UW-MADISON HTCONDOR INSAR WORKFLOW

Elena C. Reinisch, Ph.D. Student UW-Madison Department of Geoscience May 24, 2018

WHY MONITOR DEFORMATION?

Tracking deformation patterns in space and time can lead to a better understanding of geophysical processes

- earthquakes
- sinkholes
- volcanoes
- geothermal areas

Interferometric Synthetic Aperture Radar (InSAR)

Range Change

$$\Delta \rho = \frac{\lambda}{2} [\phi(t_2) - \phi(t_1)]$$

$$\Delta \rho = -\mathbf{u} \cdot \hat{\mathbf{s}}$$

- First image at (epoch) t_1
- Second image at t_2
- Phase shift $\Delta \phi \rightarrow \text{Range}$ change $\Delta \rho$
- Component of ground displacement u along line of sight s from the ground to the radar

OBJECTIVE

Use high throughput computing resources to independently process *many pairs at a time* in a *consistent* and *user-friendly* manner

- GMT5SAR (InSAR processing software) [Sandwell et al., 2011]
- UW-Madison's Center for High Throughput Computing (CHTC)

Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P., 2011. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools, UC San Diego: Scripps Institution of Oceanography.

COMPATIBILITY ACROSS SERVERS

- Define consistent set of environment variables in setup.sh scripts and login files
- Consistent directory scheme across storage and computational servers (e.g., /[disk]/insar/[sat]/[trk]/raw)
- Direct SSH between servers

EXAMPLE SETUP.SH SCRIPT

SUMMARY OF INITIAL STEPS (1-2)

- Download raw data
- Prepare data for jobs
- Update databases
- Generate sub-list of pairs to process based on input criteria
- Copy sub-list of pairs to submit-3 server

#mast	slav	orb1	orb2	doy_mast	doy_slav	dt	trk	orbdir	swath	WV	bpar	bperp	
20141103	20141127	3111	3461	306.076679666951009	330.076605207008981	24	T64	Α	F2	0.0555	0.0	0.0	
20141103	20141221	3111	3811	306.076679666951009	354.076473717008980	48	T64	Α	F2	0.0555	22.5	-13.6	
20141103	20150207	3111	4511	306.076679666951009	37.076645720630999	96	T64	Α	F2	0.0555	36.5	42.7	
20141103	20150502	3111	5736	306.076679666951009	121.076640926082007	180	T64	Α	F2	0.0555	-22.1	-58.6	
20141103	20150526	3111	6086	306.076679666951009	145.076688603830007	204	T64	Α	F2	0.0555	-55.6	-93.5	

3. SUBMIT JOB (ON SUBMIT-3)

- For each pair in sub-list of pairs:
 - submit job
 - with each job, transfer:
 - Portable (compressed) versions of software and orbit files
 - setup.sh script
 - SSH keys
- User friendly
 - "make run"

EXAMPLE SUBMIT FILE

```
TSX T53 In20180112 20180319.sub+
  universe = vanilla
 2 # Name the log file:
 3 log = TSX_T53_In20180112_20180319.log
 5 # Name the files where standard output and error should be saved:
 6 output = TSX_T53_In20180112_20180319-process.out
 7 error = TSX_T53_In20180112_20180319-process.err
 8
 9 # Specify your executable (single binary or a script that runs several
10 # commands), arguments, and a files for HTCondor to store standard
11 # output (or "screen output").
12 executable = run_pair.sh
13 arguments = "TSX T53 20180112 20180319 ebaluyut strip_008 brady_dem_3dep_10m_kf.grd 80 -119.03 -118.99 39.78 39.82 brady"
14 output = TSX_T53_In20180112_20180319.out
15
16 # Specify that HTCondor should transfer files to and from the
17 # computer where each job runs. The last of these lines *would* be
18 # used if there were any other files needed for the executable to run.
19 transfer_input_files = run_pair.sh, bin_htcondor.tgz, setup.sh, GMT5SAR.tgz, gmtsar_dependencies.tgz, ssh.tgz, GMT.tgz
20
21 # additional requirements
22 # this will allow us to make sure that you don't have too many jobs transferring data from SSEC at the same time
23 concurrency_limits = SSEC_FTP
24
25 # Tell HTCondor what amount of compute resources
26 # each job will need on the computer where it runs.
27 # It's still important to request enough computing resources. The below
28 # values are a good starting point, but consider your file sizes for an
29 # estimate of "disk" and use any other information you might have
30 # for "memory" and/or "cpus".
31 \text{ request_cpus} = 1
32 request_memory = 3GB
33 request_disk = 12GB
34 queue
```

TRANSFERRED SETUP.SH SCRIPT

```
1 #GMT and GMTSAR
2 umask 002
 3
4 export OMP_NUM_THREADS=1
5 export PATH=`pwd`/bin_htcondor:$PATH
                                                          # scripts from Kurt Feigl
6 export PATH=`pwd`/this_gmt/bin:$PATH
                                                   # GMT
                                                            points to a symbolic link
7 export PATH=`pwd`/gmtsar/bin:$PATH
                                                   # GMTSAR points to a symbolic link
8 export PATH=`pwd`/GMT5SAR5.2/bin:$PATH
                                                       # GMTSAR points to a symbolic link
9 export PATH=`pwd`/gmtsar_dependencies/bin:$PATH # needed for libraries
10 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: pwd /this_gmt/lib64
11 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: pwd`/gmtsar_dependencies/lib
12
13 # save account name for maule
14 export maule=ebaluyut@maule.ssec.wisc.edu
```

4. PROCESS PAIR (ON JOB SERVER)

- On each job server (non-interactive):
 - Setup software and SSH directories
 - Copy data files from maule
 - Process pair
 - Transfer tarred result to maule

5. GATHER JOB STATISTICS (ON SUBMIT-3)

- After all pairs have finished, gather statistics on jobs (submit-3)
- Transfer files to chosen server
 - maule permanent storage
 - porotomo post-processing

LESSONS LEARNED SO FAR

- Handling different levels of computational proficiency
 - Makefiles
 - Well-documented code
 - Comprehensive user manual
- Improving workflow efficiency with the help of CHTC
 - Portable software
 - Direct SSH
- Version tracking and software consistency
 - Git repository

SUCCESS AND FUTURE WORK

- Many successful runs for a variety of satellites:
 - SI-A
 - ERS-2
 - ALOS
 - TSX/TDX
 - Envisat
- Many successful sites:
 - Geothermal fields: Brady Hot Springs, NV; East Mesa, CA; Don Campbell, NV; Dixie Meadows, NV; Tungsten, NV; Coso, CA
 - Laguna del Maule Volcanic Field, Chile
- Continuing work on automating processes, tutorials, etc.
- Software publicly available on GitHub: <u>https://github.com/ecreinisch/bin_htcondor</u>
- Workflow manual available at <u>https://elenacreinisch.com/page/software</u>

ACKNOWLEDGEMENTS

- Thank you to the following people for giving helpful discussions, and advice, and for testing the workflow:
 - Kurt Feigl, Sam Batzli, Hélène Le Mével, Dougal Hansen, Tabrez Ali
- Thank you to UW-Madison's CHTC and specifically their coordinators, Lauren Michael and Christina Koch
- Thank you to the GMT5SAR community for all of the collaboration
- This material is based upon the work support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256259

THANK YOU! QUESTIONS?

Brady Hot Springs Geothermal field, NV