
HTCondor at

Collin Mehring

Using HTCondor Since 2011

Animation Studio Background

● Productions are our customers
○ Artists are the end users

● Production stages and their teams
○ Layout -> Animation -> Lighting / FX -> Finaling

● The production hierarchy - Production -> Sequence -> Shot -> Frames
○ Frames are composed of many steps composited together

○ Each frame has a left- and right-eye version for 3D effect

○ ~260k frames in a movie

● Support many different applications

● Hard deadlines
○ Leads to large amounts of work during crunch time

Who interacts with HTCondor and how?

● Artists
○ Submit to the farm and expect frames back

○ Focus on the art, no technical knowledge of HTCondor required

● Technical Directors
○ Configure artists’ software to use submission tools

○ Debug issues on the shot setup side

● TRAs (Technical Resource Admins / Render Wranglers)
○ Mange the HTCondor farm jobs

○ Answer artists’ questions about the farm, and provide help

● JoSE (Job Submission and Execution, R&D team)
○ Configure HTCondor

○ Develop and maintain tools to help the TRAs manage the farm

○ Developing submission tools

Why do we configure HTCondor the way we do?

● End users shouldn’t require any technical knowledge of the scheduling system
○ Available settings should be things they care about, everything else is automatic

● The scheduling system should not noticeably impact the end users

● Admins should be able to easily manage large amounts of jobs

● Admins should have easy access to all relevant information and statistics
○ Easier troubleshooting, helps establish causation, and present information to productions

● Prioritize throughput, but consider turnaround time as well
○ Minimize wasted compute hours

○ New renderer scales very well with cores, prioritize scheduling large jobs

● Accounting groups should always get their minimum allocation

● Help productions meet deadlines anyway possible

How do we have HTCondor configured?

● All DAG jobs

○ Many steps involved in rendering a frame

● GroupId.NodeId.JobId instead of ClusterId

○ Easier communication between departments

● No preemption (yet)

○ Deadlines are important - No lost work

○ Checkpointing coming soon in new renderer

● Heavy use of group accounting

○ Render Units (RU), the scaled core-hour

○ Productions pay for their share of the farm

● Execution host configuration profiles

○ e.g. Desktops only run jobs at night

○ Easy deployment and profile switching

● Load data from JobLog/Spool files into

Postgres, Influx, and analytics databases

Quick Facts

● Central Manager and backup (HA)

○ On separate physical servers

● One Schedd per show, scaling up to ten

○ Split across two physical servers

● About 1400 execution hosts

○ ~45k server cores, ~15k desktop cores

○ Almost all partitionable slots

● Complete an average of 160k jobs daily

● An average frame takes 1200 core hours

over its lifecycle

● Trolls took ~60 million core-hours

What additional configuration have we added?

● Lots of additional ClassAd attributes (~50)

● Concurrency limits
○ Each group has their own limit

○ Software limits can be per host, and can be released early

● Error & Production Error status
○ Differentiating between held and errored jobs

● Subway - Python submission API
○ In terms of studio specific constructs

○ Deferred submissions, v4 provides a REST API

● Job Policy
○ Predefined templates of several job attributes

● Heavy use of pre- and post-priorities

How do we manage our HTCondor pool?

The Farm Manager (WebApp)

● GUI for managing the HTCondor pool

○ Used by TRAs, TDs, Artists, etc.

● See specific details

○ Group progress

○ Job stats and information

■ Logs, charts, etc.

○ Finished and Canceled jobs

● Perform actions on jobs

○ Supports batched actions on nodes &

groups

○ Can modify jobs that haven’t been

submitted yet by the DAG

● Filter your view

○ Only see the groups relevant to you

● Hides most low-level HTCondor data

○ ClassAds, DAGs, SDFs, etc.

● Allocate resources between shares

○ Separate allocations for day and night

● Monitor execution hosts

○ Data and charts, just like jobs

● Links to other monitoring tools

How do we monitor pool stats in real-time?

Grafana

● Primarily used by the TRAs / Render Wranglers

● Quickly detect issues and receive alerts

● At-a-glance overview of the render farm

● Diagnose problems
○ Correlate events between metrics

● More dashboards for specific use cases
○ Software license usage, HTCondor negotiator stats, etc.

Viewing Historical Data

Tableau

● Big Picture
○ Trends over time

○ Comparison between productions

● Used primarily for scheduling
○ Can we fit all of the rendering we’re planning on doing into the render farm concurrently?

○ How do we move things around to make it all fit?

○ Are there areas we can optimize to better use the existing farm resources?

○ Are we still on schedule?

● Historical data stored in a separate database

RU Per Frame

● Shows historically how

much compute is being

used for each sequence

● Tracks overall trends and

identifies complex

sequences

● Userful for scheduling

production work, allocating

resources between teams

Sequence-Shot

Details

● Shows RU usage for

every farm job, broken

down by sequence and

shot

● Useful for identifying

outliers and specific

issues

Overnight Rendering Summary

● Tracks nightly render farm performance

● Number of jobs submitted by each production
○ Grouped by priority, with percent completed

● Amount of RU used by each production compared to

their allocations, broken down by team

● Total RU used compared to capacity, broken down by

production

● Proportion of capacity allocated to each production

compared to what they actually used

● Memory usage compared to capacity

Question Time

