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Drug discovery and
GPU computing
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High-throughput chemical screening

Given a protein of interest, identify chemicals
that may have the ability to control the protein

w.~lmage: Norah Trent



Computational chemical prioritization

New protein target Suggested test order
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Chemical compound = key

Protein = lock



Chemical representations for machine
earning c-
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See Ching et al. 2018 PubChem
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Thanks @nvidia for the Tesla K40 GPU.
We Academic hardware program is great Js
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Expanding our GPU capacity
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Software dependencies

Chemical screening software
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radeoffs of conda

Pros:

* Easy to install Anaconda

* Environments are shareable

* Easy to update packages in environment
Cons:

e Still depend on system libraries

* conda submit gpu-job.sub

* condor install numpy



Predictive models perform well in
experimental tests

Train on 75k chemicals, PriA-SSB inhibition
Choose among many possible models

Models select 250 of 25k new chemicals

e 64 active chemicals in the 25k
e Model we selected is the best, finds 40 of the 62
e Random forest outperforms the neural networks

* Now testing on much larger chemical libraries
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Gene networks and

single cell expression
_
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What are the relationships among
genes inside a cell?

Measure snapshots of
gene abundance
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For each gene, learn which genes
control it
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Divide network inference into many
small computational jobs
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100 batches of genes X
10 random bootstraps X
100 parameter combinations
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