Effective Field Theory in LUX Run04

Shaun Alsum

Yes, I re-used the fall theme... It's a good theme...

What Is EFT?

Effective Theory Treatments of Dark Matter Direct Detection

Basic Scales
Nonrelativistic Effective Theory Description
Implications for experiment: number and type
Wick Hados
October 25, 2017

Office of

http://teacher.pas.rochester.e du:8080/wiki/pub/Lux/AWGw orkshop171023_Agenda/DM_ LUX.pdf

For those without time machine access...

- Standard Spin Independent and Spin Dependent neglect other possible interactions
- In general, we want to account for any possible interaction that is allowed.
- There are 5 galilean and hermitian invariant quantities from which these operators can be built.
 - I, iq (iq/m_N), \mathbf{v}^{I} , \mathbf{S}_{x} , \mathbf{S}_{N}

Identity Relative velocity I to q Transferred momentum WIMP spin

Still livin' in the past

 These invariant quantities can be combined into 16 operators up to 2nd order in momentum transfer and spin-exchange of 1 or less

• These are:

$$\begin{array}{rclcrcl} \mathcal{O}_{1} &=& 1_{\chi}1_{N} & \mathcal{O}_{12} &=& \vec{S}_{\chi}\cdot(\vec{S}_{N}\times\vec{v}^{\perp}) \\ \mathcal{O}_{2} &=& (v^{\perp})^{2} & \mathcal{O}_{13} &=& i(\vec{S}_{\chi}\cdot\vec{v}^{\perp})(\vec{S}_{N}\cdot\frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{3} &=& i\vec{S}_{N}\cdot(\frac{\vec{q}}{m_{N}}\times\vec{v}^{\perp}) & \mathcal{O}_{14} &=& i(\vec{S}_{\chi}\cdot\frac{\vec{q}}{m_{N}})(\vec{S}_{N}\cdot\vec{v}^{\perp}) \\ \mathcal{O}_{5} &=& i\vec{S}_{\chi}\cdot(\frac{\vec{q}}{m_{N}}\times\vec{v}^{\perp}) & \mathcal{O}_{15} &=& -(\vec{S}_{\chi}\cdot\frac{\vec{q}}{m_{N}})((\vec{S}_{N}\times\vec{v}^{\perp})\cdot\frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{6} &=& (\vec{S}_{\chi}\cdot\frac{\vec{q}}{m_{N}})(\vec{S}_{N}\cdot\frac{\vec{q}}{m_{N}}) & \mathcal{O}_{16} &=& -((\vec{S}_{\chi}\times\vec{v}^{\perp})\cdot\frac{\vec{q}}{m_{N}})(\vec{S}_{N}\cdot\frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{7} &=& \vec{S}_{N}\cdot\vec{v}^{\perp} \\ \mathcal{O}_{8} &=& \vec{S}_{\chi}\cdot\vec{v}^{\perp} \\ \mathcal{O}_{9} &=& i\vec{S}_{\chi}\cdot(\vec{S}_{N}\times\frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{10} &=& i\vec{S}_{N}\cdot\frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{11} &=& i\vec{S}_{\chi}\cdot\frac{\vec{q}}{m_{N}} \end{array}$$

More recap...

 These operators can be expressed as combinations of 6 nuclear responses:

 $M_{JM}(q\vec{x})$

$$\begin{split} \Delta_{JM}(q\vec{x}) &\equiv \vec{M}_{JJ}^{M}(q\vec{x}) \cdot \frac{1}{q} \vec{\nabla} \\ \Sigma'_{JM}(q\vec{x}) &\equiv -i \left\{ \frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} = [J]^{-1} \left\{ -\sqrt{J} \ \vec{M}_{JJ+1}^{M}(q\vec{x}) + \sqrt{J+1} \ \vec{M}_{JJ-1}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} \\ \Sigma''_{JM}(q\vec{x}) &\equiv \left\{ \frac{1}{q} \vec{\nabla} M_{JM}(q\vec{x}) \right\} \cdot \vec{\sigma} = [J]^{-1} \left\{ \sqrt{J+1} \ \vec{M}_{JJ+1}^{M}(q\vec{x}) + \sqrt{J} \ \vec{M}_{JJ-1}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} \\ \tilde{\Phi}'_{JM}(q\vec{x}) &\equiv \left(\frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ}^{M}(q\vec{x}) \right) \cdot \left(\vec{\sigma} \times \frac{1}{q} \vec{\nabla} \right) + \frac{1}{2} \vec{M}_{JJ}^{M}(q\vec{x}) \cdot \vec{\sigma} \\ \Phi''_{JM}(q\vec{x}) &\equiv i \left(\frac{1}{q} \vec{\nabla} M_{JM}(q\vec{x}) \right) \cdot \left(\vec{\sigma} \times \frac{1}{q} \vec{\nabla} \right) \end{split}$$

These are very complicated... don't ask me to explain exactly what each is \bigcirc

5 • These nuclear responses can be evaluated for a given isotope.

What does it all matter?

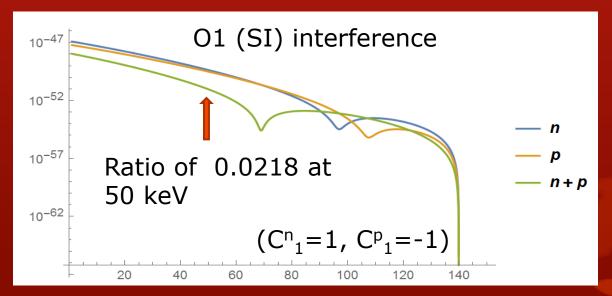
• WIMP recoil spectrum is determined by:

6

$$\frac{dR}{dE_R} = \left\langle \frac{\rho_{\chi} m_T}{\mu_T^2 m_{\chi} v} \frac{d\sigma}{d\cos\theta} \right\rangle$$

• The lagrangian includes all possible interactions:

$$\mathcal{L} = \sum_{i=1}^{12} c_i^{(n)} \mathcal{O}_i^{(n)} + c_i^{(p)} \mathcal{O}_i^{(p)}$$


 The cross section is proportional to the matrix element squared

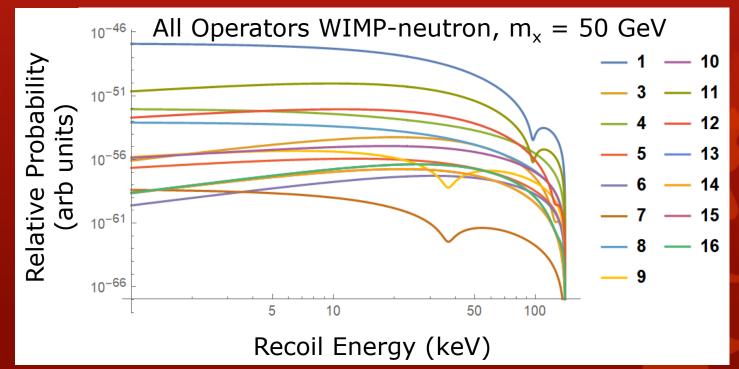
$$\frac{dR_D}{dE_R} = N_T \frac{\rho_{\chi} m_T}{32\pi m_{\chi}^3 m_N^2} \left\langle \frac{1}{v} \sum_{ij} \sum_{N,N'=p,n} c_i^{(N)} c_j^{(N')} F_{ij}^{(N,N')}(v^2, q^2) \right\rangle$$

 The F_{ij} is a form factor corresponding to operators O_i and O_j, which is a known combination of the known nuclear responses referred to on the previous slide.

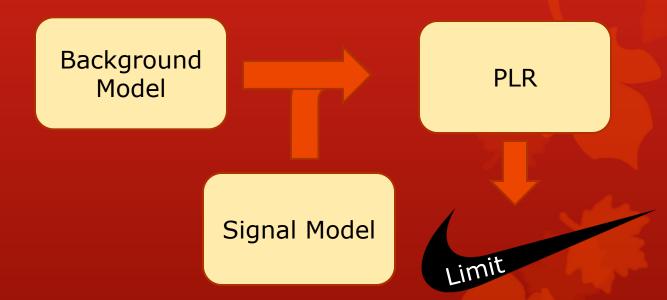
That's a lot of factors! What are we to do?

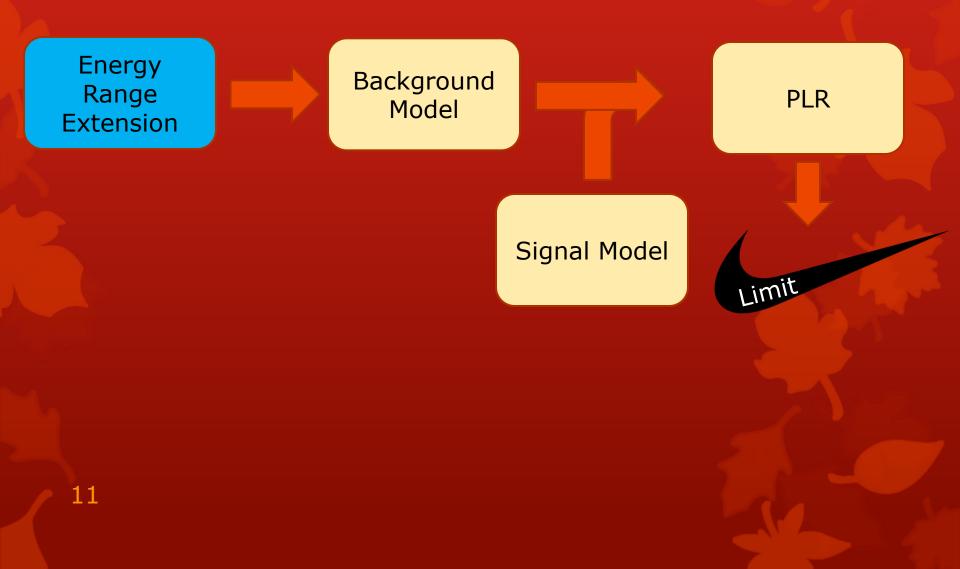
- Interference can conspire to nullify almost any limits for a single parameter
 - Only certain combinations of operators can interfere because they must satisfy symmetries (parity, etc)
 - The proton and neutron couplings can interfere for any operator, however.

Still not fully sure...


• To get a proper limit, would want to re-write

 $\sum_{i} c_{i}^{n} O_{i} + c_{i}^{p} O_{i}^{p}$ as $O_{a}^{n} + \frac{c_{a}^{p}}{c_{a}^{n}} O_{a}^{p} + \sum_{i \neq a} \frac{c_{i}^{n}}{c_{a}^{n}} O_{i}^{n} + \frac{c_{i}^{p}}{c_{a}^{n}} O_{i}^{p}$ for an arbitrary choice of c_{a}^{n} for each interference class. Then minimize the above to get the worst-case value for each $\frac{c_{i}^{(N)}}{c_{a}^{n}}$. Then use the PLR to determine a limit on c_{a}^{n} which would determine a worst-case limit on each other parameter.


• This is hard, so for now we just work on 1 parameter at a time while setting all others to 0


It's all about the recoil spectrum

- Different combinations, then, have different recoil spectra as expected.
- Here are all of them for a 50 GeV WIMP coupling only to neutrons

What makes a limit?

Background Model Modification

- Initial analysis only extended to 50 keVnr.
- EFT signals can possibly extend much further than this for some heavier WIMP candidates.
- ^{83m}Kr, which is not a huge problem for traditional energy ranges, may be an issue.

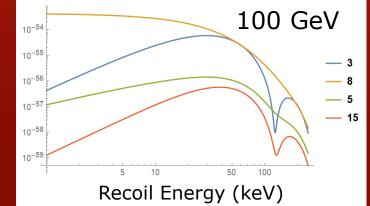
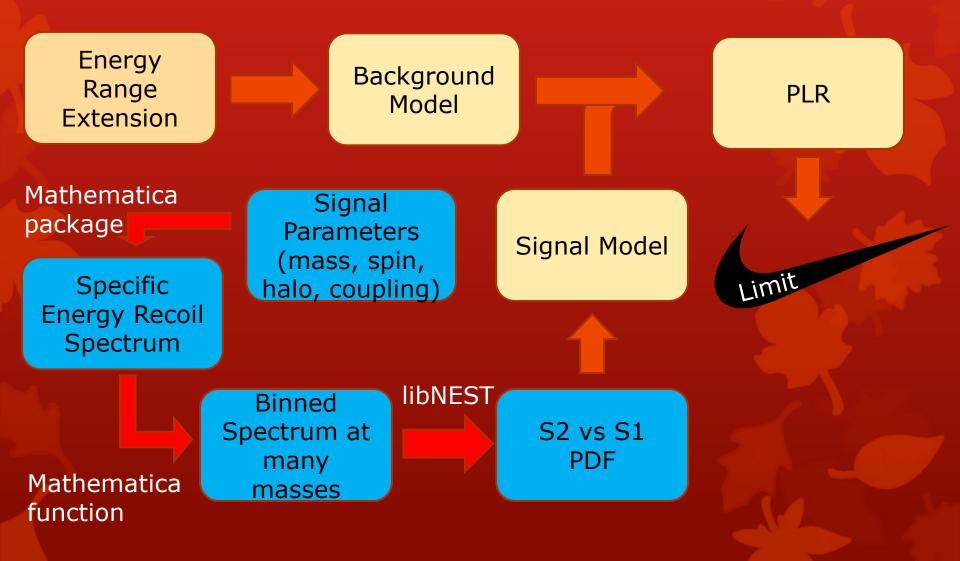
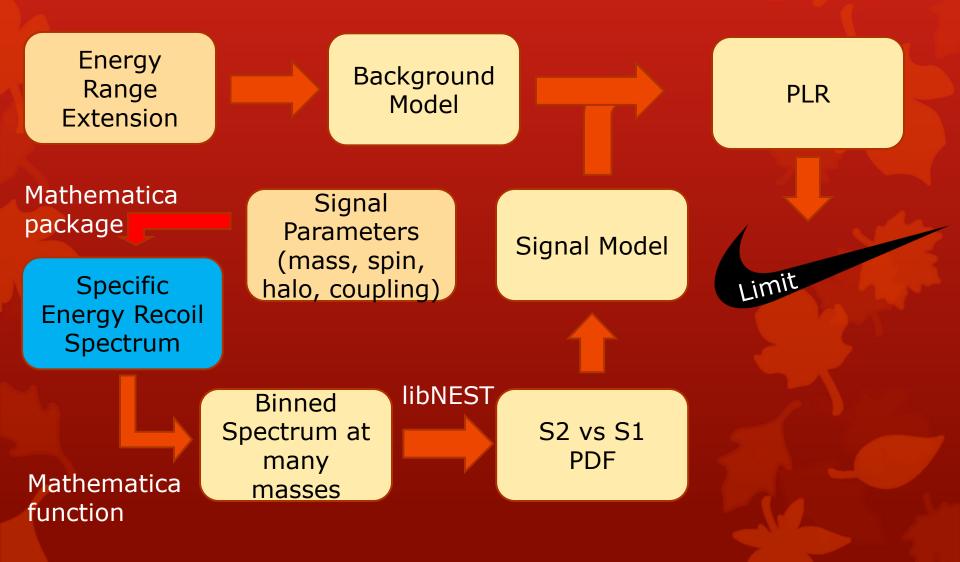
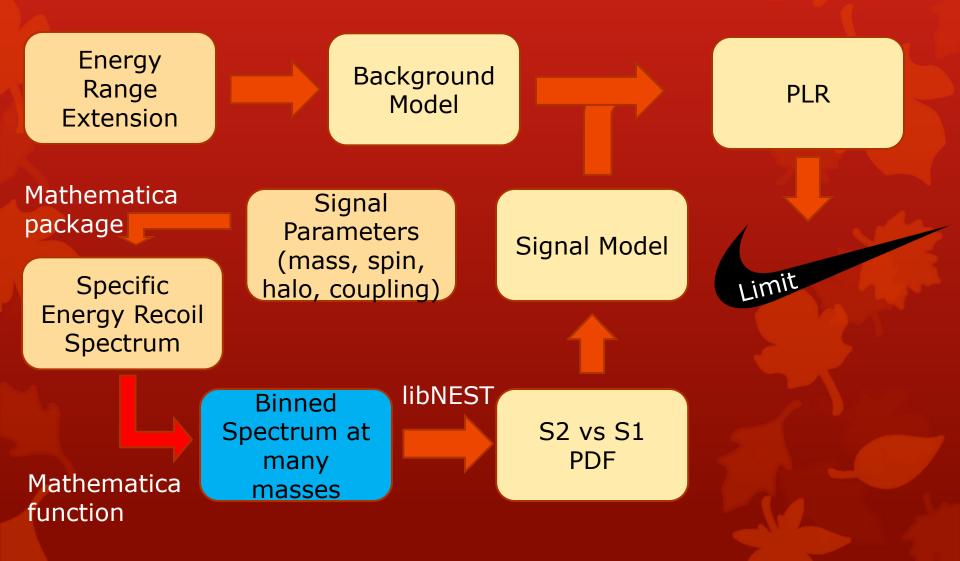




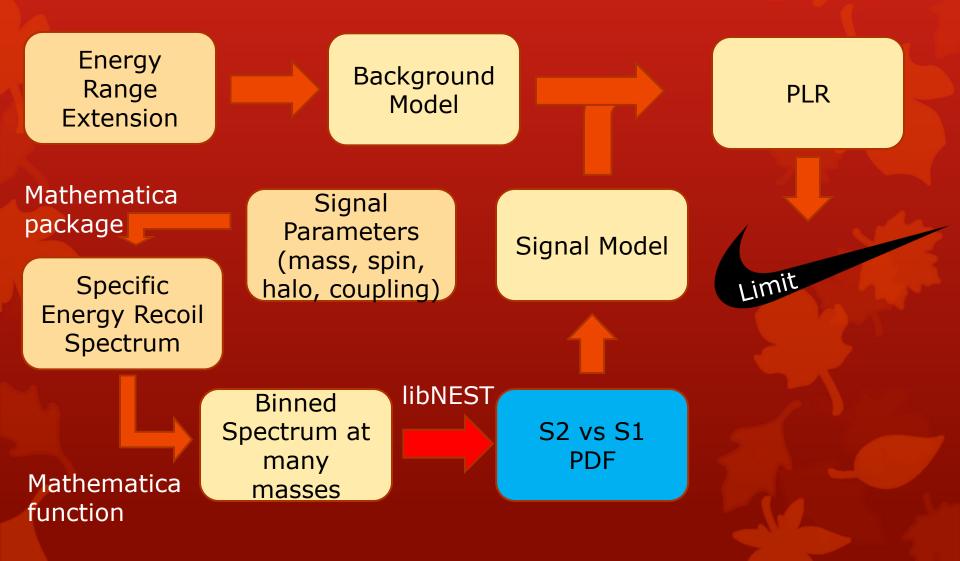
TABLE I. The upper energy threshold E_{max} (in keV_{nr}) for each of the effective field theory operators, such that an energy window from 0 to E_{max} captures either 50% or 90% of WIMPneutron recoil events for the given operator and WIMP mass.

	50-GeV	WIMP	500-GeV	WIMP
Operator	$E_{max}^{50\%}$	$E_{max}^{90\%}$	$E_{max}^{50\%}$	$E_{max}^{90\%}$
	(keV_{nr})	(keV_{nr})	(keV_{nr})	(keV_{nr})
SI	10.8	27.3	16.6	44.7
${\mathcal O}_1$	6.8	21.7	11.8	43.8
\mathcal{O}_3	26.4	49.1	148.1	344.4
\mathbf{SD}	8.6	21.6	11.9	37.5
\mathcal{O}_4	7.0	24.0	32.8	299.6
${\cal O}_5$	16.2	38.6	65.5	328.9
\mathcal{O}_6	33.6	64.0	267.3	433.7
\mathcal{O}_7	5.0	16.2	25.2	279.9
\mathcal{O}_8	6.8	22.2	14.5	64.8
\mathcal{O}_9	13.7	37.2	276.7	464.7
\mathcal{O}_{10}	21.7	48.6	112.6	340.4
\mathcal{O}_{11}	15.5	34.4	39.0	279.9
\mathcal{O}_{12}	17.4	38.1	34.8	176.5
\mathcal{O}_{13}	28.2	53.2	54.5	219.7
${\cal O}_{14}$	11.9	27.9	240.9	400.0
\mathcal{O}_{15}	34.3	59.1	261.2	433.7


DMFormFactor - Mathematica

Welcome to

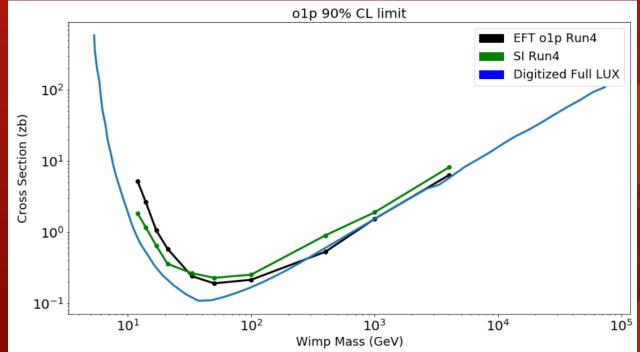
DMFormFactor version 1.1.


Functions are SetCoeffsNonrel, SetCoeffsRel, SetCoeffsNucl, ZeroCoeffs, SetJChi, SetMchi, SetIsotope, SetHALO, SetHelm, TransitionProbability, ResponseNucl, DiffCrossSection, ApproxTotalCrossSection, and EventRate.

- Mathematica package written by Nikhil Anand, A. Liam Fitzpatrick, and W. C. Haxton.
- Returns the recoil energy (really momentum) spectrum in the form of a mathematica function given model inputs.
- Notable inputs:
 - Halo type, earth velocity, local DM mean velocity, escape vel
 - (set to typical values)
 - WIMP spin
 - Set to 1/2
 - WIMP mass
 - Target isotope
 - Operator coefficients (for each op and proton vs neutron coupling)

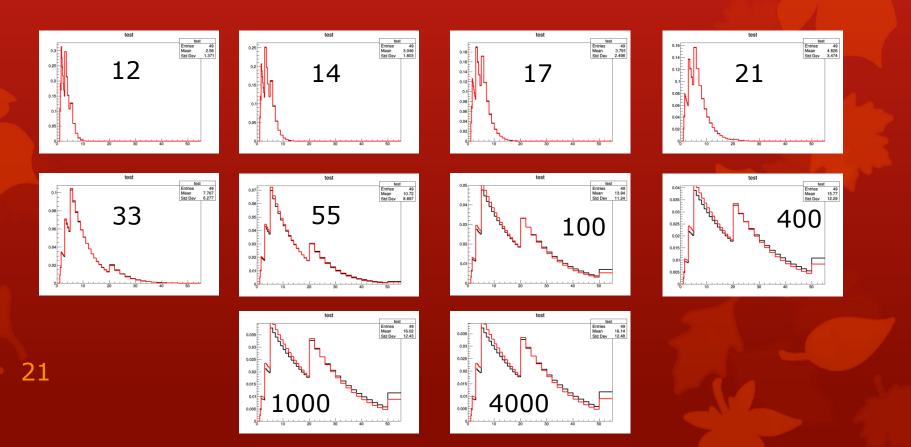
Spectra generation

- Mathematica function calls DMFormFactor for different values of mass and different isotopes in an array.
- Resulting analytical spectra are integrated into bins used by the PLR analysis.
- Isotope Spectra are weighted by their abundance and then added together.
- The resulting array of varying masses and bins is stored in a text file whose name identifies the non-zero coupling constant used.



PDF creation

- libNEST is called for each mass in question.
- libNEST imports the recoil spectrum then simulates the S2 and S1 response given energies sampled from the imported spectrum.
- The result is stored as a root histogram to be used by the limit code.


How do we do?

- Operator 1 should closely match the SI result.
- We attempted to validate our process by comparing the limit on the WIMP-proton coupled operator 1 to our SI result.

Not great, but why?

Low statistics (1000 per nSig, mass point)?Model mismatch?

Conclusion

- Getting there...
- Process is in place
- Background model must be validated and incorporated
- Difference between WIMP proton operator 1 limit and SI results must be understood
- After single-parameter limits, other intersting things could be done.
 - Proton-neutron interference looked into?
 - Joint PLR with experiments with other detector mediums?