
Securing HTCondor Flocking
Kevin Hrpcek

UW-Madison Space Science and Engineering Center

SSEC
● Earth Atmospheric Research

○ Weather, climate, numerical weather prediction
○ CIMSS, SIPS, SDS, McIDAS
○ Collaboration with NOAA,NASA,NWS

● Ice
○ Ice core drilling
○ Antarctica weather stations

● Engineering
○ S-HIS Sounder
○ High speed photometer on Hubble - Removed to fix optics

● Off earth atmosphere

Satellite data processing
● High throughput satellite data processing
● Polar Orbiters

○ MODIS (Terra 1999, Aqua 2002)
○ VIIRS (SNPP 2011, NOAA20 2017)
○ CrIS (SNPP 2011, NOAA20 2017)

● GEO - experimental
○ ABI (GOES 16)
○ AHI (Himawari 8/9)

● Forward Stream Processing for Polar Orbiters
○ Uses ~20% of cluster day to day

● Periodic mission reprocessing
○ Days to weeks of processing

Flocking
● Bidirectional sharing of compute resources among HTCondor clusters
● On UW campus

○ CHTC, SSEC, WID, HEP, IceCube, Physics, DoIT, BioStat, BioChem

● Bidirectional isn’t necessary
● Jobs need to be architected to work over internet or wan

○ This is what keeps my team from flocking out

● Runs like normal condor job but as nobody user

Network
● Unrouted private network for resources
● Few hosts such as condor submitter have multiple network connections so

they can be routed to from outside private network
● Compute needs many resources on private network

○ Ceph, NFS, Database

Flocking Security Problems
● Condor provides some security

○ Nobody user

● Not really secure…
○ Probe network resources
○ Break out of working directory
○ Download anything onto compute nodes
○ Primarily relying on linux user security

Possible Solutions
● Lots of firewall rules?
● Don’t flock?
● Let it be and hope for the best?
● Virtual Machines?
● Docker?
● Something else?

Docker
● Start from clean container with each restart

○ Something breaks? Restart it

● Can provide network isolation by specifying NIC to use
● Less overhead than VM
● Easily modifiable

○ Building images is easy

● Doesn’t require overhauling my infrastructure

Flocking+Docker Theory
● Create a new vlan and trunk it to the all switch ports for compute and condor

submitter
● HTCondor submitter acts as the flocking vlan gateway to the internet

○ Default route for this vlan
○ NAT

● HTCondor submitter acts as a firewall between flocking and SIPS networks
○ Very important

● Each compute node runs docker and a CentOS 7 based container that is
running condor_master

● Management script controls the regular startd and flocking startd

The Docker Image

Docker Network
● Need to have container run on a specific vlan with no access to system routes

or other network interfaces
● Macvlan driver

○ Directly connects a host’s ‘physical’ interface to a running container

Host Network

Container Network
docker run --hostname f205.sips --name flocking_startd --network macvlan2512
--ip=10.27.2.5 --dns=8.8.8.8 -it -v /dev/shm --tmpfs
/dev/shm:rw,nosuid,nodev,exec,size=64g sipsdev.sips:5000/centos7-flock
/bin/bash

Old Network

New Network

Monitoring from HTCondor
● Regular startd hosts start with ‘p’
● Flocking containers start with ‘f’
● All show up on the condor master

Shepherd
● Python program that manages the flock
● Runs on condor master
● Uses python bindings to keep track of everything
● Turns regular and flocking startd on and off as necessary
● /tmp/flockoff override
● Always prefers local work to flocking
● Leave ~25% of cluster to not flock
● Run with circus or systemd

Shepherd Script Logic
● If /tmp/flockoff: ensure all flocking disabled; else
● Get status of all hosts, regular and flock, and store it
● Check condor queue
● If idle queue < 600 and not all hosts are flocking

○ Condor_off $x number of regular startd (p220) condor_on flock container on that physical host
(f220)

○ Disable startd process monitoring in Icinga2

● Elif idle queue > 600 and there is active flocking
○ Condor_off $y flocking startd, condor_on corresponding physical condor startd
○ Enable startd process monitoring in Icinga2

● Sleep 5 min and repeat

Shepherd Status
● Prints current status of all shepherd managed hosts

Puppet
● Install docker
● Set up em1.2512 host interface
● Set up macvlan2512 docker network
● Install systemd service to manage flocking container

What does all this get me?
● Unprivileged user
● Unprivileged container
● Reduced Capabilities
● On a firewalled host
● On a firewalled vlan with no access to my private network

Risks
● Break out of container
● Keep kernel up to date to mitigate risks
● Only sharing /dev/shm to container
● A slip up in firewall rules could cause access to my network
● Other?

Questions?

