HTCondor on Titan

Wisconsin IceCube Particle Astrophysics Center

Vladimir Brik

HTCondor Week May 2018

The IceCube Neutrino Observatory \bigcirc

Overview of Titan

- Cray XK7 Supercomputer at Oak Ridge Leadership Computing Facility
- Ranked #5 by TOP500 as of November 2017
- 18688 physical compute nodes
 - nVidia Kepler K20X GPU
 - 16-core AMD Opteron CPU
 - 32GB RAM
- PBS, Moab, ALPS for cluster management and operation
- Anybody can apply for a time allocation

Challenges of using Titan for our workloads

• Connectivity restrictions

- Worker nodes have no Internet access
- Two factor authentication using a key fob
- (Solution: self-contained project with pre-generated input data)

• Exotic ecosystem

- Cray Linux on worker nodes
- Titan's Lustre file system not a good fit for our CVMFS repo
- (Solution: Singularity container with everything needed to run IceCube simulations)
- Titan is geared heavily toward large MPI applications
 - Scheduling and other policies are adverse to jobs that are not "leadership class"
 - Native mechanisms alone are inadequate for dynamic node-level task scheduling
 - (Solution: HTCondor as the second-level scheduler)

Selected simulation project

- 84,000 simulations of photons propagating through the detector
- Simulations are independent and each requires a single GPU
- Run times indeterminate a priori
- Inconvenient run time distribution
 - Range: 0 to 90 minutes
 - Median: 5 minutes
 - 90th percentile: 30 minutes

Our approach at a high level

- Transfer simulation input and output files manually
 - Just ran globus-url-copy --sync a few times during the campaign
- Package IceCube's software stack in a singularity container
 - SL6 container with Titan-specific tweaks
 - A 40GB subset /cvmfs/icecube.opensciencegrid.org
 - HTCondor
- Use HTCondor as the second-level scheduler inside PBS reservations
 - Start an HTCondor pool inside a PBS job, one container per worker node
 - Store/load HTCondor state on/from the shared file system to make pools "resumable"

High-level architecture

Results

- Expended 16.5K node-hours of our allocation to process 84K simulations
 nVidia K20X ~5x slower than GTX 1080 for our workload
- Per PBS accounting overall GPU utilization was ~90%
 - Splayed pool set-up to be nice to Lustre and ALPS
 - Time to let running simulations finish when there are no idle jobs left
- Per HTCondor accounting ~5% of pool time spent re-running simulations
 - Simulations killed when their PBS job ran out of time
 - Simulations killed after their HTCondor pool ran out of idle jobs

Thoughts

- Worked nicely for a self-contained project, but integrating Titan's resources into IceCube's systems would be challenging
 - Networking and authentication restrictions
 - Various policy restrictions (e.g. no cron, low ulimits)
 - HTCondor's upcoming file-based job submission feature looks promising
- Persistent central manager would simplify things a lot
 - Already possible to do, but seems to go against the spirit of Titan's User Guide
- Native CVMFS support would be great
 - IceCube's full CVMFS repo is 600GB and containerizing it would be a pain

Status of Singularity on Titan

Singularity has been disabled on Titan since late April/early May.

I am guessing it's because the Cray microkernel used on Titan does not support the prctl option PR_SET_NO_NEW_PRIVS, which is required for secure operation.

According to Titan support, bringing Singularity back is *"a high priority"*, and *"good progress is being made on a solution"*, but no ETA.

https://www.sylabs.io/2018/05/whatsnew-singularity-2-5-why-affects-everyone-using-containers/

Thank you

Why we need HTCondor

PBS scheduling policy on Titan			
Min Nodes	Max Nodes	Max Walltime	Aging Boost
11,250	-	24 hours	15 days
3,750	11,249	24 hours	5 days
313	3,749	12 hours	0 days
126	312	6 hours	0 days
1	125	2 hours	0 days

- Only 2 jobs that request less than 126 nodes can run simultaneously
- Job service node restricted to 200 processes, 1024 open files
- Task management tools unfriendly for HTC workloads like ours