

Phase II Optical Sims

Oliver Hitchcock

Optical Simulations

Goals:

Test our ability to resolve positions in Phase II using weighted averages and PMT detection data.

Test light collection differences with different configurations of the outer PMT array using 32/36 locations

- Recently Completed
 - Geometry Updated
 - Field Hoop
 - Cathode grid
 - Gridwires command
 - Outer array
 - Finally simulated multiple configurations and obtained results

Current Work

- Test with more configurations, work on cleaning up plots
- Quantum efficiency cut

Simulation Parameters

- No grid
- Outer PMT Array configuration
- 10,000 photons (point source)
 - $\circ \qquad \text{At half height in the GXe} \\$
 - Generated between grid ring and field hoop at xy - (755mm, 0mm)
 - Directly below a PMT
 - Quantum efficiency not taken into account

Full Array

4 Grouped PMTs Removed Opposite of Event

4 Grouped PMTs Removed Directly Over Event

4 Grouped PMTs Removed Opposite Offset of Event

4 Corner PMTs Removed (1 Removed Directly Over)

Backup Slides

Current Work

Using my idea from last time...

- Reconstruct PMT Volume ID from triggered photocathode volume ID
- Use this PMT ID to reference the PMT location array to determine x, y coords of the hit PMT
- Plotted this in 2D histogram
 - Plot at right: proof of concept
 - 1e6 photons generated at (0,0,0) mm

Next Steps:

- Update Geometry to model initial Phase 2 Tests
 - Add field hoop
 - Remove grid wires
 - Command for turning off wires?
 - Comment out temporarily?
 - Implement Outer PMT Array
 - Few different configurations

Current Work

Spent the past few weeks playing around with some data, found an approach that should work:

- Photons don't keep tracks, or their PMT interaction position :-(
- The only useful info they record is their volumeID (corresponds to photocathode)
 - Cross reference this with the BACCARATExecutable printout to find the PMT ID's
 - ID_{PMT}=(ID_{pcathode} 9) / 5
 - I need to make a script to output a list of these PMT ID's and

From there, I could use the PMT locations array to make:

- Raw PMT detection map vs source position
- Calculate signal weighted average of PMT positions
 - Compare weighted average position to the source position

- Test position resolution as a function of position in the phase 2 detector
 - Test different positions between the grids
 - Test positions in the outer ring section
 - Test with different amounts of light
- Miscellaneous
 - Fix condor submissions/output
 - Develop analysis techniques(jupyter notebooks)
 - Read some papers within the DDM field

Current State of Phase II Geometry

- Components implemented
 - Inner steel cryostat
 - Reflective AIMgF2 wall, bottom, & top
 - Reflectivity = .88
 - Specular lobe constant = 0
 - Specular spike constant = 0
 - Backscatter constant = 0
 - Efficiency = 1
 - Inner Gaseous Xenon Space
 - LZ Grid
 - LUX R8778 PMTs (inner array)

Crude visualizations using Baccarat e- particle source

GXe space

Light Collection Efficiency

- 100,000 7ev photons @ each point
- 88% reflective AIMgF2 everywhere
- 20% reflective Grid
- 20cm Grid-PMT separation

Future: Quantum Efficiency

"LUX R8778 PMTs feature a measured average 33% quantum efficiency and 90% collection efficiency " - arXiv:1205.2272

Cable Making

HV Ends

HV and DB25

Cable 301/302

All 8 cables finished and packaged

Summer Review:

- Created a working, simplified phase 2 geometry
- Performed initial optical simulations of light collection efficiency
- Phase I Internal Cable Making
- Began playing around with HTCondor

Semester Goals

- More Optical Simulations with BACCARAT
 - Change specular coefficients
 - Take into account quantum efficiency
 - Signal reconstruction sims
- Fix issues with HTCondor
 - Can't get an output
- Increase Complexity of Phase II geometry
 - More Components
 - More Macro level commands
- Get better at
 - C++
 - ROOT
 - Python

Light Collection Efficiency

- 100,000 7ev photons
- 88% reflective AIMgF2 everywhere
- 20% reflective Grid
- 20cm Grid-PMT separation

Done Last Week:

- Changed optical properties of AIMgF2
 - Modified to be more like a metal than a diffuse reflector
- Finished geometry for optical sim usage
 - Updated dimensions
 - AIMgF2 reflective surfaces
 - Inner PMT array in place
 - Bottom Grid in place (Hijacked from LZGrid.cc)
- Made a new macro lightCollection.mac
 - \circ 10,000 7 eV optical photons
 - Isotropic point source

Next Steps

- Finalize macro
 - More photons
 - \circ Modify photon source position to .5 cm above floor
 - Potentially switch value for recordLevelOptPhot
- Write analysis code
- Start optical simulations
 - Simulate same situations as Rachel's sims
 - \circ \quad Try to recreate format of Rachel's plots for easy comparison
- Other Suggestions?

Goal

Design Phase II System Test detector geometries for use in simulations.

R8778 PMT Arrays

Blue is steel PMT body, red is PMT window

Inner array

Inner + Outer array

Plan

- . Study Phase I and LZ geometries
- 2. Design simplified geometry
- 3. Increase complexity of geometry
 - a. Add optical surfaces
 - o. Add PMT's
 - c. Other features
- 4. Work towards final Phase II geometry
 - a. More components, most realistic
- 5. Work on macros for Phase II

AIMgF2

Accessed with: CoatingAIMgF2(), GXeAIMgF2Surface()

- Defines a new material with many of the same properties of Aluminum but with reflectivity of AIMgF2 (approximation)
- Defines <u>AIMgF2 MaterialPropertiesTable</u> (followed format of Teflon)
 - Reflectivity = .88
 - Specular lobe constant = 0
 - Specular spike constant = 0
 - Backscatter constant = 0
 - Efficiency = 1
- Creates a boundary surface for the gas Xe AIMgF2 interface with above properties

Any other suggestions for improvement?

2 Component Visualization

• All particles accounted for and within defined geometry

• Error caused by overlap in geometry dimensions