compatible with this step and the Gauss constraint are degenerate: $\operatorname{det} E=0$, no metric!

The hand: 3. Jacobson sector (rk $E=1$)

The hand: 3. Jacobson sector (rk $E=1$)

E.o.m. for A can be written as the $(1+1)$-dimensional Dirac equation $\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi=0$

The hand: 3. Jacobson sector (rk $E=1$)

E.o.m. for A can be written as the $(1+1)$-dimensional Dirac equation $\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi=0$, where

$$
\psi \equiv\left(\begin{array}{c}
i A_{1}^{1} \\
A_{2}^{1} \\
A_{1}^{2} \\
i A_{2}^{2}
\end{array}\right) .
$$

The hand: 3. Jacobson sector (rk $E=1$)

E.o.m. for A can be written as the $(1+1)$-dimensional Dirac equation $\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi=0$, where

$$
\psi \equiv\left(\begin{array}{c}
i A_{1}^{1} \\
A_{2}^{1} \\
A_{1}^{2} \\
i A_{2}^{2}
\end{array}\right)
$$

The hand: 3. Jacobson sector (rk $E=1$)

E.o.m. for A can be written as the $(1+1)$-dimensional Dirac equation $\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi=0$, where

$$
\psi \equiv\left(\begin{array}{c}
i A_{1}^{1} \\
A_{2}^{1} \\
A_{1}^{2} \\
i A_{2}^{2}
\end{array}\right)
$$

A model for V interactions and physical interpretation naturally emerge at quantum level.

The hand: 4. Suppression of Λ

The hand: 4. Suppression of Λ

- A quantum counterterm in \mathcal{H} modifies the e.o.m. for A as

$$
\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi+i m \psi=0
$$

The hand: 4. Suppression of Λ

- A quantum counterterm in \mathcal{H} modifies the e.o.m. for A as

$$
\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi+i m \psi=0
$$

- Mass term $m=-2 i \bar{\psi} \gamma^{5} \partial_{z} \psi$.

The hand: 4. Suppression of Λ

- A quantum counterterm in \mathcal{H} modifies the e.o.m. for A as

$$
\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi+i m \psi=0
$$

- Mass term $m=-2 i \bar{\psi} \gamma^{5} \partial_{z} \psi$.
- The simplest nonperturbative solution requires

$$
\Lambda=\Lambda_{0} \exp \left(-\bar{\psi} \gamma^{5} \gamma^{z} \psi\right)
$$

The hand: 4. Suppression of Λ

- A quantum counterterm in \mathcal{H} modifies the e.o.m. for A as

$$
\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi+i m \psi=0
$$

- Mass term $m=-2 i \bar{\psi} \gamma^{5} \partial_{z} \psi$.
- The simplest nonperturbative solution requires

$$
\Lambda=\Lambda_{0} \exp \left(-\bar{\psi} \gamma^{5} \gamma^{z} \psi\right)
$$

- $j^{5 \alpha}$ associated with a chiral transformation of the fermion ψ and not conserved in the presence of m.

The hand: 4. Suppression of Λ

- A quantum counterterm in \mathcal{H} modifies the e.o.m. for A as

$$
\gamma^{0} \dot{\psi}+\gamma^{z} \partial_{z} \psi+i m \psi=0
$$

- Mass term $m=-2 i \bar{\psi} \gamma^{5} \partial_{z} \psi$.
- The simplest nonperturbative solution requires

$$
\Lambda=\Lambda_{0} \exp \left(-\bar{\psi} \gamma^{5} \gamma^{z} \psi\right)
$$

- $j^{5 \alpha}$ associated with a chiral transformation of the fermion ψ and not conserved in the presence of $m . P$ symmetry is broken.

5. The hand opens

5. The hand opens

- Perturbative regime

5. The hand opens

- Perturbative regime (small values of the connection)

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.
- Nonperturbative regime

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.
- Nonperturbative regime (large connection values)

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.
- Nonperturbative regime (large connection values): Condensate with v.e.v. $\left\langle j^{5 z\rangle} \sim O\left(10^{2}\right)\right.$.

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.
- Nonperturbative regime (large connection values): Condensate with v.e.v. $\left\langle j^{5 z}\right\rangle \sim O\left(10^{2}\right)$.
- Smallness of Λ regarded as a large-scale nonperturbative quantum mechanism similar to quark confinement.

5. The hand opens

- Perturbative regime (small values of the connection): $\left|\left\langle j^{5 z}\right\rangle\right| \ll 1,\langle\Lambda\rangle \approx \Lambda_{0}\left(1-\left\langle j^{5 z}\right\rangle\right)=O(1)$.
- Nonperturbative regime (large connection values): Condensate with v.e.v. $\left\langle j^{5 z}\right\rangle \sim O\left(10^{2}\right)$.
- Smallness of Λ regarded as a large-scale nonperturbative quantum mechanism similar to quark confinement.
- Quantizing ψ as a Majorana fermion,

$$
\mathcal{H} \propto \mathcal{H}_{\mathrm{BCS}}=\sum_{k, \sigma} \mathcal{E}_{k} c_{k \sigma}^{\dagger} c_{k \sigma}-\sum_{k, k^{\prime}} V_{k k^{\prime}} c_{k+}^{\dagger} c_{k-}^{\dagger} c_{k^{\prime}-} c_{k^{\prime}+}
$$

- Correspondence made rigorous using a deformed CFT (WZW model at critical level).

