
Changing landscape of computing at BNL

Shared Pool and New Users and Tools

HTCondor Week
May 2018
William Strecker-Kellogg <willsk@bnl.gov>



2

Shared Pool

Merging 6 HTCondor Pools into 1
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What?

● Current 
Situation

– Many pools, 
not all as well 
utilized as 
possible

– Wildly diferent 
policies

– Emulate 
“queues” with 
policy 
statements
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Current Situation
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What?

● Sharing done between some pools with 
HTCondor Flocking
– Policy requirements for “general queue” jobs much 

stricter than for native jobs
– Collaborations negotiate with other over these 

parameters
● Not possible for many stakeholders

– E.g. ATLAS, using group quotas and auto-balancing 
(see my previous talks)

http://research.cs.wisc.edu/htcondor/HTCondorWeek2015/presentations/StreckerKellogW-No-Idle-Cores.pdf
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Flocking

“Foreign” 
experiments 
flocked to 
PHENIX
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Group Quota Model
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8000
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2000

Multicore
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Quota

Sharin
g

● Hierarchy of job classes 
with “quotas” assigned 
to  each class (how many 
CPUs can they get)

– Jobs “spill” between 
groups freely



8

Group Surplus in ATLAS

“level” for 
analysis

Areas where other queues “fll in” with 
surplus-sharing automatically
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How?

● Will adopt the group quota model
– Experiments→Top-Level Groups
– Quotas→Set by contribution
– Flocking→Surplus sharing 
– Queues→Sub-Groups in experiment
– Fair-share→Fair-Share (between users within group)
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Why?

● More standard setup—everyone gets same features

● Sub-groups give experiments flexibility to defne own 
policies / “queues”

● Surplus sharing automatically ensures maximum 
occupancy

● One unifed policy (helps manage user expectations during growth)

● Easy scaling of ofoading work. E.g. Backflling HPC 
(slurm) resources with routed overflow jobs
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Implementation Details

● Preemption
– Needed for two reasons (assuming latency constraints)

1)Intra-group: most collaborations want to be able to evict a 
resource hog sooner than the maximum runtime allowed (Latency)

2)Inter-group: if surplus sharing is on, a group can monopolize the 
pool, not acceptable for all other colloborations to wait the 
maximum time to get their own resources back (preempt a group 
down to its quota)

● Currently has major issues with Partitionable-Slots
● HTCondor team promises progress here…
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Limitations

● Latency vs. Throughput:
– Most fundamental limit—all groups need to agree 

on allowable job run-time and acceptable latency
● Currently able to be set per-experiment, but by its 

nature it is pool-wide

– Manifests in several places
● Maximum job lengths, how to fairly allow diferences
● How much to defragment to allow “large” jobs
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Implementation Details

● Partitionable Slots w/ 
Preemption
– How to make room for larger jobs?
– All slots that meet Preempt-

Requirements
● How to choose what to evict

– Users with worst integrated priority?
– Users belonging to groups most over their 

quota?
– Least badput respecting preemption-reqs?

● This is non-trivial and will require 
experimentation

2C-Will

2C-Will

4C-Todd

1C-Jamie

1C-free

2C-Greg ????



14

Preemption

● Do we need it?
– Poll: What are the maximum-allowed and 

minimum-guaranteed run-times at your site?
– Poll: What are your user expectations for 

latency?
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New Computing Paradigms

HTC and Jupyter for Iteractive Scaling
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Jupyter

● Came from IPython project
– Ipython→Jupyter (Hub/Lab/whatever)

● Interactive Python Interperter and Login Shell in 
Browser

● Why not just log in normally?
– This is (to most admins inexplicably) a major barrier to science getting 

done
● Very useful session management and portability 

via browser
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Jupyter
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BatchSpawner

● Using Condor BatchSpawner
– Jupyter sessions spawned in batch jobs that proxy back to 

the jupyter node
– Allows reduction of dedicated interactive nodes
– Greatly-enhanced scalability of interactive workload

● This is timely, considering growth of userbase 
and the shared pool
– Raises issues of latency again!
– I vote for “condor_NOW” tool name, Todd
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HTCondor Integration

● Diferent Levels

1) Batch → Interactive (already discussed)

2) Programmatic job / workflow management

3) Leveraging batch horsepower “invisibly”
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Job Management

● Job Driver
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Job Management

● Python bindings somewhat un-
Pythonic/lacking
– UserLog watching broken
– Batch submit not in same cluster
– Support advanced “Queue” iterables

● Which “level”, in language or in library?

Done for 8.8!
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Job Management

● DAGs would be great!
– Ipython Parallel project API?

● Which interfaces most useful to 
users?
– Which can generalize to other batch systems 

or HPC?

https://ipyparallel.readthedocs.io/en/latest/index.html
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“Higher” Level Interface

● Make “interactive” and “batch” 
indistinguishable
– Run code over one input locally, run over 

10000 in batch, from within Jupyter
– Condor-leveraged map_async(<fn>, <iter>)

● Made test case, use cloudpickle to serialize code + 
data, distribute naively 1:1 to condor jobs
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Conclusions

● Consolidating many pools
– Must enforce common policy

● Need p-Slot preemption to sell to users

– Better scaling to many user groups
● Users love Jupyter 

– Trying to think how HTCondor can be useful in this 
use case—happy to talk to users and share code
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Questions?
Comments?

Thank you!

GPU Hackathon @ BNL
This September
See this site for info

https://www.bnl.gov/gpuhackathon2018/
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