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Si=1



DEFINITIONS:
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Massless case: exact.

m=const case: approximate.

Scalar field is asymptotic to 

Minkowski vacuum at early times.
(No infrared cutoff frequency necessary.)

Cosmo 08, Madison, Wisconsin Matthew Glenz Thursday, August 28th, 2008

P.J. Epstein, Proc. Nat. Acad. Sciences (US) 16, 627 (1930).

C. Eckart, Phys. Rev. 35, 1303 (1930).

L. Parker, Nature 261, 20 (1976).



Cosmo 08, Madison, Wisconsin Matthew Glenz Thursday, August 28th, 2008

S=1

� Not present in
a(t) ~ c tx
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C2 Matching Conditions:
Leads to divergence-free energy density.

(No ultraviolet cutoff frequency necessary.)
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a1i=1 a2i=2 si=1
a1f=6 a2f=9



EARLY- AND  LATE-TIME 

VACUUMS ARE  RELATED 

BY A   BUGOLIUBOV 

TRANSFORMATION.
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L. Parker, The creation of particles by the expanding universe,

Ph.D. thesis, Harvard University (1966).
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Perturbations to inflaton field are 

taken to be quantum fluctuations.

Massless Boundary Conditions:



EVOLUTION

EQUATION
(Solutions matched in ψk(t) and ψk(t)’ at joining between scale factor segments.)

Cosmo 08, Madison, Wisconsin Matthew Glenz Thursday, August 28th, 2008



Solutions to Evolution Equation:
Hypergeometric functions in asymptotically flat segments of the scale factor. (massless case shown)
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Hankel functions in exponentially growing middle segment of the scale factor. (general case shown)
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Massless Case
Ne=60
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DISPERSION
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W = 10-26 a1

Massless Case

� From initial conditions.

(Initial Segment of a(t).)



Two Massive Approximations:
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1.3 x 1024

2.3 x 1022

2.2 x 104   

Ne=60
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Discontinuities in the scale factor affect the large-mode behavior of particle production.

For a parallel analysis of a harmonic oscillator, see

R.M. Kulsrud, Phys. Rev. 106, 205 (1957).
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Ne=60

Ln[a2f/a1f ] ~ 1
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Ne=60

� HOT

a2f ~ (1+10-4) a1f



Reheating from abrupt end to inflation: 
depends on parameters of final asymptotically 
flat segment of the scale factor with C2 matching.
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(With gradual transition, temperature of order T=H/2π.)
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