EXTENDING THE RUN04 BAD AREA CUT

Kr-83m injection data

Rachel Mannino 7 November 2017

RUN04 ^{83M}KR DATASETS

- Using single-scatter ^{83m}Kr injection data from Run04:
 - kr83minjections_TB1.mat
 - kr83minjections_TB2.mat
 - kr83minjections_TB3.mat
 - kr83minjections_TB4.mat
 - ► Evan created these with filter code
- Plan: Use ^{83m}Kr data to extend the bad area cut as this provides high statistics dataset of 32.1 keV + 9.4 keV IC electrons.
 - May merge within an event to look like a 41.5 keV signal.

FIG. 1. Decay schematic of ^{83m}Kr. The width of each column is proportional to the branching fraction of that decay mode, the vertical divisions are proportional to energy partitioning among internal conversion electrons, Auger electrons, x-rays, and gamma-rays. Numerical values from Reference [2].

arXiv:0905.1766

GOOD AREA AND BAD AREA

- Good area = S1 + S2;
- ► Bad area = full event area good area;
- Bad area cut removes events where the event window has anomalies such as electron trains, glow, etc.
 - LUX only keeps 10 pulses/event, so using the full_event_area_phe RQ captures the area of all signal area above baseline, even if the PulseFinder did not classify it as a pulse.
 - Designed for single-scatter events.
 - Calibrate bad area cut using high statistics datasets such as tritium (earlier incarnation of Run04 bad area cut) or Kr (now).
- Filter code creates "goodarea" and "badarea" RQs using uncorrected, raw S1 and S2 areas.

 (above) Color scale is in units of counts/bin.

LOG₁₀(BAD AREA) VS. LOG₁₀(GOOD AREA)

- Roughly classify events into
 populations to study
 S1 & S2 areas,
 energies, and any
 anomalies in Visualux.
 - ► (red) Population 1
 - ► *(white)* Population 1b
 - ► *(blue)* Population 2
 - ► (green) Population 3
 - ► (magenta) Population 4

VISUALUX: POPULATION 1

- Scanned 100 events of pop1 in VisuaLux. Events are singlescatter with the S2 followed by several-to-dozens of SE and SPE.
- (*lower right*) View of typical pulses following an S2. These don't qualify as e-trains, but there are likely to be >10 pulses/event.

VISUALUX: POPULATION 1B

- Scanned 100 events of pop1b in VisuaLux. Events are largely single-scatter with the S2 followed by electron trains.
- (*lower right*) View of typical pulses following an S2. This is an e-train.

1500

10,000

20,00

25300

20,000

16,000

40,000

45,000

VISUALUX: POPULATION 2

- Scanned 100 events of pop2 in VisuaLux. Events are largely singlescatter with the S2 followed by a baseline shift in the rest of the event window. 95% of scanned events had baseline problems.
- (lower right) View of typical pulses following an S2. This is a baseline shift.

. . .

VISUALUX: POPULATION 3

- Scanned 100 events of pop3 in VisuaLux. Events are classified as single-scatter, but 91% of the events looked like a double-scatter with the 1st S2 misclassified as an "else" or class 5 pulse. The S1 often, but not always, looked like 2 discernible S1 pulses.
 - ► The "else" pulse contributes to the "bad area!"

10,000

10,000

2,000

win

VISUALUX: POPULATION 3, CONTINUED

- Scanned 100 events of pop3 in VisuaLux. 7% of scanned events had baseline problems either before or after the S2 pulse.
- (lower right) View of a baseline shift early in the event window before the S1 pulse.
- > 2% of events simply had a super large S1 pulse after the S2 contributing to the bad area. The pattern was S1, S2, big S1.

ani an

IN ARE D'DITE!

-win

81 232 232 2000 2009 SE SE SE

.

edigs

VISUALUX: POPULATION 4

0.3

0.14

- Scanned 100 events of pop4 in VisuaLux. Events are largely nice-looking single-scatter events where the S2 is followed only by SPE. Occasionally (3-4 events scanned), a SE followed the S2, but this typically had a small area of ~10 phd.
- ► (*lower right*) View of the single photoelectrons (SPE) following an S2.

erine 22 erine erine erine erine erine erine

. . .

XY POSITIONS OF THE POPULATIONS

DRIFT POSITIONS OF THE POPULATIONS

250 UQ 200 D02

IDENTITY OF HOTSPOT IN POPULATION 1

- > Population 1 has a hotspot evident in drift vs. R^2 .
- Cut to select this hotspot: Population 1 & (drift time $< 80 \ \mu s$) & (500 $< R^2 < 600 \ cm^2$)
- (*left*) Plot the x-y positions of events in this hotspot. These largely are concentrated at -y near the 6:00 panel.
- (*right*) PMT map. PMT 26 had problems during Run04; maybe this is the culprit behind high counts?
 Otherwise, PMTs 23, 24, 31 or some problem near them are suspect.

S1 AREAS

S2 AREAS

Population 1b has S2 pulse areas much larger than seen in populations 1, 2, 3, or 4.

RECONSTRUCTED ENERGIES

SUMMARY OF KR-83M POPULATIONS

Population	Energy [keV]	XY	Drift	Event anomalies
1	~41	Uniform	Uniform	
1b	>100	Walls	Bottom, Walls	E-trains
2	~41	-X	Тор	Baseline issues
3	~33	Uniform	Тор	Misclassified double-scatter
4	~41	~Uniform	Bottom	

Population 1 has the expected energy, xy, and drift distributions of 83m Kr events, and it is free of anomalies that contribute to excessive bad area. This population extending to log10(good area) = 4.6 will be used to set the bad area cut.

APPLY RUN04 FIDUCIAL CUT

(*above*) Apply the Run04 fiducial cut which uses the raw radius to cut 3 cm in from the wall as calculated in the script setRMax using look-up tables. The fiducial cut also cuts on drift time: 40 < drift time < 300 μs.

 (above) For comparison, this is the plot of log10(bad area) vs. log10(good area)
 without a fiducial cut applied.

og₁₀ counts/bin

- Many "extra" populations that were not classified as 1, 1b, 2, 3, or 4 will disappear with a fiducial cut.
- Many events in population 1b disappear with the fiducial cut.
- The colorbar re-scaled, so the counts are relatively smaller with the fiducial cut.

CONSTRUCTING A NEW BAD AREA CUT WITH ^{83M}KR, FIDUCIAL CUT

- Bin log10(good area) in the vicinity of Kr data distribution with fiducial cut applied (see table).
- Calculate the log10(bad area) value at which X% of the data in the bin of log10(good area) is below.
 - Initial Run04 bad area cut determined from tritium data kept 99% (X=99) of the data within the log10(good area) bin. This only cut 1% of the events as having too much bad area.
- 3. Determine the best value of X (ie., what percentile to keep).
- Fit the log10(bad area) values at X% to calculate a cut line as a function of log10(good area) and log10(bad area).

Bin	Min log10(good area)	Max log10(good area)	Counts/bin
1	3.6	3.65	205
2	3.65	3.7	761
3	3.7	3.75	3,431
4	3.75	3.8	14,027
5	3.8	3.85	49,636
6	3.85	3.9	145,712
7	3.9	3.95	346,520
8	3.95	4	659,300
9	4	4.05	976,625
10	4.05	4.1	1,206,623
11	4.1	4.15	1,324,571
12	4.15	4.2	1,311,733
13	4.2	4.25	1,096,535
14	4.25	4.3	724,735
15	4.3	4.35	375,968
16	4.35	4.4	166,485
17	4.4	4.45	69,411
18	4.45	4.5	24,112
19	4.5	4.55	5,621
20	4.55	4.6	741

FIND THE 99% VALUE IN EACH BIN OF GOOD AREA

- (left) Find the value of bad area at which 99% of the events in the bin of log₁₀(good area) are below.
 This 99% value in each bin is drawn as a white X.
- Bins 1-3 do not have a 99% value shown as outliers skewed this point.

og₁₀ counts/bin

 Bins 13 + zag upward to let in bad area from population 2.

HISTOGRAM THE BAD AREA WITH THE 99% VALUES

- Plot the histogram of log₁₀ (bad area) for each of the 20 bins in good area. The 99% log₁₀ (bad area) value for each bin is shown as a dashed line.
- (top left) The 99% values for bins 4 and 5 are shown as red and black dashed lines, respectively. Bins 1-3 obviously have large populations near bad areas of ~10,000 phd and have no dashed lines drawn.
- (bottom right) The 99% values for bins 16-20 are far from the main distribution due to a tail at high bad area.

TESTING DIFFERENT X% VALUES, FIDUCIAL CUT APPLIED

HISTOGRAM THE BAD AREA WITH THE 98% VALUES

- Plot the histogram of log₁₀ (bad area) for each of the 20 bins in good area. The 98% log₁₀ (bad area) value for each bin is shown as a dashed line.
- (top left) The 98% values for bins 4 and 5 are shown as red and black dashed lines, respectively. Bins 1-3 obviously have large populations near bad areas of ~10,000 phd and have no dashed lines drawn.
- (bottom right) The 98% values for bins 16-20 are closer to the main distribution than they were at 99%.

COMPARE VARIOUS X% VALUES ACROSS THE GOOD AREA BINS

- For each of the 20 bins in log₁₀(good area), plot the bad area at which X% of the event in the bin are below.
 - Bins 1 and 2 have smaller stats and too many events with high bad area and are off-scale. These aren't used in the fit.
 - Bin 3 only has reasonable values for 95-97%. As setting the cut at 98% looks reasonable, bin 3 will be excluded from the fit.
- Using 99% is unfortunately too poorly behaved due to the presence of population 2 with its high bad area.

FIT 98% VALUES

- (*above*) Apply a linear fit to the 98% values of log₁₀(bad area) at the centers of the log₁₀(good area) bins. The first 3 bins are excluded from the fit as there was excessive bad area.
- ► log10(bad area) = 0.7765*log10(good area) 0.3954;

APPLY ERROR BARS

- Calculate error bars as follows:
 - Calculate number of events "N" in the top 2% of each bin.
 - 2. Sort the bad areas in each bin.
 - 3. Find the indices sqrt(N) above and below the 98% value's index.
 - 4. Calculate lower (upper) error bar as the difference between the bad area at the 98% value *and* the bad area at an index sqrt(N) below (above) the index of the 98% value.

(above) Plot the Kr-83m data with the upper and lower error bars. At large values of log_{10} (good area), the statistics get poorer so outliers become more significant.

(left) Same as above, but zoomed in to see error bars more clearly.

UPPER AND LOWER ERROR BARS FOR 98%

Bin	Min log10(good area)	Max log10(good area)	Counts/bin	Lower error bar [phd]	Upper error bar [phd]
1	3.6	3.65	205	-	-
2	3.65	3.7	761	-	-
3	3.7	3.75	3,431	-	-
4	3.75	3.8	14,027	4.76	4.58
5	3.8	3.85	49,636	2.12	2.47
6	3.85	3.9	145,712	1.14	1.34
7	3.9	3.95	346,520	0.76	0.90
8	3.95	4	659,300	0.61	0.56
9	4	4.05	976,625	0.68	0.55
10	4.05	4.1	1,206,623	0.58	0.56
11	4.1	4.15	1,324,571	0.77	0.69
12	4.15	4.2	1,311,733	0.85	1.03
13	4.2	4.25	1,096,535	1.07	1.38
14	4.25	4.3	724,735	1.91	2.55
15	4.3	4.35	375,968	3.57	4.35
16	4.35	4.4	166,485	7.42	7.28
17	4.4	4.45	69,411	10.49	15.77
18	4.45	4.5	24,112	85.37	119.39
19	4.5	4.55	5,621	94.75	326.28
20	4.55	4.6	741	93.42	1267.64

.

FIT 98% VALUES, WEIGHTS APPLIED

(*above*) Apply a linear fit to the 98% values of log₁₀(bad area) at the centers of the log₁₀(good area) bins weighted using error bars. The first 3 bins are excluded from the fit as there was excessive bad area.

- Weights = $([upper + lower error bar]/2)^{-2} = (average error bar length)^{-2}$
- ► Bad area cut at high areas: log_{10} (bad area) = 0.7004* log_{10} (good area) 0.1073;

APPLY BAD AREA CUT TO THE KR-83M DATA

NEXT STEPS

► Apply the bad area cut to the Run04 background data.

- ► Handle very high areas beyond main 83mKr population.
 - (below) Extend x-axis to 10⁶ phd where the bad area cut bisects the population 1b letting in too much bad area.
 - Either decide to restrict this bad area cut to only be relevant up to 10^{4.6} phd or change the slope again.

EXTRA SLIDES

. . .

XY POSITIONS OF POPULATIONS: FIDUCIAL CUT APPLIED

DRIFT POSITIONS OF POPULATIONS: FIDUCIAL CUT APPLIED

- Population 1: Applying a fiducial cut removed the hotspot and left a fairly uniform distribution.
- Population 1b has many wall events removed.
- Populations 2 and 3 are still concentrated near the top.
- Population 4 is still concentrated near the bottom.