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The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



The ripples (to be explored)

1 Λ is exponentially suppressed, nonperturbative
phenomenon; at small scales gravity is perturbative, like
in QCD confinement.

2 Geometrical measurements amount to counting Cooper
pairs.

3 Classically, Cooper pairs are microscopic nonlocal d.o.f.
living on the dS boundary (wormholes).

4 Four dimensions recovered by the spin network defined by
the superfluid theory.

5 Matter is ‘hidden’ in gravity?



Nonlocal degrees of freedom on dS horizons



The hand: 1. Loop quantum gravity

Ashtekar variables: connection C-field A ≡ Ai
ατidxα and

real triad Ei
α.

Scalar, vector, and Gauss constraints:

H = εijkEi · Ej ×
(

Bk +
Λ
3

Ek
)

= 0,

Vα = (Ei × Bi)α = 0 ,Gi = DαEα
i = 0.

Quantum theory: E → Êα
i = −δ/δAi

α, Âi
α multiplicative.

Constraints annihilated by the Chern–Simons state

ΨCS = exp
[

iθ
8π2

∫
S3

tr(A ∧ dA +
2
3

A ∧ A ∧ A)
]
, θ ≡ 6π2

iΛ
,

Different sectors of Euclidean gravity (θ → iθ) connected
by large gauge transformations.
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The hand: 2. Deformation of θ

We deform the topological sector as

θ → θ(A),

thus breaking large-gauge U(1) invariance (analogy with
Peccei–Quinn invariance in QCD). Λ is promoted to an
evolving functional Λ(A).
No matter introduced by hand!
The only sectors compatible with this step and the Gauss
constraint are degenerate: det E = 0, no metric!
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equation γ0ψ̇ + γz∂zψ = 0, where
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A model for V interactions and physical interpretation naturally
emerge at quantum level.
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The hand: 4. Suppression of Λ

A quantum counterterm in H modifies the e.o.m. for A as

γ0ψ̇ + γz∂zψ + imψ = 0.

Mass term m = −2iψ̄γ5∂zψ.
The simplest nonperturbative solution requires

Λ = Λ0 exp(−ψ̄γ5γzψ)

j5α associated with a chiral transformation of the fermion ψ
and not conserved in the presence of m. P symmetry is
broken.
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5. The hand opens

Perturbative regime (small values of the connection):
|〈j5z〉| � 1, 〈Λ〉 ≈ Λ0(1− 〈j5z〉) = O(1).
Nonperturbative regime (large connection values):
Condensate with v.e.v. 〈j5z〉 ∼ O(102).
Smallness of Λ regarded as a large-scale
nonperturbative quantum mechanism similar to quark
confinement.
Quantizing ψ as a Majorana fermion,

H ∝ HBCS =
∑
k,σ

Ekc†kσckσ −
∑
k,k′

Vkk′c†k+c†k−ck′−ck′+.

Correspondence made rigorous using a deformed CFT
(WZW model at critical level).
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