
Negotiator Policy and

Configuration

Greg Thain

HTCondor Week 2018

› Understand role of negotiator

› Learn how priorities work

› Learn how quotas work

› Encourage thought about possible policies!

Agenda

Overview of condor

3 sides

Submit
Execute

Central

Manager

› Near sighted

› 3 inputs only:

Machine

Running Job

Candidate Running Job

› Knows nothing about the rest of the system!

Startd Mission Statement

Run jobs on

 slots the negotiator

 has assigned to submitters.

Inputs:

 All the jobs in that schedd

 All the slots given to it by the negotiator

Schedd mission

Schedd Can:

 Re-use a slot for > 1 job (in succession)

 Pick which job for a user goes first

Schedd cannot:

 Reassign slots from one submitter to other

Schedd mission

› Submitters: what are they?

› User: an OS construct

› Submitter: Negotiator construct

Submitter vs User

Assign the slots of the whole pool

Negotiation Mission

 to users based on some policy that’s ‘fair’

› All the slots in the pool

› All the submitters in the pool

› All the submitters’ priorities and quotas

› One request per submitter at a time

Negotiator Inputs

Periodically tries to:

Rebalance %age of slots assigned to users

Via preemption, if enabled

Via assigning empty slots if not

Negotiator is always a little out of date

How the Negotiator Works

› Simplest Negotiator (+ schedd) policy

› Useful for pool wide, across user limits,

Concurrency Limits

> 100 running NFS jobs crash my server

License server only allows X concurrent uses

Only want 10 database jobs running at once

Useful Concurrency Limits:

add to negotiator config file

(condor_reconfig needed):

Concurrency Limits:

How to Configure

NFS_LIMIT = 100

DB_LIMIT = 42

LICENSE_LIMIT = 5

Concurrency Limits:

How to use
Add to job ad

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS
queue

Concurrency Limits:

How to use
OR

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS:4
queue

Concurrency Limits:

How to use
Add to job ad

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS,DB
queue

› Concurrency limits very “strong”

› Can throw off other balancing algorithms

› No “fair share” of limits

Part of the picture

“Fair Share of Users”

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

Main Loop of Negotiation Cycle*

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

The Negotiator as Shell Script

1: Get all slots in pool

1: Get all slots in pool

$ condor_status

1: Get all slots* in pool

NEGOTIATOR_SLOT_CONSTRAINT = some classad expr

NEGOTIATOR_SLOT_CONSTRAINT

Defaults to true, what subset of pool to use

For sharding, etc.

1: Get all slots in pool

$ condor_status –af Name State RemoteOwner

slot1@... Claimed Alice

slot2@... Claimed Alice

slot3@... Claimed Alice

slot4@... Unclaimed undefined

slot5@... Claimed Bob

slot6@... Claimed Bob

slot7@... Claimed Charlie

slot8@... Claimed Charlie

1: Get all slots in pool

$ condor_status –af Name RemoteOwner

Slots

Alice

Bob

Charlie

Unclaimed

2: Get all submitters in pool

$ condor_status -submitters

2: Get all submitters in pool

$ condor_status -submitters

Name Machine RunningJobs IdleJobs

Alice submit1 4 4

Bob submit1 2 100

Charlie submit1 2 0

Danny submit1 0 50

2: Get all submitters in pool

$ condor_status -submitters

Name Machine RunningJobs IdleJobs

Alice submit1 4 4

Bob submit1 2 100

Charlie submit1 2 0

Danny submit1 0 50

› Tricky

› Based on historical usage

3: Compute per-user “share”

3a: Get historical usage

$ condor_userprio -all

3a: Get historical usage

$ condor_userprio -all

UserName Effective Real Priority Res

 Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

3a: Get historical usage

UserName Effective Real Priority Res

 Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑖𝑜 = 𝑅𝑒𝑎𝑙𝑃𝑟𝑖𝑜 X 𝑃𝑟𝑖𝑜𝐹𝑎𝑐𝑡𝑜𝑟

Real Priority is smoothed historical usage

Smoothed by PRIORITY_HALFLIFE

PRIORITY_HALFLIFE defaults 86400s (24h)

So What is Real Priority?

Actual Use vs Real Priority

PRIORITY_HALFLIFE = 1

Another PRIORITY_HALFLIFE

3a: Get historical usage

$ condor_userprio -all

UserName Effective Real Priority Res

 Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

› Effective Priority is the ratio of the pool

 that the negotiator tries to allot to users

Lower is better, 0.5 is the best real priority

Effective priority:

Alice deserves 2x Bob & Charlie

Alice: 4

Bob: 2

Charlie: 2 (Assuming 8 total slots)

UserName Effective Real Priority Res

 Priority Priority Factor in use

Alice 1000 1.0 1000 4

Bob 2000 2.0 1000 2

Charlie 2000 2.0 1000 2

So What is Priority Factor?

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑖𝑜 = 𝑅𝑒𝑎𝑙𝑃𝑟𝑖𝑜 X 𝑃𝑟𝑖𝑜𝐹𝑎𝑐𝑡𝑜𝑟

Priority factor lets admin say

If equal usage, User A gets 1/nth User B

$ condor_userprio –setfactor alice 5000

UserName Effective Real Priority Res

 Priority Priority Factor in use

Alice 1000 1.0 1000 4

Bob 2000 2.0 1000 2

Charlie 2000 2.0 1000 2

3 different PrioFactors

Whew! Back to negotiation

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

Target allocation from before

User Effective

Priority

Goal

Alice 1,000.00 4

Bob 2,000.00 2

Charlie 2,000.00 2

Assume 8 total slots (claimed or not)

Look at current usage

User Effective

Priority

Goal Current

Usage

Alice 1,000.00 4 3

Bob 2,000.00 2 1

Charlie 2,000.00 2 0

Diff the goal and reality

User Effective

Priority

Goal Current

Usage

Difference

(“Limit”)

Alice 1,000.00 4 3 1

Bob 2,000.00 2 1 1

Charlie 2,000.00 2 0 2

“Submitter Limit” per user

User Effective

Priority

Goal Current

Usage

Difference

(“Limit”)

Alice 1,000.00 4 3 1

Bob 2,000.00 2 1 1

Charlie 2,000.00 2 0 2

In Effective User Priority order,

Find a schedd for that user, get the request

Limits determined, matchmaking

starts

User Effective

Priority

Difference

(“Limit”)

Alice 1,000.00 1

Bob 2,000.00 1

Charlie 2,000.00 2

“Requests”, not “jobs”

$ condor_q –autocluster Alice

Id Count Cpus Memory Requirements

20701 10 1 2000 OpSys == “Linux”

20702 20 2 1000 OpSys == “Windows”

Match all machines to requests

Id Count Cpus Memory Requirements

20701 10 1 2000 OpSys == “Linux”

slot1@... Linux X86_64 Idle 2048

slot2@... Linux X86_64 Idle 2048

slot1@... Linux X86_64 Idle 1024

slot2@... Linux X86_64 Claimed 2048

slot1@... WINDOWS X86_64 Claimed 1024

By 3 keys, in order

NEGOTIATOR_PRE_JOB_RANK

RANK

NEGOTIATOR_POST_JOB_RANK

Sort All matches

NEGOTIATOR_PRE_JOB_RANK

 Strongest, goes first over job RANK

RANK

 Allows User some say

NEGOTIATOR_POST_JOB_RANK

 Fallback default

Why Three?

Up to the limit specified earlier

If below limit, ask for next job request

Finally, give matches away!

slot1@... Linux X86_64 Unclaimed 2048

slot2@... Linux X86_64 Unclaimed 2048

slot1@... Linux X86_64 Claimed 2048

Done with Alice, on to Bob

User Effective

Priority

Difference

(“Limit”)

Alice 1,000.00 1

Bob 2,000.00 1

Charlie 2,000.00 2

› Assumed every job matches every slot

And infinite supply of jobs!

› … But what if they don’t match?

There will be leftovers – then what?

But, it isn’t that simple…

This whole cycle repeats with leftover slots

Again in same order…

Lather, rinse, repeat

› Preemption: Yes or no?

› Tradeoff: fairness vs. throughput

› (default: no preemption)

Big policy question

PREEMPTION_REQUIREMENTS = false

Evaluated with slot & request ad. If true,

Claimed slot is considered matched, and

Subject to matching

Preemption: disabled by default

PREEMPTION_REQUIREMENTS=\

 RemoteUserPrio > SubmittorPrio * 1.2

Example PREEMPTION_REQs

› Sorts matched preempting claims

PREEMPTION_RANK = -TotalJobRunTime

PREEMPTION_RANK

› Can be used to guarantee minimum time

› E.g. if claimed, give an hour runtime, no

matter what:

› MaxJobRetirementTime = 3600

› Can also be an expression

MaxJobRetirementTime

› Now, on to Groups.

Whew!

› AccountingGroup as alias

› Accounting_Group_User = Ishmael

› “Call me Ishmael”

› With no dots, and no other configuration

› Means alias: Maps “user” to “submitter”

› Complete trust in user job ad (or xform)
• Viz-a-vis SUBMIT_REQUIREMENTs

First AccountingGroup

User Effective

Priority

Accounting

Group

Alice 1,000.00 “Alice”

Bob 2,000.00 “Alice”

Charlie 2,000.00

Merged to one user

No fair share between old Alice and old Bob!

Only way to get “quotas” for users or groups

Accounting Groups With Quota

64

Maximum

65

Minimum

› Must be predefined in config file

GROUP_NAMES = group_a, group_b

GROUP_QUOTA_GROUP_A = 10

GROUP_QUOTA_GROUP_B = 20

Slot weight is the unit – default cpus

Accounting Groups with quotas

› Can also be a percentage

GROUP_NAMES = group_a, group_b

GROUP_QUOTA_GROUP_A = 0.3

GROUP_QUOTA_GROUP_B = 0.4

If sum != 100, scaled

Or, with Dynamic quotas

Accounting_Group = group_a

But you retain identity within your group.

And jobs opt in (again)

› Reruns the whole cycle as before

But with pool size constrained to quota

And fair share, between users in group

AcctGroups w/quota

› By default, in starvation order

› Creates overprovisioning trick for strict fifo:

›GROUP_QUOTA_HIPRIO = 100000000

› Means this group always most starving

›GROUP_SORT_EXPR overrides

Order of groups?

One way is:

GROUP_AUTO_REGROUP = true

After all groups go, one last round with no

groups, every user outside of their group.

“Not” strict quotas

› “Surplus”

› Assumes a hierarchy of groups:
GROUP_NAMES = group_root, group_root.a, group_root.b,

group_root.c

GROUP_QUOTA_GROUP_root = 60

GROUP_QUOTA_GROUP_root.a = 10

GROUP_QUOTA_GROUP_root.b = 20

GROUP_QUOTA_GROUP_root.b = 30

GROUP_ACCEPT_SURPLUS = true

2nd not strict quota

› Before matchmaking

› Assume all jobs match all slots,

See if there will be leftover slots

If so, “loan” leftover slots to nearest group that

accepts surplus

How “Surplus” works

root

Group A Group C

60

10 30

Group B

20

accept_surplus = true

3 slots of

demand at A
7 quota slots moved

to B & C
Proportional to B

& C quota

root

Group A Group C

60

10 3 30 34

Group B

20 23

accept_surplus = true

› Quotas don’t know about matching

› Assuming everything matches everything

› Surprises with partitionable slots

› Managing groups not easy

Gotchas with quotas

› Negotiator is very powerful, often ignored

› Lots of opportunity to tune system

› Many ways to peak under the hood

In summary

› Questions?

› Talk to us

› htcondor-users

› manual

Thank you

