Dispersion Spectrum of Inflaton Perturbations Calculated Numerically with Reheating

Matthew Glenz

Research done with Leonard Parker, Supported by National Space Grant College and Fellowship Program and the Wisconsin Space Grant Consortium; and by the Lynde and Harry Bradley Foundation. Thursday, August 28th, 2008

DEFINITIONS:

$$ds^{2} = dt^{2} - a^{2}(t) \quad (dx^{2} + dy^{2} + dz^{2})$$

$$\hbar = c = 1 \qquad a_{infl}(t) \propto e^{H_{infl}t}$$

$$H(t) \equiv \frac{da(t)/dt}{a(t)} \qquad q_{2} \equiv \frac{k}{a_{final}H_{infl}}$$

$$m_{H} \equiv \frac{m}{H_{infl}} \qquad N_{e} \equiv \int H dt$$

Massless case: exact. m=const case: approximate.

Scalar field is asymptotic to Minkowski vacuum at early times. (No infrared cutoff frequency necessary.)

$$d\tau \equiv a(t)^{-3}dt$$

 $a(t(\tau)) = \left[a_1^{4} + e^{\tau/s}(a_2^{4} - a_1^{4})(e^{\tau/s} + 1)^{-1}\right]^{\frac{1}{4}}$

P.J. Epstein, *Proc. Nat. Acad. Sciences (US)* 16, 627 (1930).
C. Eckart, Phys. Rev. 35, 1303 (1930).
L. Parker, Nature 261, 20 (1976).

Cosmo 08, Madison, Wisconsin

$$\begin{split} & C^2 \text{ Matching Conditions:} \\ & \text{Leads to divergence-free energy density.} \\ & \text{(No ultraviolet cutoff frequency necessary.)} \\ & \tau_{\text{join}} = s \ln \left(\frac{3a_1^4 - 3a_2^4 + \sqrt{9a_1^8 + 46a_1^4a_2^4 + 9a_2^8}}{8a_2^4} \right) \\ & a(\tau_{\text{join}}) = \left(\frac{-3a_1^4 - 3a_2^4 + \sqrt{9a_1^8 + 46a_1^4a_2^4 + 9a_2^8}}{2} \right)^{1/4} \\ & \mathcal{H}_{\text{infl}} = \left[\frac{2^{3/4} \left(-a_1^4 + a_2^4 \right)}{a_2^4 \left(11a_1^4 - 3a_2^4 + \sqrt{9a_1^8 + 46a_1^4a_2^4 + 9a_2^8} \right)^{2/8}} \\ & \times \left(-3a_1^4 - 3a_2^4 + \sqrt{9a_1^8 + 46a_1^4a_2^4 + 9a_2^8} \right)^{1/4} \\ & \times \left(3a_1^4 - 3a_2^4 + \sqrt{9a_1^8 + 46a_1^4a_2^4 + 9a_2^8} \right) \end{split}$$

Cosmo 08, Madison, Wisconsin

EARLY- AND LATE-TIME VACUUMS ARE RELATED BY A BUGOLIUBOV TRANSFORMATION. $a_{\vec{k}} = \alpha_k A_{\vec{k}} + \beta_k^* A_{-\vec{k}}^{\dagger}$

L. Parker, *The creation of particles by the expanding universe*, Ph.D. thesis, Harvard University (1966).

 $\left\langle N_{\vec{k}} \right\rangle_{t \to \infty} = \left\langle 0 \right| a_{\vec{k}}^{\dagger} a_{\vec{k}} \left| 0 \right\rangle = \left| \beta_k \right|^2$

Cosmo 08, Madison, Wisconsin

Perturbations to inflaton field are taken to be quantum fluctuations.

$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$
$$\delta\phi = V^{-\frac{1}{2}} \sum_{\vec{k}} \left[A_{\vec{k}} \psi_k(t) e^{i\vec{k}\cdot\vec{x}} + \text{H.c.} \right]$$

Massless Boundary Conditions:

$$\lim_{\tau \to -\infty} \psi_k(\tau) \sim \frac{1}{\sqrt{2ka_{\text{init}}^2}} e^{-ika_{\text{init}}^2\tau}$$

$$\lim_{\tau \to \infty} \psi_k(\tau) \sim \frac{1}{\sqrt{2ka_{\text{end}}^2}} \left[\alpha_k e^{-ika_{\text{end}}^2\tau} + \beta_k e^{ika_{\text{end}}^2\tau} \right]$$

EVOLUTION EQUATION

(Solutions matched in $\psi_k(t)$ and $\psi_k(t)$ ' at joining between scale factor segments.)

$$\partial_t^2 \delta \phi + 3H \partial_t \delta \phi - a^{-2}(t) \sum_{i=1}^3 \partial_i^2 \delta \phi + m(\phi^{(0)})^2 \delta \phi = 0$$
$$m(\phi^{(0)})^2 = \frac{d^2 V}{d(\phi^{(0)})^2}$$

Solutions to Evolution Equation:

Hypergeometric functions in asymptotically flat segments of the scale factor. (massless case shown)

$$\psi_{k} = N_{1}e^{-ika_{1}^{2}\tau}F(-ika_{1}^{2}s+ika_{2}^{2}s, \\ -ika_{1}^{2}s-ika_{2}^{2}s; 1-2ika_{1}^{2}s; -e^{\frac{\tau}{s}}) \\ +N_{2}e^{ika_{1}^{2}\tau}F(ika_{1}^{2}s+ika_{2}^{2}s, \\ ika_{1}^{2}s-ika_{2}^{2}s; 1+2ika_{1}^{2}s; -e^{\frac{\tau}{s}})$$

Hankel functions in exponentially growing middle segment of the scale factor. (general case shown)

$$\psi_k(t) = a(t)^{-\frac{3}{2}} \left[E(k) H_{\sqrt{\frac{9}{4} - m_H^2}}^{(1)} \left(\frac{k}{a(t) H_{\text{infl}}} \right) + F(k) H_{\sqrt{\frac{9}{4} - m_H^2}}^{(2)} \left(\frac{k}{a(t) H_{\text{infl}}} \right) \right]$$

Cosmo 08, Madison, Wisconsin

$$\begin{array}{l} \langle \, | \, \delta \phi^2 \, | \, \rangle = \frac{1}{2(a_{2f}L)^3} \sum_k \left[\frac{1 + 2|\beta_k|^2}{\sqrt{(k/a_{2f})^2 + m^2}} \right] \\ Z \equiv \frac{q_2 \left| \beta_{q_2} \right|^2 H_{infl}^2}{2\pi^2 \sqrt{1 + \frac{m_H^2}{q_2^2}}} \\ \langle | \delta \phi^2 | \rangle = \int_{Z dq_2} Z dq_2 \end{array}$$

Two Massive Approximations: Effective - k Approach $k_{\text{effective}} = \begin{cases} \text{Initial} : \sqrt{k^2 + m^2 a_{\text{init}}^2} \\ \text{Final} : \sqrt{k^2 + m^2 a_{\text{end}}^2} \end{cases}$ Dominant-Term Approach $k \rightarrow m$ $a_1^2 \rightarrow a_1^3$ $a_2^2 \rightarrow a_2^3$

Cosmo 08, Madison, Wisconsin

Matthew Glenz

Thursday, August 28th, 2008

Discontinuities in the scale factor affect the large-mode behavior of particle production. For a parallel analysis of a harmonic oscillator, see R.M. Kulsrud, Phys. Rev. **106**, 205 (1957).

Cosmo 08, Madison, Wisconsin

Matthew Glenz

Thursday, August 28th, 2008

Cosmo 08, Madison, Wisconsin

Matthew Glenz

Thursday, August 28th, 2008

Reheating from abrupt end to inflation: depends on parameters of final asymptotically flat segment of the scale factor with C² matching. Energy Density a_2 nflation $16\pi^{2}(c^{3}/\hbar)$ (With gradual transition, temperature of order $T=H/2\pi$.)

Cosmo 08, Madison, Wisconsin

Thank You

Matthew Glenz

Supported by National Space Grant College and Fellowship Program and the Wisconsin Space Grant Consortium; and by the Lynde and Harry Bradley Foundation. Thursday, August 28th, 2008