
Changing landscape of computing at BNL

Shared Pool and New Users and Tools

HTCondor Week
May 2018
William Strecker-Kellogg <willsk@bnl.gov>

2

Shared Pool

Merging 6 HTCondor Pools into 1

3

What?

● Current
Situation

– Many pools,
not all as well
utilized as
possible

– Wildly diferent
policies

– Emulate
“queues” with
policy
statements

4

Current Situation

5

What?

● Sharing done between some pools with
HTCondor Flocking
– Policy requirements for “general queue” jobs much

stricter than for native jobs
– Collaborations negotiate with other over these

parameters
● Not possible for many stakeholders

– E.g. ATLAS, using group quotas and auto-balancing
(see my previous talks)

http://research.cs.wisc.edu/htcondor/HTCondorWeek2015/presentations/StreckerKellogW-No-Idle-Cores.pdf

6

Flocking

“Foreign”
experiments
flocked to
PHENIX

7

Group Quota Model

ATLAS
12000

Analysis
4000

Production
8000

Regular
2000

Multicore
6000

Quota

Sharin
g

● Hierarchy of job classes
with “quotas” assigned
to each class (how many
CPUs can they get)

– Jobs “spill” between
groups freely

8

Group Surplus in ATLAS

“level” for
analysis

Areas where other queues “fll in” with
surplus-sharing automatically

9

How?

● Will adopt the group quota model
– Experiments→Top-Level Groups
– Quotas→Set by contribution
– Flocking→Surplus sharing
– Queues→Sub-Groups in experiment
– Fair-share→Fair-Share (between users within group)

10

Why?

● More standard setup—everyone gets same features

● Sub-groups give experiments flexibility to defne own
policies / “queues”

● Surplus sharing automatically ensures maximum
occupancy

● One unifed policy (helps manage user expectations during growth)

● Easy scaling of ofoading work. E.g. Backflling HPC
(slurm) resources with routed overflow jobs

11

Implementation Details

● Preemption
– Needed for two reasons (assuming latency constraints)

1)Intra-group: most collaborations want to be able to evict a
resource hog sooner than the maximum runtime allowed (Latency)

2)Inter-group: if surplus sharing is on, a group can monopolize the
pool, not acceptable for all other colloborations to wait the
maximum time to get their own resources back (preempt a group
down to its quota)

● Currently has major issues with Partitionable-Slots
● HTCondor team promises progress here…

12

Limitations

● Latency vs. Throughput:
– Most fundamental limit—all groups need to agree

on allowable job run-time and acceptable latency
● Currently able to be set per-experiment, but by its

nature it is pool-wide

– Manifests in several places
● Maximum job lengths, how to fairly allow diferences
● How much to defragment to allow “large” jobs

13

Implementation Details

● Partitionable Slots w/
Preemption
– How to make room for larger jobs?
– All slots that meet Preempt-

Requirements
● How to choose what to evict

– Users with worst integrated priority?
– Users belonging to groups most over their

quota?
– Least badput respecting preemption-reqs?

● This is non-trivial and will require
experimentation

2C-Will

2C-Will

4C-Todd

1C-Jamie

1C-free

2C-Greg ????

14

Preemption

● Do we need it?
– Poll: What are the maximum-allowed and

minimum-guaranteed run-times at your site?
– Poll: What are your user expectations for

latency?

15

New Computing Paradigms

HTC and Jupyter for Iteractive Scaling

16

Jupyter

● Came from IPython project
– Ipython→Jupyter (Hub/Lab/whatever)

● Interactive Python Interperter and Login Shell in
Browser

● Why not just log in normally?
– This is (to most admins inexplicably) a major barrier to science getting

done
● Very useful session management and portability

via browser

17

Jupyter

18

BatchSpawner

● Using Condor BatchSpawner
– Jupyter sessions spawned in batch jobs that proxy back to

the jupyter node
– Allows reduction of dedicated interactive nodes
– Greatly-enhanced scalability of interactive workload

● This is timely, considering growth of userbase
and the shared pool
– Raises issues of latency again!
– I vote for “condor_NOW” tool name, Todd

19

HTCondor Integration

● Diferent Levels

1) Batch → Interactive (already discussed)

2) Programmatic job / workflow management

3) Leveraging batch horsepower “invisibly”

20

Job Management

● Job Driver

21

Job Management

● Python bindings somewhat un-
Pythonic/lacking
– UserLog watching broken
– Batch submit not in same cluster
– Support advanced “Queue” iterables

● Which “level”, in language or in library?

Done for 8.8!

22

Job Management

● DAGs would be great!
– Ipython Parallel project API?

● Which interfaces most useful to
users?
– Which can generalize to other batch systems

or HPC?

https://ipyparallel.readthedocs.io/en/latest/index.html

23

“Higher” Level Interface

● Make “interactive” and “batch”
indistinguishable
– Run code over one input locally, run over

10000 in batch, from within Jupyter
– Condor-leveraged map_async(<fn>, <iter>)

● Made test case, use cloudpickle to serialize code +
data, distribute naively 1:1 to condor jobs

24

Conclusions

● Consolidating many pools
– Must enforce common policy

● Need p-Slot preemption to sell to users

– Better scaling to many user groups
● Users love Jupyter

– Trying to think how HTCondor can be useful in this
use case—happy to talk to users and share code

25

Questions?
Comments?

Thank you!

GPU Hackathon @ BNL
This September
See this site for info

https://www.bnl.gov/gpuhackathon2018/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

